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Abstract. An infinite binary sequence z is defined to be
1. strongly useful if there is a recursive time bound within which every
recursive sequence is Turing reducible to z; and
2. weakly useful if there is a recursive time bound within which all the
sequences in a non-measure 0 subset of the set of recursive sequences
are Turing reducible to x.
Juedes, Lathrop, and Lutz (1994) proved that every weakly useful se-
quence is strongly deep in the sense of Bennett (1988) and asked whether
there are sequences that are weakly useful but not strongly useful.
The present paper answers this question affirmatively. The proof is a
direct construction that combines the recent martingale diagonalization
technique of Lutz (1994) with a new technique, namely, the construction
of a sequence that is “recursively deep” with respect to an arbitrary, given
uniform reducibility. The abundance of such recursively deep sequences
is also proven and used to show that every weakly useful sequence is
recursively deep with respect to every uniform reducibility.

1 Introduction

It is a truism that the usefulness of a data object does not vary directly with
its information content. For example, consider two infinite binary strings, x g,
the characteristic sequence of the halting problem (whose nth bit is 1 if and
only if the nth Turing machine halts on input n), and z, a sequence that is
algorithmically random in the sense of Martin-L6f [10]. The following facts are
well-known.

1. The first n bits of x x can be specified using only O(logn) bits of information,
namely, the number of 1’s in the first n bits of xx [2].
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2. The first n bits of z cannot be specified using significantly fewer than n bits
of information [10].

3. Oracle access to xx would enable one to decide any recursive sequence in
polynomial time (i.e., decide the nth bit of the sequence in time polynomial
in the length of the binary representation of n) [11].

4. Even with oracle access to z, most recursive sequences cannot be computed
in polynomial time. (This appears to be folklore, known at least since [3].)

Facts (i) and (ii) tell us that y x contains far less information than z. In contrast,
facts (iii) and (iv) tell us that xx is computationally much more useful than z.
That is, the information in yg is “more usefully organized” than that in z.

Bennett [3] introduced the notion of computational depth (also called “logical
depth”) in order to quantify the degree to which the information in an object
has been organized. In particular, for infinite binary sequences, Bennett defined
two “levels” of depth, strong depth and weak depth, and argued that the above
situation arises from the fact that x g is strongly deep, while z is not even weakly
deep. (The present paper is motivated by the study of computational depth, but
does not directly use strong or weak depth, so definitions are omitted here. The
interested reader is referred to [3], [7], or [6] for details, and for related aspects
of algorithmic information theory.)

Investigating this matter further, Juedes, Lathrop, and Lutz [6] considered
two “levels of usefulness” for infinite binary sequences. Specifically, let {0, 1}>°
be the set of all infinite binary sequences, let REC be the set of all recursive
elements of {0,1}°°, and, for z € {0,1}* and #:N — N, let DTIME®(¢) be
the set of all y € {0,1}* for which there exists an oracle Turing machine M
that, on input n € N with oracle z, computes y[n], the nth bit of y, in at most
t(€) steps, where ¢ is the number of bits in the binary representation of n. Then
a sequence z € {0,1} is defined to be strongly useful if there is a recursive
time bound ¢: N — N such that DTIME?®(¢) contains all of REC. A sequence
z € {0,1}* is defined to be weakly useful if there is a recursive time bound
t:N — N such that DTIME?(¢) contains a non-measure 0 subset of REC, in the
sense of resource-bounded measure [9]. That is, x is weakly useful if access to z
enables one to decide a nonnegligible set of recursive sequences within some fixed
recursive time bound. No recursive or algorithmically random sequence can be
weakly useful. It is evident that x g is strongly useful, and that every strongly
useful sequence is weakly useful.

Juedes, Lathrop, and Lutz [6] generalized Bennett’s result that x g is strongly
deep by proving that every weakly useful sequence is strongly deep. This con-
firmed Bennett’s intuitive arguments by establishing a definite relationship be-
tween computational depth and computational usefulness. It also substantially
extended Bennett’s result on xyx by implying (in combination with known re-
sults of recursion theory [10, 13, 4, 5]) that all high Turing degrees and some
low Turing degrees contain strongly deep sequences.

Notwithstanding this progress, Juedes, Lathrop, and Lutz [6] left a critical
question open: Do there exist weakly useful sequences that are not strongly
useful? The main result of the present paper, proved in Section 4, answers this



question affirmatively. This establishes the existence of strongly deep sequences
that are not strongly useful. More importantly, it indicates a need for further
investigation of the class of weakly useful sequences.

The proof of our main result is a direct construction that combines the mar-
tingale diagonalization technique recently introduced by Lutz [8] with a new
technique, namely, the construction of a sequence that is recursively F-deep,
where F' is an arbitrary uniform reducibility. This notion of uniform recursive
depth, defined and investigated in Section 3, is closely related to Bennett’s notion
of weak depth.

In addition to using specific constructions of recursively F-deep sequences,
we prove that, for each uniform reducibility F', almost every sequence in REC is
recursively F-deep. This implies that every weakly useful sequence is, for every
uniform reducibility F, recursively F-deep.

2 Preliminaries

We use N to denote the set of natural numbers (including 0), and we use Q
to denote the set of rational numbers. We write [¢] for the Boolean value of a
condition ¢, i.e.,

[¢] = if ¢ then 1 else 0.

Throughout this paper, we identify each set A C N with its characteristic
sequence x4 € {0,1}°°, whose nth bit is xa[n] = [n € AJ. For any z,y €
{0,1}* U {0,1}°°, we write z C y to mean that z is a prefix of y, and if in
addition, x # y, we may write z C y.

We fix a recursive bijection (-,-): N? — N, monotone in both arguments,
such that ¢ < (i,7) and j < (i,7) for all i, € N.

In the proof of Theorem 12, we will deal extensively with partial characteristic
functions, i.e., functions with domain a subset of N and with range {0,1}. We
will identify binary strings with characteristic functions whose domains are finite
initial segments of N. If ¢ and 7 are partial characteristic functions, we let
dom(c) denote the domain of o, and say that o and 7 are compatible if they
agree on all elements in dom(o)Ndom(7). We say that o is extended by 7 (o0 C 1)
if 0 and 7 are compatible and dom(o) C dom(7) (if in addition o # 7, we write
o C 7). If 0 and 7 are compatible, we let o U 7 be their smallest common
extension.

We will often think of IN being split up into columns 0,1,2,... where the
ith column is {(i,7) | j € N}. If A C N, then the ith strand of A is defined as
A; ={z| (i,x) € A}. If 0 is a partial characteristic function and n € N, then
o[< n] denotes o restricted to the domain {0,...,n — 1}, and o[i, < n] denotes
the unique partial characteristic function 7 such that for all z,

(z) = o((i,z)) if x <n and o((i,z)) is defined,
") = undefined otherwise.

That is, ofi, < n] results from “excising” the first n bits of o from the ith
column. Inversely, if w is a binary string, then {i} x w denotes the unique partial



characteristic function 7 such that 7({i,z)) = w(z) for all z < |w|, and is
undefined on all other arguments. That is, {i} x w is w “translated” over to the
ith column. Of particular importance will be the finite characteristic function
defined for an arbitrary C C N and k,y € N as

¢ (kyy) = |J {F} x CIE, < .

k' <k

In other words, ¢ (k,y) is xc restricted to the “rectangle” of width k£ and height
y, with a corner at the origin.

Weakly useful sequences are defined (in Section 1) in terms of recursive mea-
sure, a special case of the resource-bounded measure developed by Lutz [9]. We
very briefly sketch the elements of this theory, referring the reader to [9, 8] for
motivation, details, and intuition.

Definition 1. A martingale is a function d: {0,1}* — [0,00) such that, for all
w e {0,1}*, d(w) = Lwotdwl),

Definition 2. A martingale d is recursive if there is a total recursive function
d:N x {0,1}* — Q such that, for all r € N and w € {0,1}*,

d(r,w) — d(w)| <277
Definition 3. A martingale d succeeds on a sequence x € {0,1}* if

limsupd(z[0...n —1]) = oo,

n—o0

where z[0...n — 1] is the n-bit prefix of x. The success set of a martingale d is
S*®[d] = {z € {0,1}*° | d succeeds on z}.
Definition4. Let X C {0,1}°.

1. X has recursive measure 0, and we write pec(X) = 0, if there is a recursive
martingale d such that X C S*[d].

2. X has recursive measure 1, and we write pirec(X) = 1, if firec(X¢) = 0, where
X¢=1{0,1}*° — X is the complement of X.

3. X has measure 0 in REC, and we write u(X | REC) = 0, if pirec (XNREC) =
0

4. X has measure 1 in REC, and we write u(X | REC) =1, if u(X°¢ | REC) =
0. In this case, we say that X contains almost every element of REC.



3 Uniform Recursive Depth

In this section we prove that, for every uniform reducibility F', almost every
recursive subset of N has a certain “depth” property with respect to F. This
depth property is used in the proof of our main result in Section 4. It is also
of independent interest because it is closely related to Bennett’s notion of weak

depth [3].
We first make our terminology precise. As in [12], we define a truth-table
condition (briefly, a tt-condition) to be an ordered pair 7 = ((n1,...,n),9),

where k,ny,...,nx € N and ¢:{0,1}* — {0,1}. We write TTC for the class
of all tt-conditions. The tt-value of a set B C N under a tt-condition 7 =
((n1,...,ng),g) is the bit

8 = g([n, € B]---[n+, € B]).

A truth-table reduction (briefly, a tt-reduction) is a total recursive function
F:N — TTC. If F is a tt-reduction and F(z) = ((ni1,...,nk),g), then we
call ni,...,ny, the queries made by F' on input z. A truth-table reduction F
naturally induces a function F: P(N) — P(N) defined by

F(B)={neN|F@n)? =1}.

In general, we identify a truth-table reduction F' with the induced function F ,
writing F' for either function and relying on context to avoid confusion.
The following terminology is convenient for our purposes.

Definition 5. A uniform reducibility is a total recursive function F: N x N —
TTC.

If F is a uniform reducibility, then we use the notation Fy(n) = F(k,n)
for all k,n € N. We thus regard a uniform reducibility as a recursive sequence
Fy, F, Fs, ... of tt-reductions.

Definition 6. If F' is a uniform reducibility and A, B C N, then we say that
A is F-reducible to B, and we write A <p B, if there exists k¥ € N such that
A = F(B).

Ezample 1. Fix a recursive time bound, i.e., a total recursive function ¢: N — N.
It is routine to construct a uniform reducibility F' such that, for all A, B C N,

A <p B <= A € DTIME®(t).

Definition 7. Let F be a uniform reducibility. The upper F'-span of aset A C N
is the set
F~'(4) = {BCN|A<p B},

Definition 8. Let F' be a uniform reducibility. A set A C N is recursively F'-
deep if prec(F1(A)) = 0.



Bennett [3] defines a set A C N to be weakly deep if A is not tt-reducible
to any algorithmically random set B. The above definition is similar in spirit,
but it (i) replaces “tt-reducible” with “F-reducible,” and (ii) replaces “any al-
gorithmically random set B” with “any set B outside a set of recursive measure
0.

Definition 9. A set A C N is recursively weakly deep if, for every uniform
reducibility F', A is recursively F-deep.

It is easy to see that every recursively weakly deep set is weakly deep.

We now prove the main result of this section. Recalling our identification of
subsets of N with their characteristic sequences, we state this result in terms of
sequences but, for convenience, prove it in terms of sets.

Theorem 10. If F is a uniform reducibility, then almost every sequence in REC
1s recursively F'-deep.

Proof sketch Assume the hypothesis. For each k,n € N and A C N, define
the set

E,én ={BCN|M0<m<n)[me A] =[me F,(B)]}.

This is the set of all B such that Fj(B) agrees with A on 0,1,...,n — 1. In
particular,

FHA) = N &

k=0 n=0

We regard Eén as an event in the sample space P(N) with the uniform distri-

bution. Thus we write Pr(£{,)) for the probability that B € &, , where the set
B C N is chosen probabilistically according to a random experiment in which
an independent toss of a fair coin is used to decide membership of each natural
number in B.

For each A C N, define a function d*:{0,1}* — [0, 00) by

(o)

dAw) =33 27l (w),

k=0 n=0

where, for all k,n € N and w € {0,1}*,

20w Pr(Cy, | EL) if Pr(EA ) >0
A _ w k,n k,n )
die.n(w) = { 1 if Pr(€(,) =0,

where C,, = {A C N | w C x4}. It is routine to check that each d* is a martin-
gale that is recursive in A.
For each k,n € N and A C N, let

)

Ny(k,n) = Hm |0 <m < n and Pr(é‘,ﬁmﬂ) < %Pr(é’,ﬁm)}




and let

X = {ACN| (vk e N)(¥n € N)NA(k,m) > ),

where the quantifier (V*°n € N) means “for all but finitely many n € N.”
We use the following four claims (proofs are omitted).

Claim 1 For all k,n € N and A C N,
Pr(&f,) < 27 Naltkm),
Claim 2 For all k,n € N and A, B C N satisfying A = Fi,(B),

lim inf dit(xBl0...0—1]) > 2Nalkn),
—00

Claim 3 For all A€ X, F~'(A4) C S®[d4].
Claim 4 ppec(X) = 1.
Let
D ={ACN| A is recursively F-deep}.

By Claim 3 and the fact that d* is recursive in A, we must have X NREC C D.
It follows that D° N REC C X°¢. Claim 4 tells us that pre.(X¢) = 0, and hence

1(D° | REC) = jiree(D° N REC) = 0,

since any subset of a rec-measure 0 set has rec-measure 0. We thus get u(D |
REC) = 1, which proves the theorem. 0 Theorem 10

Theorem 11. Every weakly useful sequence is recursively weakly deep.

Proof. Assume that A is weakly useful and fix a uniform reducibility F'. It suffices
to show that pirec(F1(A4)) = 0.

Fix a recursive time bound #: N — N such that u(DTIMEA(¢) | REC) # 0.
Then there is a uniform reducibility F such that, for all B,C,D C N,

[ B € DTIMEC () and C <p D] => B < D.

Let X be the set of all sets that are recursively F-deep. By Theorem 10, pu(X |
REC) = 1, so there is a set B € X N DTIME*(t) N REC. Now prec(F1(B)) =
0 (because B € X) and F~'(4A) C F~(B) (because B € DTIME(t)), so
prec(F1(A)) = 0. O



4 Main Result

In this section, we prove the existence of weakly useful sequences that are not
strongly useful. Our construction uses recursively F-deep sets (for an infinite,
nonuniform collection of uniform reducibilities F'), but those sets are constructed
in a canonical way.

Theorem 12. There is a sequence that is weakly useful but not strongly useful.

We include a sketch of the proof of Theorem 12. The proof uses the next
proposition, which is of independent interest.

Proposition13. If F is a uniform reducibility, then there is a canonical recur-
sive, recursively F'-deep set, i.e., a set A such that

frec({B | (30)A = Fi(B)}) = 0,
and such that for all z,i € N, Prc [F;(C)[i,< z] = A[i,< z]] < 27°.

We call A above the canonical recursively F-deep set.

Proof sketch of Theorem 12 Our proof is an adaptation of the martingale
diagonalization method introduced by Lutz in [8]. We will define H one strand at
a time to satisfy the following conditions, where Hy, Hy, Hs, ... are the strands
of H:

1. Each strand Hy, is recursive (although H itself cannot be recursive).

2. If d is any recursive martingale, then there is some & such that d fails on Hy,.

3. For every recursive time bound ¢, there is a recursive set A such that A ¢
DTIME® (t).

These three conditions suffice for our purposes. By Condition 1, the set J =
{Hy,H1,H>,...} CREC, and by Condition 2, no recursive martingale can suc-
ceed on all its elements. Thus pec(J) # 0, which makes H weakly useful, since
J C DTIME" (linear). Condition 3 ensures that H is not strongly useful.

Fix an arbitrary enumeration {¢j}ren of all recursive time bounds, and an
enumeration {dj,}xen of all recursive martingales. These enumerations need not
be uniform in any sense, since at present we are not trying to control the com-
plexity of H. We will define (in order) a number of different objects for each
k:

— a uniform reducibility F* corresponding to tj.

— a recursive A* such that A* ¢ DTIME" () (A* will be the canonical re-
cursively F*-deep set (cf. Proposition 13,

— a partial characteristic function ay, of finite domain, compatible with all the
previous strands of H (ultimately, oy, T H for all k),

— martingales dz;]q (uniformly recursive over j and ¢) for all i,j,q € N with
i < k, which, taken together, witness that each A’ is recursively F-deep,
and



— the strand Hy, itself, which is designed to make the martingale

oo o0

k
=i 35S e
i=0 j=0 q=0

=0gq

fail on Hy, thus satisfying Condition 2 above. Hj, will also participate in a
fixed finite number of diagonalizations against tt-reductions from the A* to
H for i < k.

Fix £ € N, and assume that all the above objects have been defined for
all £ < k (define «_; = ). Also assume that for each k£’ < k we have at
our disposal programs to compute (uniformly over j and q) FJI“’, A¥ | Hy, and
dZ,J , for all i < k'. Let {M;r}jen be a recursive enumeration of all oracle
Turing machines running in time ¢, and for all j let MJ’k be the same as M;
except that when M; , makes a query of the form (z,y) for z <k, M} instead
simulates the answer by computing H, (y) directly. We let F’ ]k be the tt-reduction
corresponding to M ]’ «- Note that on any input, FJIC only makes queries of the
form (z,y) for > k.

We define A* to be the canonical recursively F*-deep set constructed in the
proof of Proposition 13, therefore,

Fact 1 For all j,k,z € N, Pro [F]-’“(C)[j, <z]= Ak}, <z]] <27".

Let H.j, denote the partial characteristic function that agrees with H on all
(z,y) with z < k, and is undefined otherwise. Given ay—_1, which is compatible
with Hj, we define ay, as follows: let (i,j) = k. If there is a set C O HepUay—1
such that A* # FJ?(C), then we diagonalize against F]? by letting ay, be the least
finite characteristic function extending ay_; that preserves such a miscomputa-
tion, i.e., for some C' and x such that A%(z) # F]?(:r)c, oy, will agree with C' on
all queries made by F]? on input z. If no such C exists, let ap = aj_1.

Now fix any i and j with i < k. We would like to define a martingale that
succeeds on all B such that A’ = F]’(B) We cannot do this directly, because
any given tt-reduction F/ from A’ to H might make queries on many different
columns at once, and our martingales can only act on one column at a time.
Instead, for any ¢ € N large enough, the martingales d;/.,, for all &' > i will act
together to “succeed as a group” on all sets to which A’ reduces via F]’

The martingale dfc’_];] will be split up into infinitely many martingales

o0
J 2
dk;q - dk;q;f’
(=1
where each martingale dZ’_]q_ , bets a finite number of times. Fix i and j. For any

m € N, let y,,, be least such that v < y,, for all queries (u,v) made by F]?
on inputs (j,z) for all + < m. For any C C N, let E“(m) be the event that



Fi(O)[j, < m] = A'[j, < m], i.e., that Fj(C) and A’ agree on the first m elements
of the jth column. For all w € {0,1}*, we define
it (w) = 211~

Pr (€7 (b, ae) U ({k} x 0) £ C [ €% (k) £C & E(q0)

if Pre [ (k,yq,) T C & E9(gf)] > 0. Otherwise, for all w define dz’;jq;e(w) =
2-¢,

We now define Hy. For any y, we assume that Hy[< y] has already been
defined, and we set w = Hy[< y|. Let

ai((k,y)) if ax((k,y)) is defined,
Hi(y) =<0 if o ((k,y)) is undefined and d}, (w0) < dj,(wl),
1 if a((k,y)) is undefined and dj, (w0) > d} (wl).

Remark. Actually, we cannot do this exactly as stated. A recursive martingale
such as dj, cannot in general be computed exactly, but is only approximated.
What we are really comparing are not dj,(w0) and dj,(wl), but rather their yth
approximations, which are computable. Since these approximations are guaran-
teed to be within 27¥ of the actual values, and our sole aim is to make dj, fail on
Hy,, it suffices for our purposes to consider only the approximations when doing
the comparisons above. The same trick is used in [8].

H;,, is evidently recursive (given the last remark), and for cofinitely many y,
Hy.(y) is chosen so that dj,(H[< (y + 1)]) < d},(Hi[< y]) +27Y, the 27¥ owing
to the error in the approximation of dj,. Thus dj}, fails on Hj, from which we
obtain

Fact 2 The martingales dj, and dzjq for all and i <k, 7, and q all fail on Hy,.

Thus Conditions 1 and 2 are satisfied. Each H}, also preserves the diagonal-
ization commitments made by the ay for all k' < k, so the following is easily
checked:

Fact 3 oy C a1 Cas C---C H.

To verify Condition 3, we show that A" # F}(H) for all i and j. Suppose
Al = F]’(H) for some i and j. Let ko = (i, j), and let 0 = Hp, U agy—1. By the
definition of ay,, it must be the case that A’ = FJ’(C) for all C' O o, otherwise
F ]’ would have been diagonalized against by ay, and would thus fail to reduce A?
to H. Let go be smallest such that ¢o > i and o((¢', y)) is undefined for all y and
q' > qo- We will show that d%J, = succeeds on H, for some n < qo, contradicting
Fact 2 above.

For any C C N and m € N, we let y,, and E®(m) be as before. For any ¢
and y > y4,¢ We have

Pr [E (200) | " (q0,y) £ C] =1



by the definition of gy and y,,¢, and thus

Pre [E€(qof) | €7 (q0,y) € C]
Pro [E€(qof) | £H(i,y) C C]
1
~ Prc B9 (qof) [ €7(i,y) C C]
1
~ Pro [E€ (qof)]
> 2(10[

the last inequality following from Fact 1. From the definition of d”] .. the fol-
lowing inequation can be shown for any ¢ and y > y,,¢ (details are omltted)

w1 Pro [E€(qof) | € (g0,) £ C]
ol , ’
H A e (He[< y]) 2 2700 5= [E(g0) | €7 (i, y) C O]

Therefore,
go—1

Hquoszy]) 1

for all y > y4,¢, which implies that dZ’jq o (Hg[< y]) > 1for at least one k between

i and go — 1. Since qp is fixed and ¢ was chosen arbitrarily, by the Pigeon-Hole
Principle there must be some ng with ¢ < ng < go such that for infinitely many ¢,
d;g g0t (Hno[< y]) > 1 for all y > ygop. This in turn implies that the martingale

i, icti
dn0 g Succeeds on H,,,, contradicting Fact 2.

Thus A’ # F}(H) for all i and j, and Condition 3 is satisfied.
O Theorem 12

Corollary 14. There is a sequence that is strongly deep but not strongly useful.

Proof. This follows immediately from Theorem 12 and the fact [6] that every
weakly useful sequence is strongly deep. O
It is easy to verify that weak and strong usefulness are both invariant under
tt-equivalence. Thus, Theorem 12 shows that there are weakly useful tt-degrees
that are not strongly useful. Our results do not say anything regarding the
Turing degrees of weakly useful sets, however. In particular, we leave open the
question of whether there is a weakly useful Turing degree that is not strongly
useful (i.e., whether there is a weakly useful set not Turing equivalent to any
strongly useful set). Some facts are known about these degrees. Jockusch [4]
neatly characterized the strongly useful Turing degrees (under a different name),
for example, as being either high or containing complete extensions of first-order
Peano arithmetic. This includes some low degrees, but no non-high r.e. degrees.
Recently, Stephan [14] has partially strengthened these results, showing that no
non-high r.e. Turing degree can be weakly useful, either. Therefore, among the
r.e. degrees, the strongly useful, weakly useful, and high degrees all coincide.
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