Weakly Hard Problems®

Jack H. Lutz
Department of Computer Science

Iowa State University

Ames, Jowa 50011

Abstract

A weak completeness phenomenon is investigated in the complexity
class E = DTIME(2"™ear). According to standard terminology, a lan-
guage H is <P -hard for E if the set P,,(H), consisting of all languages
A <P H, contains the entire class E. A language C is <l -complete
for E if it is <P -hard for E and is also an element of E. Generalizing
this, a language H is weakly <P -hard for E if the set P,,(H) does not
have measure 0 in E. A language C' is weakly <P -complete for E if it
is weakly <P -hard for E and is also an element of E.

The main result of this paper is the construction of a language that
is weakly <P -complete, but not <P -complete, for E. The existence
of such languages implies that previously known strong lower bounds
on the complexity of weakly <P -hard problems for E (given by work
of Lutz, Mayordomo, and Juedes) are indeed more general than the
corresponding bounds for <P -hard problems for E.

The proof of this result introduces a new diagonalization method,
called martingale diagonalization. Using this method, one simultane-
ously develops an infinite family of polynomial time computable mar-
tingales (betting strategies) and a corresponding family of languages
that defeat these martingales (prevent them from winning too much
money) while also pursuing another agenda. Martingale diagonaliza-
tion may be useful for a variety of applications.

*This research was supported in part by National Science Foundation Grant CCR-
9157382, with matching funds from Rockwell International and Microware Systems
Corporation.

1 Introduction

In practice to date, proving that a decision problem (i.e., language) H C
{0,1}* is computationally intractable usually amounts to proving that every
member of the complexity class EE = DTIME(21m¢2)—or some larger class—
is efficiently reducible to H. (See [25] for a survey of such arguments.) For
example, some problems involving the existence of winning strategies for
certain two-person combinatorial games are known to be intractable because
they are polynomial time many-one hard (in fact, logarithmic space many-
one complete) for E [24].

Briefly, a language H is polynomial time many-one hard (abbreviated <P -
hard) for E if every language A € E is polynomial time many-one reducible
to H (abbreviated A < H). A language C is <U -complete for E if C € E
and C is <P -hard for E.

A language H that is <P -hard for E is clearly intractable in the sense
that H ¢ P, i.e., H is not decidable in polynomial time. This is because
a well-known diagonalization argument [3] shows that there is a language
B € E—P. Since B € E, it must be the case that B < H. Since B ¢ P, it
follows that H ¢ P.

In fact, languages that are <P hard for E are known to have much
stronger intractability properties. Three examples follow.

(A) Meyer [15] has shown that every <P -hard language H for E is dense.
This means that there is a real number ¢ > 0 such that, for all suffi-
ciently large n, H contains at least 2" strings = € {0,1}5".

(B) Schoning [23] and Huynh [6] have shown that every <P -hard language
H for E is hard to approximate in the sense that, for every language
A € P, the symmetric difference A A H is dense. (Note that this
immediately implies result (A) above.)

(C) Orponen and Schéning [16] have shown that every <F -hard language
H for E has a dense polynomial complexity core K. This condition,
defined precisely in section 2 below, means roughly that K is dense and
that every Turing machine that is consistent with H performs badly
(either by running for more than polynomially many steps or by failing
to decide) on all but finitely many inputs « € K.

In fact, the proofs of results (A), (B), and (C) all have the same overall
structure as the proof that no <'-hard language I for E is in P. In each
case, a “very intractable” language B € E is exhibited by diagonalization.
This intractability of B, together with the fact that B <P H, is then shown
to imply the appropriate intractability property for H.

At this time, it appears likely that most interesting intractable problems
are not <P -hard for E or larger classes. Insofar as this is true, results such
as (A), (B), and (C) above fail to have interesting cases. Lutz [9] proposed
to remedy this limitation by weakening the requirement that H be <P -hard
for E in such results.

To be more specific, given a language I, the < -span of H (also called
the lower < -span of H [7]) is the set

P.(H)={Ac{o,1}|a<h 0},

consisting of all languages that are polynomial time many-one reducible to
H. The language I is <! -hard for E if E C P, (H), i.e., if P,,(H) contains
all of the complexity class E. Lutz [9] proposed consideration of weaker
hypotheses, stating only that P,,(H) contains a non-negligible subset of E.

The expression “non-negligible subset of E” can be assigned two useful
meanings, one in terms of resource-bounded category [9] and the other in
terms of resource-bounded measure [10, 8]. (Caution: Resource-bounded
measure was incorrectly formulated in [9]. The present paper refers only
to the corrected formulation, in terms of martingales, presented in [10, §]
and discussed briefly in section 3 below.) Resource-bounded category, a
complexity-theoretic generalization of classical Baire category [17], led to an
extension of result (B) above in [9]. Work since [9] has focused instead on
resource-bounded measure.

Resource-bounded measure is a generalization of classical Lebesgue mea-
sure [2, 18, 17]. As such, it has Lebesgue measure as a special case, but other
special cases provide internal measures for various complexity classes. This
paper concerns the special case of measure in the complexity class E. In par-
ticular, resource-bounded measure defines precisely what it means for a set X
of languages to have measure 0 in E. This condition, written u(X | E) =0,
means intuitively that X NE is a negligibly small subset of E. (This intuition
is justified technically in [10] and in section 3 below.) A set Y of languages
has measure 1 in E, written p(Y | E) = 1, if u(Y° | E) = 0, where Y* is

the complement of Y. In this latter case, Y is said to contain almost every
language in E.

It is emphasized here that not every set X of languages has a measure
(“is measurable”) in E. In particular, the expression “u(X | E) # 0”7 only
means that X does not have measure 0 in E. It does not necessarily imply
that X has some other measure in E.

Generalizing the notion of <P -hardness for E, say that a language H is
weakly <P -hard for E if u(P,,(H) | E) # 0, i.e., if P,,(H) does not have
measure 0 in E. Similarly, say that a language C is weakly < -complete for
Eif C € E and C is weakly <P -hard for E. Since E does not have measure 0
in E [10], it is clear that every <P -hard language for E is weakly <! -hard for
E, and hence that every <! -complete language for E is weakly <! -complete
for E.

The following extensions of results (A), (B), and (C) above are now
known.

(A’) Lutz and Mayordomo [12] have shown that every weakly <P -hard lan-
guage H for E (in fact, every <, ,,-hard language for E, for a < 1) is
dense.

B’) The method of [12] extends in a straightforward matter to show that,
g
for every weakly <P -hard language H for E and every language A € P,
the symmetric difference A A H is dense.

(C’) Juedes and Lutz [7] have shown that every weakly < -hard language
H for E has a dense exponential complexity core K. (This condition,
defined in section 2, implies immediately that A is a dense polynomial
complexity core of H.)

Results (A’), (B), and (C’) extend the strong intractability results (A),
(B), and (C) from <P -hard languages for E to weakly < -hard languages for
E. This extends the class of problems to which well-understood lower bound
techniques can be applied, unless every weakly <U -hard language for E is
already <P -hard for E. Surprisingly, although weak <! -hardness appears to
be a weaker hypothesis than <! -hardness, this has not been proven to date.

The present paper remedies this situation. In fact, the Main Theorem, in
section 4 below, says that there exist languages that are weakly < -complete,
but not < -complete, for E. It follows that results (A’), (B’), and (C’) do

indeed extend the class of problems for which strong intractability results
can be proven.

The Main Theorem is proven by means of a new diagonalization method,
called martingale diagonalization. This method involves the simultaneous
construction, by a mutual recursion, of (i) an infinite sequence of polynomial
time computable martingales (betting strategies); and (ii) a corresponding
sequence of languages that defeat these martingales (prevent them from win-
ning too much money), while also pursuing another agenda. The interplay
between these two constructions ensures that the sequence of languages in
(ii) can be used to construct a language that is weakly <P -complete, but not
<P _complete for E. Martingale diagonalization may turn out to be useful
for a variety of applications.

The proof of the Main Theorem also makes essential use of a recent the-
orem of Juedes and Lutz [7], which gives a nontrivial upper bound on the
complexities of <P -hard languages for E.

Section 2 presents basic notation and definitions. Section 3 provides def-
initions and basic properties of feasible (polynomial time computable) mar-
tingales, uses these to define measure in E, and proves a new result, the Rigid
Enumeration Theorem. This result provides a uniform enumeration of fea-
sible martingales that is crucial for the martingale diagonalization method.
Section 4 is devoted entirely to the Main Theorem and its proof. Section 5
briefly discusses directions for future work, with particular emphasis on the
search for natural problems that are weakly <P -hard for E.

2 Preliminaries

All languages (synonymously, decision problems) in this paper are sets of
binary strings, i.e., sets A C {0, 1}*.
The standard enumeration of {0,1}* is the infinite sequence

A,0,1,00,01,10, 11,000,001, - - -

in which strings appear first in order of length, then in lexicographic or-
der. The symbol A denotes the empty string and the expression |w| denotes
the length of a string w € {0,1}*. It is convenient to write the standard
enumeration in the form

0,1,2,3,--.

4

That is, for each n € N, n is the n'® string (counting from 0) in the standard
enumeration of {0,1}*. Thus, 0 = X, 1 =0, 2 =1, 3 = 00, etc. Note also
that |n| denotes the length of the n'" string in {0,1}*.

The Boolean value of a condition ¢ is

(1 it is true
[v]= {0 if @ is false.

Each language A C {0, 1}* is identified with its characteristic sequence, which
is the infinite binary sequence

xa=[0¢€ AJ[1 € A][2€ A]---.

The expression y4[0..n — 1] denotes the string consisting of the first n bits
of 4.
This paper uses the standard pairing function

()t Nx NZLN

onto

defined by
k 1
(k,n) = (+g+)+k

for all k,n € N. This pairing function induces the pairing function
() {0,117 x {0, 1} =>{0,1}"

defined in the obvious way, i.e., (k,n) is the (k, n>th string in the standard
enumeration of {0, 1}*. Note that |(k,n})| < 2(|k|+ |n]|) for all k,n € {0,1}*.

As noted in section 1, a language A C {0,1}* is dense if there is a real
number £ > 0 such that, for all sufficiently large n, A contains at least 2"
strings @ € {0,1}=".

Given a function ¢ : N — N, the complexity class DTIME(#(n)) consists
of every language A C {0,1}* such that [x € A] is computable (by a deter-
ministic Turing machine) in O(¢(|z|)) steps. Similarly, the complexity class
DTIMEF(¢(n)) consists of every function f : {0,1}* — {0, 1}* such that f(x)
is computable in O(t(]z])) steps. The complexity classes

P = [JDTIME(n"),

k=0

PF = | J DTIMEF(n"),

k=0

E = [|JDTIME(2"),
k=0

E, = |JDTIME(2")
k=0

are of particular interest in this paper.

A language A is polynomial time many-one reducible to a language B,
written A <P B if there is a function f € PF such that A = f~1(B), i.e.,
forall z € {0,1}*, 2 € A — f(x) € B.

Complexity cores, first introduced by Lynch [13], have been studied ex-
tensively. The rest of this section specifies the notions of complexity cores
mentioned in section 1.

Given a (deterministic Turing) machine M and an input = € {0,1}*,
write

M(x) =<0 if M rejects x

1 in any other case.

{ 1 if M accepts x

If M(x) € {0,1}, then timep(x) denotes the number of steps used in the
computation of M(x). If M(x) = L, then timey(x) = co. A machine M is
consistent with a language A if M(x) = [« € A] whenever M(x) € {0,1}.

Definition. Let ¢ : N — N be a time bound and let A, K C {0,1}*. Then K
is a DTIME(t(n))-complexity core of A if, for every ¢ € N and every machine
M that is consistent with A, the “fast set”

F={a|timey(x) <ec-t(|z])+ ¢}

has finite intersection with K. (By the definition of timeys(z), M(x) € {0,1}
for all @ € F'. Thus F'is the set of all strings that M “decides efficiently.”)

Note that every subset of a DTIME(¢(n))-complexity core of A is a
DTIME(t(n))-complexity core of A. Note also that, if s(n) = O(¢(n)), then
every DTIME(#(n))-complexity core of A is a DTIME(s(n))-complexity core
of A.

Definition. Let A, K C {0,1}".

1. K is a polynomial complexity core of Aif K is a DTIME(n*)-complexity
core of A for all £ € N.

2. K is an exponential complexity core of A if there is a real number ¢ > 0
such that K is a DTIME(2")-complexity core of A.

Intuitively, a P-complexity core of A is a set of infeasible instances of A,
while an exponential complexity core of A is a set of extremely hard instances

of A.

3 Feasible Martingales

This section presents some basic properties of martingales (betting strate-
gies) that are computable in polynomial time. Such martingales are used to
develop a fragment of resource-bounded measure that is sufficient for under-
standing the notion of weakly hard problems. This section also proves the
Rigid Enumeration Theorem, which is crucial for the martingale diagonal-
ization method used to prove the Main Theorem in section 4.

Definition. A martingale is a function d : {0,1}* — [0, c0) with the property
that, for all w € {0,1}~,
d(w0) + d(wl)

d(w) = . . (3.1)

A martingale d succeeds on a language A C {0, 1}* if

limsup d(x4[0..n — 1]) = oo.
(Recall that y4[0..n — 1] is the string consisting of the first n bits of the
characteristic sequence of A.) Finally, for each martingale d, define the set

Seld] = {AC{0,1}*|d succeeds on A}.

Intuitively, a martingale d is a betting strategy that, given a language A,
starts with capital (amount of money) d(\) and bets on the membership or
nonmembership of the successive strings 0,1,2,--- (the standard enumera-
tion of {0,1}*) in A. Prior to betting on a string n, the strategy has capital
d(w), where

w=1[0€ A]---[n—1 € A].

7

After betting on the string n, the strategy has capital d(wb), where b = [n €
A]. Condition (3.1) ensures that the betting is fair. The strategy succeeds
on A if its capital is unbounded as the betting progresses.

Example 3.1. Define d : {0,1}* — [0,00) by the following recursion. Let
w € {0,1}* and b € {0,1}.

(i) d(A) = 1.
(ii) d(wb) =2-d(w) - [b=[|w| is prime]].

(See Figure 1.) It is easily checked that d is a martingale that succeeds on
the language A = { p|p is prime} and on no other language.

Example 3.2. Define d : {0,1}* — [0,00) by the following recursion. Let
w e {0,1}*.

(i) d()) = 1.
(i) d(w0) = 3d(w)
(iii) d(wl) = Ld(w)

(See Figure 2.) It is obvious that d is a martingale that succeeds on every
finite language A. In fact, it is easily checked that S°°[d] contains exactly
every language A for which the quantity

n

0 0.n—1]) —
#(7XA[n]) log 3
is unbounded as n — oo, where #(0,w) denotes the number of 0’s in the
string w.

Martingales were used extensively by Schnorr [19, 20, 21, 22] in his inves-
tigation of random and pseudorandom sequences. Lutz [10, 8] used martin-
gales that are computable in polynomial time to characterize sets that have
measure (in E.

Since martingales are real-valued, their computations must employ finite
approximations of real numbers. For this purpose, let

D:{m-Z_”

m,nEN}

8

/

d(00) = 4 d(01) = 0
d(000) = 0 d(001) =
d(0010) = 0 d(0011

Figure 1: The martingale d of Example 3.1

be the set of nonnegative dyadic rationals. These are nonnegative rational
numbers with finite binary expansions.

Definition. 1. A computation of a martingale d is a function d: N x
{0,1}* — D such that

dv(w) — d(w)| <277 (3.2)

~

for all r € N and w € {0,1}* satisfying r > |w|, where d,(w) = (r,w).
2. A strong computation of a martingale d is a computation d of d that

satisfies (3.2) for all r € N and w € {0,1}".

d(0) = 2 d(1) =
d(00) = d(01) =3 d(10) = 3 d(ll) =
d(000) = d(001) = 3§ d(100) = 3 d(101) = 2

Figure 2: The martingale d of Example 3.2

3. A computation d of a martingale d is rigid if it has the following two
properties.

(a) For each r € N, the function d, is a martingale.
(b) For all r € N and w € {0,1}*, if r > |w]|, then

~

dr(w) = dpya (w)] < 2704,

4. A p-computation of a martingale d is a computation d of d such that
d,(w) is computable in time polynomial in r + |w].
5. A p-martingale is a martingale that has a p-computation.

A martingale is here considered to be “feasible” if and only if it is a
p-martingale, i.e., if and only if it has a p-computation. Intuitively, one

10

might prefer to insist that “feasible” martingales have strong p-computations,
thereby avoiding the ad hoc condition r > |w|. On the other hand, in the
technical arguments of this paper, it is useful to have rigid p-computations,
for reasons explained below. Fortunately, the following lemma shows that all
three of these conditions are equivalent.

Lemma 3.3 (Rigid Computation Lemma). For a martingale d, the following
three conditions are equivalent.

(1) d has a p-computation.
(2) d has a strong p-computation.
(3) d has a rigid p-computation.

Proof. It is trivial that (3) implies (1). To see that (1) implies (2), let d be
a p-computation of d. Then the function d : N x {0,1}* — D defined by
JT(w) = ci?o_|_|w|(w) is easily seen to be a strong p-computation of d, so (2)
holds.

To see that (2) implies (3), let d be a strong p-computation of d. Define
a function d : N x {0,1}* — D by the following recursion. Assume that
rc N, we {0,1}*, b€ {0,1}, and b= 1 — b.

(i) d(N) = darsal).

(11) JT(wb) = JT(w) + 22T+2(7~Ub)—572r+2(w5)‘

2

It suffices to show that d is a rigid p-computation of d.
It is first shown, by induction on w, that

do(w) = d(w)| <27 (1 + [w]) (3.3)

holds for all » € N and w € {0,1}*. For w = A, this follows immediately
from the facts that d.(A\) = da,42(A) and d is a p-computation of d. For the
induction step, assume that (3.3) holds. Then, for b € {0,1},

. doyy2(wbh) — dyypa(wh
dr(w)‘l’ 2+2(w)2 2+2(w)—d(wb)

d(wb) — d(wb)| =

11

1 6727«4-2(105) - 6727«4-2(105)

< |d, (w) = d(w)| + |d(w) + . —d(wb)‘

1 (w0) — d(u) 1+ d(wb);d(wZ) . Jm?(wb);@m(wa - d(wb)‘
= | () — d) |+ |2t dleh) d<wz’>‘§”+2<w“‘

< |d,(w) — d(w)| + % 3142 (wb) — d(wb)| + % 342 (wh) — d(wb)|

< 2—(2r+2)(1 4 |w|) _|_2—(27’—|—2)

= 2721 4 |wb)).

(The last inequality holds by the induction hypothesis and the fact that d is
a strong p-computation of d.) This confirms that (3.3) holds for all » € N
and w € {0,1}".
Now let r € N and w € {0,1}* be such that » > |w]|. Then, by (3.3),
d,(w) = d(w)| < 27 (1 4 fuw])
< 27D 4y (3.4)
< o7r+2),

This shows that d is a computation of d. In fact, since dis a p-computation,
it is easily checked that d is a p-computation of d. The fact that d is rigid
follows from the following two observations.

(a) For each r € N, the function d, is clearly a martingale by clause (ii) in
the definition of d.

(b) For all r € N and w € {0,1}*, by (3.4),

B(w) = dsa ()] < [do(w) — d(w)| +

< 9=(r+2) | 9=(r+3)
< 27

dry1(w) = d(w)|

(r+1)

Thus (3) holds. O

Note that the above proof does not construct a p-computation of d that
is both strong and rigid. In fact, it seems reasonable to conjecture that there
exists a p-martingale d for which no p-computation is both strong and rigid.

12

Note that a function d : N x {0,1}* — D is a rigid computation of some
martingale d if and only if it satisfies the predicates

Oér,w(J) = [T < |U)| or c@(w) — JT+1(w)‘ S 2_(T+1)]

and

N - d,(w0) + d, (w1
e
for all r € N and w € {0,1}*. The next theorem exploits this fact to

give a very useful enumeration of all p-martingales. The following definition
specifies the useful properties of this enumeration.

Definition. A rigid enumeration do,dy,--- ;cio,cil, -+ of all p-martingales
consists of a sequence dy,dy, - - and a sequence dy, dy, - -+ with the following
properties.

(i) do,dy,--- is an enumeration of all p-martingales.

(ii) For each k € N, dy is a rigid p-computation of d.

(iii) There is an algorithm that, given k,r € N and w € {0,1}*, computes
di.(w) in at most (2 + r + |w|)|k| steps.

The following theorem is the main result of this section.

Theorem 3.4 (Rigid Enumeration Theorem). There exists a rigid enumer-
ation of all p-martingales.

Proof. Fix a function § : N* x {0,1}* — D with the following properties.
(Write gi.(w) = gr(r,w) = g(k,r,w).)

(i) o, g1,- -+ is an enumeration of all functions f : N x {0,1}* — D such
that f(r,w) is computable in time polynomial in r + |w].

(ii) There is an algorithm that, given k,» € N and w € {0, 1}*, computes
Grr(w) in at most (2 + r + |w|)|k| steps.

(The existence of such an efficient universal function is well-known [3, 4].)
Most of this proof is devoted to two claims and their respective proofs.

The first of these claims is the following.

CLAIM 1. There is a function § : N* x {0,1}* — D with the following

properties. (Write gi . (w) = gr(r,w) = g(k,r,w).)

13

(a) For each k € N, gy, is a rigid p-computation of some martingale gj.

(b) For each k € N, if g is already a rigid p-computation of some martin-
gale gy, then g, = gr.

(c) There is a constant ¢ € N such that, for all £, € N and w € {0,1}*,
G (w) is computable in at most (2 + r + |w|)+*¥l steps.

Assume for the moment that Claim 1 is true. Define functions d : N2 x

{0,1}* = D and d: N x {0,1}* — [0,00) by

7 g; if k = 00+l
d. _ gir(w) iftk=0 j
k() { 0 if k is not of this form,

di(w) = lim dy., (w).

The second claim is the following.
CLAIM 2. The sequences dy, dy,--- and cio, cil, .-+ constitute a rigid enumer-
ation of all p-martingales.

To prove Claim 2 (still assuming Claim 1), first note that, for all £ € N
and w € {0,1}",

di(w) = {gj(w) it k = e+
0 if k is not of this form.

By part (a) of Claim 1, this immediately implies that each dj is a p-martingale.
Conversely, assume that d' : {0,1}* — [0,00) is a p-martingale. Then, by
the Rigid Computation Lemma and clause (i) in the specification of g, there
is some j € N such that g; is a rlgld p-computation of d’. Choose k € N
such that k = 050+lD1j. Then d; = g; = g; by part (b) of Claim 1, so dy
is a rigid p-computation of d’, so dy = d'. This shows that dg,dy,--- is an
enumeration of all p- martmgales and that each dj, is a rigid p-computation
of d. For k = 0°0+HD1j, the time t(k,r,w) required to compute d;w()
satisfies

tk,ryw) <[k + (24 7+)~
< K= (2 4 4)R
<

(247 + [w])H.

This proves Claim 2, and hence the theorem. All that remains, then, is to
prove Claim 1.

14

To prove Claim 1, the values gy ,.(w) are first specified for all k,r € N and
w € {0,1}*. Define the following predicates. (In these predicates, it is useful
toregard k,r € N and w € {0,1}* as parameters and f, i N?x {0,1}* = D
as variables.)

bl £,1) = [r < ol or [fur(w) = fiesn ()] < 27049

Brrwlfs f) = [fm(w) _ Jrr(w0) ;— fk,r(wl)] |

Define g : N? x {0,1}* — D by recursion on r and w as follows. Let k,r € N,
w e {0,1}*, and b € {0,1}.

(D) Gro(A) = Gro(N).
A) it akea(9,9
(H) ?]k,r-H()\) =) o7 (g g)

otherwise

— gk,0 wb) if 6k,0,w(§7§)
(IT1) gro(wd) = .
ko(w) otherwise.
Ghrt1(wh) if agrwo(9,d) and
(9, 9) and
ﬂk,r-l-l,w(gv?])

Gk (WD) + Grrg1(w) — grr(w) otherwise

(IV) gk,r-l-l (wb)

By condition (ii) in the choice of g, the function ¢ defined by this recursion
is easily seen to satisfy condition (c) of Claim 1.

To see that g satisfies condition (a) of Claim 1, let & € N be arbitrary.
A routine induction on r shows that 3y ,.,(g,d) holds for all r € N and w €
{0,1}*. It follows easily that each gi, is a martingale. A routine induction
on w then shows that ay,.(g,g) holds for all r € N and w € {0,1}*.
It follows that g is a rigid p-computation of the martingale ¢; defined by
gr(w) = lim, o gk, (w). Thus g satisfies condition (a) of Claim 1.

Finally, to see that g satisfies condition (b) of Claim 1, fix £ € N and
assume that g is a rigid computation of some martingale g;. Then a routine
induction on r and w shows that g, = gx. (The a and 3 predicates hold
throughout the induction, so the “otherwise” cases are never invoked in the

15

definition of g.) This completes the proof of Claim 1 and the proof of the
Rigid Enumeration Theorem. O

The rest of this section briefly develops those aspects of measure in E
that are used in this paper. The key ideas are in the following definition.

Definition. 1. A set X of languages has p-measure 0, written p,(X) = 0, if
there is a p-martingale d such that X C S*[d].

2. A set X of languages has measure 0 in E, written u(X | E) = 0, if
(X NE)=0.

3. A set X of languages has measure 1 in E, written p(X | E) = 1, if
w(X¢| E) =0, where X¢ is the complement of X. In this case, X is said to
contain almost every language in E.

4. The expression (X | E) # 0 indicates that X does not have measure
0 in E. Note that this does not assert that “u(X | E)” has some nonzero
value.

Thus, a set X of languages has measure 0 in E if there is a feasible
martingale that succeeds on every element of X.
The following fact is obvious but useful.

Proposition 3.5. Every set X of languages satisfies the implications

pp(X) =0 = u(X |E) =0, pp(X) =0 = Pr[A € X]=0,

where the probability Pr[A € X] is computed according to the random ex-
periment in which a language A C {0,1}* is chosen probabilistically, using
an independent toss of a fair coin to decide whether each string « € {0,1}*
isin A.

The right-hand implication in Proposition 3.5 makes it clear that p-
measure 0 sets are negligibly small. What is significant for complexity theory
is that, if X has measure 0 in E, then X N E is negligibly small as a subset
of E. This intuition is technically justified in [10], where it is shown that
finite subsets of E have measure 0 in E, and that the sets of measure 0 in E
are closed under subset, finite unions, and certain countable unions, called
“p-unions.” Most importantly, the following is shown.

Theorem 3.6 [10]. u(E | E) # 0.

16

Combined with the above-mentioned closure properties, this result (which
is a special case of the more general Measure Conservation Theorem [10])
ensures that X N E is, in a nontrivial sense, a negligibly small subset of E
whenever X has measure 0 in E.

4 Weak Completeness in E

In standard terminology, a language H is <P -hard for a complexity class C
if the set
Po(H)={A[A<] H}

contains all of C. A language C is <P _-complete for C if C € C and C is
<P _hard for C. The following definition generalizes these notions for the
complexity class C = E.

Definition. A language H is weakly <P -hard for E if u(P,,(H) | E) # 0,
i.e., the set P,,(H) does not have measure 0 in E. A language C is weakly
<P _complete for E if C € E and C is weakly <P -hard for E.

By Theorem 3.6, every <P -hard language for E is weakly <! -hard for E,
whence every <P -complete language for E is weakly <!’ -complete for E. The
following result says that the converse does not hold, i.e., that in E, weak
<P _completeness is a proper generalization of <! -completeness.

Theorem 4.1 (MAIN THEOREM). There is a language C' that is weakly
<P _complete, but not <P -complete, for E.

The rest of this section is devoted to proving the Main Theorem.

A recent theorem of Juedes and Lutz gives a necessary condition for a
language to be <! -hard for E. This condition, based on an idea of Meyer [15],
plays an important role in the present proof. The key ideas are developed in
the following definitions.

Definition. The collision set of a function f:{0,1}* — {0,1}* is
Cy={neN[(@n <n)f(m)=f(n)}.

A function f : {0,1}* — {0,1}* is one-to-one almost everywhere if Cy is
finite.

17

Definition. Let A C {0,1}* and ¢ : N — N. A many-one reduction of Ais a
computable function f : {0,1}* — {0,1}* such that A = f~'(f(A)), i.e., such
that, for all € {0,1}*, f(z) € f(A) implies € A. A <PTMEO_predyction
of Ais a many-one reduction f of A such that f € DTIMEF(#).

Definition. Let A C {0,1}* and ¢ : N — N. Then A is incompressible by
§2TIME(t)—reducti0ns if every §2TIME(t)—reduction of A is one-to-one almost

everywhere.

Intuitively, if f is a <PTMEO_yeduction of A and C; is large, then f

compresses many questions “x € A?” to fewer questions “f(x) € f(A)?” If
A is incompressible by <PTME()_reductions, then A is “very complex” in the
sense that very little such compression can occur.

The following result is used here.

Theorem 4.2 (Juedes and Lutz [7]). No language that is < -hard for E is

24n)

incompressible by <PTIMEC™)_reductions.

Since almost every language (and almost every language in E) is incom-
pressible by <PTMBEC™)_reductions [7], Theorem 4.2 says that the <P -hard
languages are “unusually simple” in at least this one respect.

The largest part of the proof of the Main Theorem is the construction of
a language H € Ey with the following two properties.

(I) H is weakly < -hard for E.
(IT) H is incompressible by <PTIMEZ™)_yeductions.

By Theorem 4.2, this language H cannot be <P -hard for E. A padding
argument then gives the Main Theorem.

The language H is constructed by diagonalization. In establishing prop-
erty (I), the construction uses a fixed rigid enumeration dy,dy, - -; Jg, Jl, e
of all p-martingales. Such a rigid enumeration exists by Theorem 3.4. In
establishing property (II), the construction uses a fixed function f such that
f € DTIMEF(2°") and f is universal for DTIMEF(2*"), in the sense that

DTIMEF(2**) = { f;|i € N},

where fi(x) = f((1,2)). (The existence of such an efficient universal function
is well-known [3, 4].)

18

In addition to the pairing function (,) mentioned in section 2, the con-
struction of H uses the ordering <* of N? defined by

(J,m) <" (k,n) <= [(1 + i)(1 + [m]) < (1 + |k[)(1 + [n])
or [(1+J))(1 + |m]) = (1 + [k[)(1 + |n])
and (j,m) < (k,n)]]

for all j,m, k,n € N. It is easy to check that (N* <*) is order isomorphic to
(N, <). For (k,n) € N? let

#(kn) = [{ G,m) € N?| (j,m) <" (k,n) |

be the number of <*-predecessors of (k,n) in N?. Two important properties
of <* are that

(7,m) <" (k;n) = (1 4+ [i)(1 + [m]) < (1 + [k[)(1 + [n])

and

(k) = 20(HKD (4D,

Using the ordering <*, define the modified collision set C'F of a function
fi € DTIMEF(2**) by

Cr = { (k,n) € N*| (3(j,m) <" (k,n)) fi((§,m)) = £i((k,n))} .
Also, for k € N, define the &'® slice of C* to be the set
Cir={neN|(kn)ecCI}.

Lemma 4.3. For all : € N, the function f; is one-to-one almost everywhere
if and only if the set C is finite.

Proof. Fix : € N and define an equivalence relation =; on {0,1}* by
v =iy = filz) = fily).

Then the collision set C, and the modified collision set € each consist of
all but one of the elements of all the non-singleton equivalence classes of =;.
It follows immediately that C'y, and C are either both finite or both infinite.

a

19

Overview of the Construction. Informally and intuitively, the language
H is constructed by deciding the Boolean values (k,n) € H for successive

(k,n) in the ordering <* of N?. It is convenient to regard H as consisting
of the separate “strands” Hy = {n|(k,n) € H} for k = 0,1,2,---. (See
Figure 3.) The construction exploits the ordering <* to ensure that H € E,
and each H) € E. The “ultimate objective” of each Hj is to ensure that
a specially constructed martingale dy does not succeed on Hy. For each k,
all but finitely many of the values [n € Hj] are chosen according to this
ultimate objective. The exceptions occur when values [n € H] are chosen
in order to “destroy” various functions f; € DTIMEF(2'*), i.e., in order to
ensure that these functions are not many-one reductions of H.

/— [ne Hy] =[(k,n) € H]
S G SN G) S
PR S S I) S
1 &ecdo b ___) S
(K S Y) S
Hy H, H, Hy,

Figure 3: The strands of H.

The specially constructed martingales are of the form Jk =dp+ 22, dik

20

where dj, is taken from the rigid enumeration of all p-martingales given by
Theorem 3.4 and the martingales d; ; are defined below. Since Jk does not
succeed on Hy,, dj, also does not succeed on Hj. Since k is arbitrary here and
each Hy € P,,(H)NE, it follows that P,,(H) N E does not have p-measure
0, i.e., that P,,(H) does not have measure 0 in E. Thus H is a weakly
§fn—hard for E. On the other hand, since Jk does not succeed on Hj, none
of the martingales d; ; succeeds on Hj. Moreover, matters are arranged so
that, for every many-one reduction f; of H with C} infinite, either some d;
succeeds on Hy, or else f; is eventually “destroyed” by some value [n € Hy].
It follows that H is incompressible by §2TIME(24”)—reductions, whence H is
not <P _-hard for E by Theorem 4.2.

Precise details follow.

The Construction. The language H C {0,1}* is defined by

H={(k,n)|ne H},

where the languages Ho, Hi, - - - are defined, along with the auxiliary martin-
gales dg, dy, - - -, by the following recursion. (Recall that do,d1,...;do,d,. ..
is a fixed rigid enumeration of all p-martingales.)

(1) For k € N and w € {0,1}*, define
di(w) = di(w) + 3 dip(w),
i=0

where the functions d;; are computed as follows. Assume that w €

{0,1}*, n = |w]|, and b € {0,1}.

(a) d%k()\) — 9277,
(b) If (k,n) ¢ CF, then d; x(wb) = d; 1(w).
(c) If (k,n) € CF, then

di p(wb) =2 - dip(w) - [b = [m e H]],

where (j,m) is the <*-least pair in N? such that f;({j, m)) =
f2(<k7n>)

21

It is clear that each d; ;, and hence each Jk, is a martingale.
For k,r € N and w € {0,1}*, the approximation

~ R r4|w|+1
dyr(w) = dirpr(w) + D2 dip(w)
1=0

of Jk(w) is also used. It is easy to check that
dir(w) — di(w)| < 27

for all k,r € N and w € {0,1}* satisfying r + 1 > |w|.

In the construction of the languages Hy, Hy, - - -, the operation
“destroy f; at (k,n)”

is often performed. In all such instances, it is known that (k,n) € C7,
and the operation is performed by setting

[n e Hy] = [m ¢ H],

where (j,m) is the <*-least pair in N? such that f;({j, m)) = fi((k,n)).
Note that a single performance of this operation ensures that f; is not

a many-one reduction of H.

The sets
Dy ={1€N|[(3(j,m) <" (k,n)) f; is destroyed at (j,m)},

for k,n € N, are also used in the construction. It is emphasized that
an index ¢ appears in Dy, only if the operation “destroy f; at (j,m)”
is explicitly performed for some (j,m) <* (k,n). In particular, for each
(j,m), there is at most one 7 such that f; is destroyed at (j,m), even
though there are many ¢ such that f; = fi. Thus each Dy, is a finite
set with |Dy,| < #*(k,n).

For k,n € N, let
t(k,n) =min{¢ € N|i ¢ Dy, and (k,n) € C7}.

Note that ¢(k,n) is finite for all k,n € N (because f; is constant for
infinitely many 7). The values [n € Hy] are defined according to the
following two cases.

22

begin
w = xp,[0.n — 1];
for b€ {0,1} do
begin
55 = dk7n+1(wb)
for ¢ := 0to 2n + 1 do 55 = 55 + d%k(wb)
end; //Now 6y = cflvkm(w()) and 61 = Jkn(wl)//
if «(k,n) <k
then destroy fyn at (k,n)
else [n € Hi] := 61 < éo]
end.

Figure 4: Computation of [n € Hy] in the proof of Lemma 4.4.

Case 1. 1f ((k,n) < k, then destroy f,.y at (k,n).
Case 2. If «(k,n) > k, then set

[0 € Hy] = [den(wl) < dpn(wO)],

where w = yp,[0..n — 1].

This completes the construction of the languages Ho, Hy,- - - and the martin-

gales dg, dy, - - -.

The following lemmas are used to prove the Main Theorem.

Lemma 4.4. H € E,. For each k € N, H;, € E.

Proof. Assume first that (k,n) € N? and that the values [m € H,] are
known (stored) for all pairs (7, m) <* (k,n), as is the set Dy ,. Consider the

computation of [n € Hy] exhibited in Figure 4.

23

To estimate the time required for this computation, recall the properties

(j,m) <* (k,n) = (14 [i))(1 + [m[) < (14 [k|)(1 + |n]),
47 (k, n) = 20+ O+MD)

of <* and note the following.

(i) The computation of w requires at most n - #*(k,n) = 20((1+kH(+mD)

steps.

(ii) The computation of kaﬂ(wb) requires at most (3 +n + |wb|)|k| =

90((1+[k|)(1+nl)) steps.

111 or 0 <37 < 2n+1, the condition * can be tested 1n at most
111) For 0 2 1, th di k,n C*” b di
(1 + 4 (,)) 0(25|(<k,))I) 90(li | ((1+|k|)(1+|n|))) — 90((1+[k[)(1+|n]))

steps.

(iv) By (iii), for 0 < ¢ < 2n + 1, the computation of d; x(wb) requires at
most O(n - 20(HINHRD) L 9O((+HKD A+ Z 90D+ geps

(v) By (ii) and (iv), the entire computation of ¢, = ka(wb), i.e., the for-
loop in Figure 4, requires at most 20 ((1+KDA+mD) 1 (9, 4.9)20((+K)(+nl)
— 90(+K(+0D) gpons.

(vi) Asin (iii), for 0 < ¢ < k, the condition “(k,n) € C” can be tested in
at most 20(+KDA+MD) stens Thus, testing the condition “i(k,n) <
k) and computing ¢(k,n) if this condition is true, requires at most

(k + 1) - 200+khO+mD) — 20(A+KNA+MD) steps. It follows easily that

L+ [k])(1+n]))

the if-then-else in Figure 4 requires at most 2°(steps.

By (i), (v), and (vi) above, the computation described in Figure 4 requires
at most 20((+KNA+MD) steps to compute [n € Hy], given the set Dy, and
the values [m € H;] for (j,m) <* (k,n).

The condition (k,n) € H can now be decided by computing and storing
the successive values [m € H;] according to the <*-ordering of N?, using
the computation in Figure 4 and updating D, ,, at each stage. This requires
at most (1 + #*(k,n)) - 0(20((1+|k|)(1+|n|))) = 20((+KDA+MD) steps. Since
20((A+kNA+m)) — 20((+IkmD*) thig proves that H € E,. Also, for fixed k,
20((+KN(A+m)) — 200+l) g4 each H, € E. O

24

Lemma 4.5. For all © € N, if there exist infinitely many & € N such that
the slice ('} is nonempty, then f; is not a many-one reduction of H.

Proof. IFix : € N and assume that the set
S={kreN|c;, £0}

is infinite. For each k € 5, let ny = min 7. For every k € 5, at least one
of the following four conditions must hold.

(1) ¢ > k.

(i) ¢ < o(k, ny).
(iii) o(k,ng) < i < k.
(iv) «(k,ng) =1 < k.

(In fact, for all real numbers a, b, and ¢, at least one of « > ¢, a < b,
b<a<e b=a<emust hold.) It is clear that condition (i) holds for only
finitely many k. For each k such that condition (iii) holds, the construction
of H ensures that fyn,) is destroyed at (k,ny). Since each f; is destroyed
at most once in the construction of H, it follows that condition (iii) holds
for only finitely many k. Since S is infinite, this implies that there is some
k € S such that condition (ii) or condition (iv) holds.

Fix such a number k. If condition (ii) holds, then ¢ € Dy,, (because
(k,nk) € CF), so f; is not a many-one reduction of H. If condition (iv) holds,
then f; is destroyed at (k,ny), so f; is not a many-one reduction of H. Thus,
in any case, f; is not a many-one reduction of H. a

Lemma 4.6. For all 7,k € N, if f; is a many-one reduction of H and C7) is
infinite, then d; ; succeeds on Hj.

Proof. Assume that i,k € N, f; is a many-one reduction of H, and (7 is
infinite. Consider the successive values

Tn = di,k(XHk [On — 1])

forn =0,1,2---. Clause (a) of the definition of d;, says that ro = 2%, while
clauses (b) and (c¢) ensure that each r,41 € {0,7,,2r,}. In fact, since f; is

25

a reduction of H, clause (c) never causes r,41 to be 0. We thus have the
recurrence

i T'n if n Qé Ci*k
o= Tugn = {an ifn € Cry

Since C7, is infinite, this implies that r, — oo as n — oo, whence d;;
succeeds on Hj. O

Lemma 4.7. For all £ € N, Jk does not succeed on Hj.

Proof. Fix £ € N and consider the manner in which the values [n € H] are
decided for n = 0,1,2,---. There can be at most finitely many values of n
for which Case 1 holds. (This is because each occurrence of Case 1 involves
a new value of «(k,n), with «(k,n) < k.) Thus there exists ng € N such that
Case 2 holds for all n > ng. For all n € N, let

wy, = Ym,[0..n — 1]

be the n-bit prefix of yp,. Then, for all m > ng, Case 2 ensures that

~

Jk(wm—l—l) S CZk,m(wm—l—l) —I'AQ_m
S dkm(wm()) —g dkm(wml) 4 9—m
< dy(w0,,0) + 27 ;rdk(wml) +2- -
_ di(wa0) ;r di(wn1) Lot
= dp(wy)+ 27"
It follows that, for all n > ny,
dk(wn) S dk(wno) + Z 21_m < dk(wno) + 4.
Thus, if B
o= ngg(m di(wy,),
then

Jk(wn) <oc+4

26

for all n € N. Hence Jk does not succeed on Hj. O
Lemma 4.8. [is weakly <P -hard for E.

Proof. Let k € N. It is clear that Hy € P,,(H) and S*[d;] C S“[Jk]. It
follows by Lemmas 4.4 and 4.7 that

H, € P (H)NE — 5%[dy] CP,.(H)NE — 5%[d],
whence P,,(H) N E € S*[d;]. Since k is arbitrary here, this implies that
tip(Pn(H)NE) # 0, i.e., that u(P,, (H) | E) # 0. Thus H is weakly < -hard
for E. O

Lemma 4.9. H is not <P -hard for E.

Proof. By Theorem 4.2, it suffices to show that H is incompressible by
§2TIME(24”)—reductions. For this, fix « € N such that f; is a many-one reduc-

tion of H. It suffices to show that f; is one-to-one almost everywhere.

Note the following two things.
(i) For each k € N, the slice (7, is finite by Lemmas 4.7 and 4.6.
(ii) By Lemma 4.5, there are only finitely many k € N such that C7, # 0.

Taken together, (i) and (ii) imply that C7 is finite. It follows by Lemma 4.3
that f; is one-to-one almost everywhere. a

By Lemmas 4.4, 4.8, and 4.9, the language H € E, is weakly <P -hard,
but not <P _hard, for E. From this, a simple padding argument suffices to
prove the Main Theorem.

Proof of Main Theorem. Let H be defined as above. By Lemma 4.4,
there is a polynomial ¢(n) > n such that H € DTIME(2¢™). Let

C = { 210705D | & € H}.

It is easy to check that C' € E and that P,,(C) = P, (H). It follows by
Lemmas 4.8 and 4.9 that C' is weakly < -complete, but not <P -complete,
for E. O

27

5 Conclusion

The most important problem suggested by this work is to find “natural”
examples of languages that are weakly <! -complete, but not <! -complete,
for E. As noted in section 1, such languages would provably be strongly
intractable. It is reasonable to hope that the study of such natural examples
would yield new insights into the nature of intractability.

It is especially intriguing to consider the possibility that SAT and other
natural NP-complete problems may be weakly <P -complete for E, i.e., that
NP may not have measure 0 in E. The hypothesis that SAT is weakly <P -
complete for E implies, but may in some sense be stronger than, the P # NP
hypothesis. For example, recent work has shown that, if SAT is weakly
<P _complete for E, then NP contains P-bi-immune languages [14], every
<P _hard language for NP is dense [12], every <P -complete language for NP
has a dense exponential complexity core [7], and there is a language that is
<E-complete, but not < -complete, for NP [11]. Further investigation of the
consequences and reasonableness of this hypothesis is indicated.

It is routine to modify the proof of the Main Theorem to construct lan-
guages that are weakly <P -complete, but not <P -complete, for larger classes
such as E; and ESPACE. A more interesting, and perhaps harder, question
concerns alternate versions of the Main Theorem in which <P is replaced by
other reducibilities. Homer, Kurtz, and Royer [5] have proven that a language
is <V -hard for E if and only if it is <P -hard for E. It follows immediately
that the language (' given by the Main Theorem is weakly <! . -complete,
but not <V -complete, for E. That is, the Main Theorem holds with <’
replaced by <I" . Beyond this, little is known. New techniques may be
required to determine whether the Main Theorem holds with <P replaced
by <k.

Acknowledgments. [thank Jim Royer and Tom Linton for several useful
suggestions on an earlier draft of this paper. I also thank two anonymous
referees for several corrections and helpful suggestions.

References

[1] L. Berman and J. Hartmanis, On isomorphism and density of NP and

28

[10]

[11]

[12]

[13]

other complete sets, SIAM Journal on Computing 6 (1977), pp. 305—
322.

P. R. Halmos, Measure Theory, Springer-Verlag, 1950.

J. Hartmanis and R. E. Stearns, On the computational complexity of
algorithms, Transactions of the American Mathematical Society 117
(1965), pp. 285-306.

F. C. Hennie and R. E. Stearns, Two-tape simulation of multitape

Turing machines, Journal of the ACM 13 (1966), pp. 533-546.

S. Homer, S. Kurtz, and J. Royer, On 1-truth-table-hard languages,
Theoretical Computer Science 115 (1993), pp. 383-389.

D. T. Huynh, Some observations about the randomness of hard prob-

lems, SIAM Journal on Computing 15 (1986), pp. 1101-1105.

D. W. Juedes and J. H. Lutz, The complexity and distribution of hard
problems, SIAM Journal on Computing, to appear. See also Proceedings
of the 34" IEEE Symposium on Foundations of Computer Science , Palo
Alto, CA, 1993, pp. 177-185. IEEE Computer Society Press.

J. H. Lutz, Resource-bounded measure, in preparation.

J. H. Lutz, Category and measure in complexity classes, STAM Journal
on Computing 19 (1990), pp. 1100-1131.

J. H. Lutz, Almost everywhere high nonuniform complexity, Journal of
Computer and System Sciences 44 (1992), pp. 220-258.

J. H. Lutz and E. Mayordomo, Cook versus Karp-Levin: Separating
completeness notions if NP is not small, Theoretical Computer Science,
to appear. See also Proceedings of the Fleventh Symposium on Theoret-
ical Aspects of Computer Science, Springer—Verlag, 1994, pp. 415-426.

J. H. Lutz and E. Mayordomo, Measure, stochasticity, and the density
of hard languages, SIAM Journal on Computing 23 (1994), pp. 762-779.

N. Lynch, On reducibility to complex or sparse sets, Journal of the
ACM 22 (1975), pp. 341-345.

29

[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

23]

[24]

[25]

E. Mayordomo, Almost every set in exponential time is P-bi-immune,
Theoretical Computer Science, to appear. Also in Seventeenth Interna-
tional Symposium on Mathematical Foundations of Computer Science,

1992, pp. 392-400, Springer-Verlag.
A. R. Meyer, 1977, reported in [1].

P. Orponen and U. Schoning, The density and complexity of polynomial
cores for intractable sets, Information and Control 70 (1986), pp. 5>4-68.

J. C. Oxtoby, Measure and Category, Springer-Verlag, 1980, second
edition.

H. L. Royden, Real Analysis, Macmillan, 1968, second edition.

C. P. Schnorr, Klassifikation der Zufallsgesetze nach Komplexitat und
Ordnung, 7. Wahrscheinlichkeitstheorie verw. Geb. 16 (1970), pp. 1-21.

C. P. Schnorr, A unified approach to the definition of random sequences,
Mathematical Systems Theory 5 (1971), pp. 246-258.

C. P. Schnorr, Zufalligkeit und Wahrscheinlichkeit, Lecture Notes in
Mathematics 218 (1971).

C. P. Schnorr, Process complexity and effective random tests, Journal

of Computer and System Sciences 7 (1973), pp. 376-388.

U. Schoning, Complete sets and closeness to complexity classes, Math-
ematical Systems Theory 19 (1986), pp. 29-41.

L. Stockmeyer and A. K. Chandra, Provably difficult combinatorial
games, SIAM Journal on Computing 8 (1979), pp. 151-174.

L. J. Stockmeyer, Classitying the computational complexity of problems,
Journal of Symbolic Logic 52 (1987), pp. 1-43.

30

