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Abstract

The notions of weak <P -completeness for the complexity classes E = DTIME(?linear) and

Es= DTIME(?pOlynomial) are compared. An element C of one of these classes is weakly <F -
complete for the class if the set Pp,(C), consisting of all languages 4 <) (', does not have
measure 0 in the class. The following two results are proven.

(i) Every problem that is weakly <P -complete for E is weakly <P -complete for Es.
(ii) There is a problem in E that is weakly <P -complete for E5, but not for E.

1 Introduction

The completeness phenomenon is, to date, our principal tool for ascertaining the complexities of
seemingly intractable computational problems. Problems that are complete for NP, PSPACE, or
classes in between are presumably intractable because we are inclined to believe that P # NP.
Problems that are complete for exponential time are provably intractable by the time hierarchy
theorem of Hartmanis and Stearns [3]. In fact, such problems are now known to have very strong
intractability properties [2, 4, 8, 14, 19, etc.].

Recently, Juedes and Lutz [7] initiated investigation of a measure-theoretic generalization of the
completeness phenomenon in the exponential time complexity classes E = DTIME(thear) and Fo=
DTIME(2pelynomial) = Gpecifically, a language (i.e., decision problem) C' in one of these classes is
defined to be weakly <P -complete for the class if the set P (C), consisting of all languages A <P,
does not have measure 0 in the class. (“Measure” here refers to resource-bounded measure, as
developed by Lutz [9, 12]. Necessary details appear in section 3 below.) Thus, a language C' is
weakly <P -complete for E if C' € E and more than a negligible set of the languages in E are <P -
reducible to C. This condition apparently generalizes the condition that C'is < -complete for E,
since the latter condition means that C' € E and all the languages in E are <P -reducible to C'. (A
similar remark applies to Es.)
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Juedes and Lutz [7] proved that every language C' that is weakly complete for E or E5 is strongly
intractable, in the sense that it has a dense exponential complexity core. (Roughly speaking, this
is a large set of very hard instances of the decision problem C.) Recently, Lutz [11] proved the
existence of problems that are weakly <I-complete, but not <P -complete, for E. Thus, weakly
<P _complete problems for E are provably strongly intractable and need not be <! -complete for E.

The purpose of the present note is to compare the notions of weak <! -completeness for E and
Es. It is well-known that a language C' is §fn—complete for E if and only if ¢ € E and C' is an‘
complete for E,. (This is because E; is the downward closure of E under <! -reducibility.) Our Main
Theorem (Theorem 4.4 below) shows that the situation is very different for weak <P -completeness.
Specifically, the Main Theorem establishes the following two facts.

(i) Every language that is weakly < -complete for E is weakly <F -complete for E,.

(ii) There is a language in E that is weakly <P _complete for Ey, but not for E.

The proof of (i) makes essential use of a method developed by Ambos-Spies and Zheng [1] and
stated as the Martingale Dilation Lemma in section 3 below. The proof of (ii) makes essential use
of intrinsic pseudorandomness [9, 13], the non-scarcity of weakly <P -complete problems [1, 5, 6],
and the Small Span Theorem [7]. (These things are all reviewed in sections 3 and 4 below.)

Fact (ii) above may be surprising. It asserts the existence of a language C' € E that is not
weakly <P _complete for E, but is weakly < -complete for the larger class E,. This means that
only a mnegligible set of languages in E are <F _reducible to C, while a non-negligible set of the
languages in Ey — E are <P -reducible to C.

2 Preliminaries

In this note, [¢'] denotes the Boolean value of the condition 1, i.e.,

1 if e
[W]]_{ 0 if not
All languages here are sets of binary strings, i.e., sets A C {0,1}*. We identify each language
A with its characteristic sequence x4 € {0,1}° defined by

x4 = [s0 € A][s1 € A][s2 € A]...,

where sg = A, sy = 0, s = 1, s3 = 00, ... is the standard enumeration of {0,1}*. For n € N, we
write x 4[0..n — 1] for the string consisting of the first n bits of x 4. We write X ¢ for the complement
of a set X of languages.

The lower <P -span of a language A C {0,1}* is

Pm(A)={B C{0,1}" | B <} A}.



The upper <P -span of A is

PoNA) = {BC{0,1}"| A<, B}.

m

Note that if A =F A’ (ie.,if A <P A’and A’ <P A), then P,(A) = Pru(A’) and PZH(A) = PZH(AY).

The lower <P -span of a set X of languages is

Pn(X)= [ Pu(A).
AeX

3 Feasible Martingales

Here we develop those aspects of feasible martingales, resource-bounded measure, and intrinsic
pseudorandomness that are needed for our Main Theorem. For more details, motivation, and
examples, the reader is referred to any of the papers [7, 9, 10, 11, 12, 13].

Martingales were used extensively by Schnorr [15, 16, 17, 18] in his investigation of random and
pseudorandom sequences. More recently, Lutz [9, 10, 11, 12] has used martingales as a means of
developing measure in complexity classes.

Definition.
1. A martingale is a function d : {0,1}* — [0, 0o) satisfying the condition

d(w0) 4+ d(wl)

d(w) = =————. (*)

for all w € {0,1}".

2. Let t : N — N. A martingale d is a t(n)-martingale if there is a function d:N x {0,1}* — Q
with the following two properties.

(a) There is an algorithm that, for all » € N and w € {0,1}*, computes d(r,w) in O(t(r +
|w])) steps.

(b) For all » € N and w € {0,1}*,

|d(r,w) — d(w)] <277,

3. Let t : N — N. A martingale d is an ezact t(n)-martingale if d has nonnegative rational
values (i.e., d : {0,1}* — QN [0,00)) and there is an algorithm that, for all w € {0,1}*,
computes d(w) in O(¢(|w|)) steps.



4. A martingale d succeeds on a language A C {0,1}*, and we write A € S°°[d], if

lim sup d(x 4[0..n — 1]) = oo.

Intuitively, a martingale d is a betting strategy that, given a language A, starts with capital
(amount of money) d(A) and bets on the membership or nonmembership of the successive strings
S0, 51, S2, - - - (the standard enumeration of {0, 1}*) in A. Prior to betting on a string s,,, the strategy
has capital d(w), where

w = [sg € A] -+ -[sn—1 € A].

After betting on the string s,, the strategy has capital d(wb), where b = [s, € A]. Condition
(*) ensures that the betting is fair. The strategy succeeds on A if its capital is unbounded as the
betting progresses.

The following lemma shows that #(n)-martingales can be replaced by exact martingales with a
relatively small increase in computing time.

Lemma 3.1(Exact Computation Lemma). Let { : N — N be nondecreasing with ¢(n) > n. Then,

n.
for every t(n)-martingale d, there is an exact n - #(2n + 2)-martingale d such that §%[d] C §°[d].

Proof. Assume the hypothesis. Fix d and d such that d testifies that d is a #(n)-martingale. Define
functions dy,ds,d : {0,1}* — Q by

di(w) = d(jw] +2,w),

dg(w) = dl(w) + 2—|w|7

d(A) = dad),

d(w0) = d(w)—dy(w)+ da(w0),

dwl) = diw)+ds(w) - dy(w0).
It is routine to verify that the following conditions hold for all w € {0, 1}*.
(i) [d1(w) — DLOHBLA | ¢ o= (),
(il) dy(w) > {200l
(i) d(w) > do(w) > d(w)
By (iii) and inspection, d is an exact n - ¢(2n + 2)-martingale satisfying S°°[d] C S°°[d]. ]

We next explain a useful technique that was developed very recently by Ambos-Spies and Zheng

[1].

Definition. The restriction of a string w € {0,1}* to a language A C {0,1}* is the string w|A
defined by the following recursion.



(i) AJA = A.
(ii) For w € {0,1}* and b € {0, 1},

o (wiA s, €A
(wh)1A = { WA if s ¢ Al

(That is, w]A is the concatenation of the successive bits w[i] for which s; € A.)

Definition. A function f:{0,1}* — {0,1}* is strictly increasing if, for all z,y € {0,1}*,
v <y= flz) < fly),

where < is the standard ordering of {0, 1}*.

Notation. If f : {0,1}* — {0,1}*, then for each n € N, let ns be the unique integer such that
f(sn) = Snf-

Observation 3.2. If f:{0,1}* — {0, 1}* is strictly increasing and A C {0,1}*, then for all n € N,

Xp-1(4)l0..n = 1] = xa[0.ny — 1] [ range(f).

Definition. If f: {0,1}* — {0, 1}* is strictly increasing and d is a martingale, then the f-dilation
of d is the function

fd:{0,1}" —[0,00)
[rd(w) = d(wlrange(f)).

Intuitively, the f-dilation of d is a strategy for betting on a language A, assuming that d itself
is a good betting strategy for betting on the language f~(A). Given an opportunity to bet on
the membership or nonmembership of a string y € A, f"d refrains from betting unless y = f(z), in
which case f"d bets exactly as d would bet on the membership or nonmembership of z in f=(A).

The following lemma, is implicit in Ambos-Spies and Zheng’s recent proof that every n?-random
language in E is weakly <P -complete for E.

Lemma 3.3(Martingale Dilation Lemma — Ambos-Spies and Zheng [1]). If f:{0,1}* — {0,1}* is
strictly increasing and d is a martingale, then f"dis also a martingale. Moreover, for every language

A C{0,1}~,if d succeeds on f~1(A), then f d succeeds on A.



Proof. Assume the hypothesis. It is routine to check that f°d is a martingale. Also, for all
A C{0,1}* and n € N, Observation 3.2 tells us that

d(xg-1(y[0.n = 1]) = d(xa[0..ny — 1] Irange([))
= f'd(xal0..ny —1]).

Thus, if d succeeds on f~1(A), then

lim sup fd(xa[0..n — 1]) > lim sup d(x s-1(4)[0..n — 1]) = o0,

n—oo

so f d succeeds on A. O
We now use martingales to develop the basic ideas of measure in E and Es.

Definition.

k

1. A martingale d is a p-martingale if there exists & € N such that d is an n"-martingale.

logn)

2. A martingale d is a py-martingale if there exists k € N such that d is a 2! k—martingale.

Thus a p-martingale is a martingale that is computable (to within 27") in polynomial time,
while a ps-martingale is a martingale that is computable in quasi-polynomial time.

Definition [9].

1. A set X of languages has p-measure 0, and we write p1,(X ) = 0, if there is a p-martingale d
such that X C §5°°[d].

2. A set X of languages has py-measure 0, and we write pp,, (X ) = 0, if there is a py-martingale

d such that X C 5*[d].
Definition [9].
1. A set X of languages has measure 0 in E, and we write (X |E) =0, if p,(X NE) = 0.
2. A set X of languages has measure 0 in Eq, and we write pu(X|Eq) = 0, if pp, (X N E2) = 0.

3. A set X of languages has measure 1 in E, and we write p(X|E) =1, if p(X°¢|E) = 0. In this
case, we say that X contains almost every element of E.

4. A set X of languages has measure 1 in Eq, and we write p(X|Eg) = 1, if p(X°|Eg) = 0. In
this case, we say that X contains almost every element of E.



5. The expression pu(X|E) # 0 means that X does not have measure 0 in E. Note that this does
not assert that “u(X|E)” has some nonzero value. Similarly, the expression pu(X|Ez) # 0
means that X does not have measure 0 in E,.

It is shown in [9] that these definitions endow E and E; with internal measure structure. This
structure justifies the intuition that, if u(X|E) = 0, then X N E is a negligibly small subset of E
(and similarly for Eg). In particular, we have the following.

Theorem 3.4 (Lutz [9]).
1. p(E|E) # 0.
2. H(E2|E2) # 0.

We conclude this section with a very brief mention of intrinsic pseudorandomness

Definition [9]. A language A C {0, 1}* is p-random, and we write A € RAND(p), if pp,({A}) # 0,
i.e., if the singleton set {A} does not have p-measure 0.

That is, A is p-random if there is no p-martingale that succeeds on A.
It is easy to see that p,({A}) = 0 for all A € E, i.e., that no element of E is p-random [9].
However, the following result says that almost every element of E5 is p-random.

Theorem 3.5 (Lutz [9, 13]). p(RAND(p)|Ez) = 1.

4 Weak Completeness

In this section we prove our Main Theorem, comparing weak <! -completeness in E and E,. We
first define these terms precisely.

In standard terminology, a language C' is < -complete for a complexity class C if C' € C C
Pm(C). The following definition generalizes this notion for the complexity classes E and E,.

Definition.
1. A language C is weakly <% -complete for E if C € E and p(Pn(C)|E) # 0.

2. A language C is weakly <P -complete for E, if C' € Ey and w(Pm(C)|Ez) # 0.



Notation.

Cg = {C]Cis <l -complete for E}.

Cg, = {C|Cis <F-complete for E,}.
WCg = {C|C is weakly <F -complete for E}.
WCg, = {C|C is weakly < -complete for E,}.

It is well-known that EN Cg, = Cg. (This is clear because Ey = Py, (E).) Theorem 3.4 implies
that Cp € WCg, and Lutz [11] has proven that Cg # WCg. We thus have

EﬂCE2 = Cpg ; WCEg.

Our objective in the present note is to compare the classes WCg and EN WCg,. We first mention
two known results that are used in our argument.

Theorem 4.1 (Small Span Theorem — Juedes and Lutz [7]). For every A € E,
#(Pm(A)E) =0

or

pp(Pol (A)) = n(PLH(A)[E) = 0.
Theorem 4.2 (Juedes [5, 6]; Ambos-Spies and Zheng [1]). u(WCg,|Ez2) # 0.

Remark. Juedes [5, 6] proved Theorem 4.2 by a refinement of the martingale diagonalization
method of Lutz [11]. Very recently, and independently of [5, 6], Ambos-Spies and Zheng [1] used a
different argument to obtain the result y(WCg|E) = 1. A routine modification of their argument
gives the result y(WCg,|Ez) = 1, which is stronger than Theorem 4.2.

We also use the following very general lemma.
Lemma 4.3. Let X be any set of languages. If 1(Pp,(X)|Eg) = 0, then p(X|E) = 0.

Proof. Assume that p(Py,(X)|Eg) = 0. Then there is a py-martingale d such that P,(X )N E; C
S°[d]. Fix k > 1 such that d is a Q(IOg”)k—martingale. By the Exact Computation Lemma, there is
an exact 20087 _martingale d such that $°°[d] C §°°[d]. Define

f:40,1}" = {0,1}~

flz)= ol 1.



Note that f is strictly increasing, so f°d, the f-dilation of d, is a martingale. The time required to
compute f d(w) is

k41

O(|w|? 4 2Ueslw'D

)

steps, where w’ = wlrange(f). (This allows O(|w|?) steps to compute w’ and then O(2Ueglwl)
steps to compute d(w’).) Now |w’| is bounded above by the number of strings = such that |z|¥+! 4
|2 + 1 < [sjy)| = [log(1 + |w])], so

k41

1
|| < 21+(oB(1+w)F

Putting these things together, the time required to compute fAJ(w) is

5 (le2 N 2<1+<1og<1+|w|>>‘*?>’“+1) = O(|w]?)

steps. Thus f°d is an n?-martingale.

Now let A € X NE. Then f1(A) € Pn(A)NEy C §°°[d] C §°[d], so A € §®[fd] by the
Martingale Dilation Lemma. This shows that X N E C §°[f"d]. Since fd is an n?-martingale, it
follows that p(X|E) = pp,(X NE) =0. O

We now have enough machinery to give an easy proof of our main result.
Theorem 4.4 (Main Theorem). WCg G EN WCk,.

Proof. It is clear that WCg C E. To see that WCr C WCp,, let C' € WCg. Then p(Pn(C)|E) # 0,
so Lemma 4.3 tells us that p(Pn(C)|Eg) = p(Pm(Pm(C))|E2) # 0. Thus ¢ € WCp,, completing
the proof that WCg C EN WCk,.

To see that EN WCg, € WCg, fix € € RAND(p) N WCg,. (Such a language C' exists by
Theorems 3.5 and 4.2.) Fix k > 1 such that ¢ € DTIME(2"") and let

' = {0l "1z | 2 € C).

Note that C’ € E and ¢’ =F, ¢, whence €’ € EN WC,.

Since C' € PL(C’ )HRAND( ), we have 1, (PL1(C")) # 0. Since C’ € E, it follows by the Small
Span Theorem that pu(Pn,(C")|E) = 0. Thus ¢ ¢ WCE, completing the proof that E N WCpg, ¢
WCE. O

Putting the Main Theorem together with previously known results, we have
EﬂCE2 = Cpg ; WCEg ; EHWCE2.
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