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Abstract

The notions of weak �P
m�completeness for the complexity classes E � DTIME��linear� and

E�� DTIME��polynomial� are compared� An element C of one of these classes is weakly �P
m�

complete for the class if the set Pm�C�� consisting of all languages A �P
m C� does not have

measure � in the class� The following two results are proven�

�i� Every problem that is weakly �P
m�complete for E is weakly �P

m�complete for E��

�ii� There is a problem in E that is weakly �P
m�complete for E�� but not for E�

� Introduction

The completeness phenomenon is� to date� our principal tool for ascertaining the complexities of
seemingly intractable computational problems� Problems that are complete for NP� PSPACE� or
classes in between are presumably intractable because we are inclined to believe that P �� NP�
Problems that are complete for exponential time are provably intractable by the time hierarchy
theorem of Hartmanis and Stearns ���� In fact� such problems are now known to have very strong
intractability properties �	� 
� �� �
� ��� etc���

Recently� Juedes and Lutz �
� initiated investigation of a measure�theoretic generalization of the
completeness phenomenon in the exponential time complexity classes E � DTIME�	linear� and E��
DTIME�	polynomial�� Speci�cally� a language �i�e�� decision problem� C in one of these classes is
de�ned to be weakly �P

m�complete for the class if the set Pm�C�� consisting of all languages A �P
m C�

does not have measure � in the class� ��Measure� here refers to resource�bounded measure� as
developed by Lutz ��� �	�� Necessary details appear in section � below�� Thus� a language C is
weakly �P

m�complete for E if C � E and more than a negligible set of the languages in E are �P
m�

reducible to C� This condition apparently generalizes the condition that C is �P
m�complete for E�

since the latter condition means that C � E and all the languages in E are �P
m�reducible to C� �A

similar remark applies to E���
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Juedes and Lutz �
� proved that every language C that is weakly complete for E or E� is strongly
intractable� in the sense that it has a dense exponential complexity core� �Roughly speaking� this
is a large set of very hard instances of the decision problem C�� Recently� Lutz ���� proved the
existence of problems that are weakly �P

m�complete� but not �P
m�complete� for E� Thus� weakly

�P
m�complete problems for E are provably strongly intractable and need not be �P

m�complete for E�
The purpose of the present note is to compare the notions of weak �P

m�completeness for E and
E�� It is well�known that a language C is �P

m�complete for E if and only if C � E and C is �P
m�

complete for E�� �This is because E� is the downward closure of E under �P
m�reducibility�� Our Main

Theorem �Theorem 
�
 below� shows that the situation is very di�erent for weak �P
m�completeness�

Speci�cally� the Main Theorem establishes the following two facts�

�i� Every language that is weakly �P
m�complete for E is weakly �P

m�complete for E��

�ii� There is a language in E that is weakly �P
m�complete for E�� but not for E�

The proof of �i� makes essential use of a method developed by Ambos�Spies and Zheng ��� and
stated as the Martingale Dilation Lemma in section � below� The proof of �ii� makes essential use
of intrinsic pseudorandomness ��� ���� the non�scarcity of weakly �P

m�complete problems ��� �� ���
and the Small Span Theorem �
�� �These things are all reviewed in sections � and 
 below��

Fact �ii� above may be surprising� It asserts the existence of a language C � E that is not

weakly �P
m�complete for E� but is weakly �P

m�complete for the larger class E�� This means that
only a negligible set of languages in E are �P

m�reducible to C� while a non�negligible set of the
languages in E� � E are �P

m�reducible to C�

� Preliminaries

In this note� ����� denotes the Boolean value of the condition �� i�e��

����� �

�
� if �
� if not �

All languages here are sets of binary strings� i�e�� sets A � f�� �g�� We identify each language
A with its characteristic sequence �A � f�� �g

� de�ned by

�A � ��s� � A����s� � A����s� � A������

where s� � �� s� � �� s� � �� s� � ��� ��� is the standard enumeration of f�� �g�� For n � N� we
write �A����n��� for the string consisting of the �rst n bits of �A� We write Xc for the complement
of a set X of languages�

The lower �P
m�span of a language A � f�� �g� is

Pm�A� � fB � f�� �g� j B �P
m Ag�

	



The upper �P
m�span of A is

P��m �A� � fB � f�� �g� j A �P
m Bg�

Note that if A �P
m A� �i�e�� if A �P

m A� and A� �P
m A�� then Pm�A� � Pm�A�� and P��m �A� � P��m �A���

The lower �P
m�span of a set X of languages is

Pm�X� �
�
A�X

Pm�A��

� Feasible Martingales

Here we develop those aspects of feasible martingales� resource�bounded measure� and intrinsic
pseudorandomness that are needed for our Main Theorem� For more details� motivation� and
examples� the reader is referred to any of the papers �
� �� ��� ��� �	� ����

Martingales were used extensively by Schnorr ���� ��� �
� ��� in his investigation of random and
pseudorandom sequences� More recently� Lutz ��� ��� ��� �	� has used martingales as a means of
developing measure in complexity classes�

De�nition�

�� A martingale is a function d � f�� �g�� ����� satisfying the condition

d�w� �
d�w�� � d�w��

	
� ���

for all w � f�� �g��

	� Let t �N� N� A martingale d is a t�n��martingale if there is a function �d �N	f�� �g�� Q
with the following two properties�

�a� There is an algorithm that� for all r � N and w � f�� �g�� computes �d�r� w� in O�t�r �
jwj�� steps�

�b� For all r � N and w � f�� �g��

j �d�r� w�� d�w�j � 	�r�

�� Let t � N � N� A martingale d is an exact t�n��martingale if d has nonnegative rational
values �i�e�� d � f�� �g� � Q 
 ������ and there is an algorithm that� for all w � f�� �g��
computes d�w� in O�t�jwj�� steps�

�




� A martingale d succeeds on a language A � f�� �g�� and we write A � S��d�� if

lim sup
n��

d��A����n� ��� ���

Intuitively� a martingale d is a betting strategy that� given a language A� starts with capital
�amount of money� d��� and bets on the membership or nonmembership of the successive strings
s�� s�� s�� � � � �the standard enumeration of f�� �g�� in A� Prior to betting on a string sn� the strategy
has capital d�w�� where

w � ��s� � A�� � � � ��sn�� � A���

After betting on the string sn� the strategy has capital d�wb�� where b � ��sn � A��� Condition
��� ensures that the betting is fair� The strategy succeeds on A if its capital is unbounded as the
betting progresses�

The following lemma shows that t�n��martingales can be replaced by exact martingales with a
relatively small increase in computing time�

Lemma ����Exact Computation Lemma�� Let t �N� N be nondecreasing with t�n� � n� Then�
for every t�n��martingale d� there is an exact n � t�	n� 	��martingale �d such that S��d� � S�� �d��

Proof� Assume the hypothesis� Fix d and �d such that �d testi�es that d is a t�n��martingale� De�ne
functions d�� d�� �d � f�� �g�� Q by

d��w� � �d�jwj� 	� w��

d��w� � d��w� � 	�jwj�
�d��� � d�����
�d�w�� � �d�w�� d��w� � d��w���
�d�w�� � �d�w� � d��w�� d��w���

It is routine to verify that the following conditions hold for all w � f�� �g��

�i�
���d��w�� d��w���d��w��

�

��� � 	��jwj����

�ii� d��w� �
d��w���d��w��

� �

�iii� �d�w� � d��w� � d�w��

By �iii� and inspection� �d is an exact n � t�	n� 	��martingale satisfying S��d� � S�� �d�� �

We next explain a useful technique that was developed very recently by Ambos�Spies and Zheng
����

De�nition� The restriction of a string w � f�� �g� to a language A � f�� �g� is the string w�A

de�ned by the following recursion�






�i� ��A � ��

�ii� For w � f�� �g� and b � f�� �g�

�wb��A �

�
�w�A�b if sjwj � A

w�A if sjwj �� A�

�That is� w�A is the concatenation of the successive bits w�i� for which si � A��

De�nition� A function f � f�� �g�� f�� �g� is strictly increasing if� for all x� y � f�� �g��

x � y �
 f�x� � f�y��

where � is the standard ordering of f�� �g��

Notation� If f � f�� �g� � f�� �g�� then for each n � N� let nf be the unique integer such that
f�sn� � snf �

Observation ���� If f � f�� �g�� f�� �g� is strictly increasing and A � f�� �g�� then for all n �N�

�f���A�����n� �� � �A����nf � �� � range�f��

De�nition� If f � f�� �g�� f�� �g� is strictly increasing and d is a martingale� then the f �dilation
of d is the function

f�d � f�� �g�� �����

f�d�w� � d�w�range�f���

Intuitively� the f �dilation of d is a strategy for betting on a language A� assuming that d itself
is a good betting strategy for betting on the language f���A�� Given an opportunity to bet on
the membership or nonmembership of a string y � A� f�d refrains from betting unless y � f�x�� in
which case f�d bets exactly as d would bet on the membership or nonmembership of x in f���A��

The following lemma is implicit in Ambos�Spies and Zheng�s recent proof that every n��random
language in E is weakly �P

m�complete for E�

Lemma ����Martingale Dilation Lemma � Ambos�Spies and Zheng ����� If f � f�� �g�� f�� �g� is
strictly increasing and d is a martingale� then f�d is also a martingale� Moreover� for every language
A � f�� �g�� if d succeeds on f���A�� then f�d succeeds on A�

�



Proof� Assume the hypothesis� It is routine to check that f�d is a martingale� Also� for all
A � f�� �g� and n � N� Observation ��	 tells us that

d��f���A�����n� ��� � d��A����nf � �� �range�f��

� f�d��A����nf � ����

Thus� if d succeeds on f���A�� then

lim sup
n��

f�d��A����n� ��� � lim sup
n��

d��f���A�����n� ��� ���

so f�d succeeds on A� �

We now use martingales to develop the basic ideas of measure in E and E��

De�nition�

�� A martingale d is a p�martingale if there exists k � N such that d is an nk�martingale�

	� A martingale d is a p��martingale if there exists k � N such that d is a 	�logn�
k

�martingale�

Thus a p�martingale is a martingale that is computable �to within 	�r� in polynomial time�
while a p��martingale is a martingale that is computable in quasi�polynomial time�

De�nition ����

�� A set X of languages has p�measure �� and we write �p�X� � �� if there is a p�martingale d
such that X � S��d��

	� A set X of languages has p��measure �� and we write �p��X� � �� if there is a p��martingale
d such that X � S��d��

De�nition ����

�� A set X of languages has measure � in E� and we write ��X jE� � �� if �p�X 
 E� � ��

	� A set X of languages has measure � in E�� and we write ��X jE�� � �� if �p��X 
 E�� � ��

�� A set X of languages has measure � in E� and we write ��X jE� � �� if ��XcjE� � �� In this
case� we say that X contains almost every element of E�


� A set X of languages has measure � in E�� and we write ��X jE�� � �� if ��XcjE�� � �� In
this case� we say that X contains almost every element of E��

�



�� The expression ��X jE� �� � means that X does not have measure � in E� Note that this does
not assert that ���X jE�� has some nonzero value� Similarly� the expression ��X jE�� �� �
means that X does not have measure � in E��

It is shown in ��� that these de�nitions endow E and E� with internal measure structure� This
structure justi�es the intuition that� if ��X jE� � �� then X 
 E is a negligibly small subset of E
�and similarly for E��� In particular� we have the following�

Theorem ��� �Lutz �����

�� ��EjE� �� ��

	� ��E�jE�� �� ��

We conclude this section with a very brief mention of intrinsic pseudorandomness

De�nition ���� A language A � f�� �g� is p�random� and we write A � RAND�p�� if �p�fAg� �� ��
i�e�� if the singleton set fAg does not have p�measure ��

That is� A is p�random if there is no p�martingale that succeeds on A�
It is easy to see that �p�fAg� � � for all A � E� i�e�� that no element of E is p�random ����

However� the following result says that almost every element of E� is p�random�

Theorem ��� �Lutz ��� ����� ��RAND�p�jE�� � ��

� Weak Completeness

In this section we prove our Main Theorem� comparing weak �P
m�completeness in E and E�� We

�rst de�ne these terms precisely�
In standard terminology� a language C is �P

m�complete for a complexity class C if C � C �
Pm�C�� The following de�nition generalizes this notion for the complexity classes E and E��

De�nition�

�� A language C is weakly �P
m�complete for E if C � E and ��Pm�C�jE� �� ��

	� A language C is weakly �P
m�complete for E� if C � E� and ��Pm�C�jE�� �� ��






Notation�

CE � fC j C is �P
m�complete for Eg�

CE� � fC j C is �P
m�complete for E�g�

WCE � fC j C is weakly �P
m�complete for Eg�

WCE� � fC j C is weakly �P
m�complete for E�g�

It is well�known that E 
 CE� � CE� �This is clear because E� � Pm�E��� Theorem ��
 implies
that CE �WCE� and Lutz ���� has proven that CE �� WCE� We thus have

E 
 CE� � CE � WCE�

Our objective in the present note is to compare the classes WCE and E
WCE� � We �rst mention
two known results that are used in our argument�

Theorem ��� �Small Span Theorem � Juedes and Lutz �
��� For every A � E�

��Pm�A�jE� � �

or
�p�P

��
m �A�� � ��P��m �A�jE� � ��

Theorem ��� �Juedes ��� ��� Ambos�Spies and Zheng ����� ��WCE� jE�� �� ��

Remark� Juedes ��� �� proved Theorem 
�	 by a re�nement of the martingale diagonalization
method of Lutz ����� Very recently� and independently of ��� ��� Ambos�Spies and Zheng ��� used a
di�erent argument to obtain the result ��WCEjE� � �� A routine modi�cation of their argument
gives the result ��WCE� jE�� � �� which is stronger than Theorem 
�	�

We also use the following very general lemma�

Lemma ���� Let X be any set of languages� If ��Pm�X�jE�� � �� then ��X jE� � ��

Proof� Assume that ��Pm�X�jE�� � �� Then there is a p��martingale d such that Pm�X�
 E� �

S��d�� Fix k � � such that d is a 	�logn�
k

�martingale� By the Exact Computation Lemma� there is

an exact 	�logn�
k��

�martingale �d such that S��d� � S�� �d�� De�ne

f � f�� �g�� f�� �g�

f�x� � �jxj
k��

�x�

�



Note that f is strictly increasing� so f��d� the f �dilation of �d� is a martingale� The time required to
compute f��d�w� is

O�jwj� � 	�log jw
�j�k���

steps� where w� � w�range�f�� �This allows O�jwj�� steps to compute w� and then O�	�log jw
�j�k���

steps to compute �d�w���� Now jw�j is bounded above by the number of strings x such that jxjk���
jxj� � � jsjwjj � blog�� � jwj�c� so

jw�j � 	���log���jwj��
�

k��
�

Putting these things together� the time required to compute f��d�w� is

O

�
jwj� � 	����log���jwj��

�
k�� �k��

�
� O�jwj��

steps� Thus f��d is an n��martingale�
Now let A � X 
 E� Then f���A� � Pm�A� 
 E� � S��d� � S�� �d�� so A � S��f��d� by the

Martingale Dilation Lemma� This shows that X 
 E � S��f��d�� Since f��d is an n��martingale� it
follows that ��X jE� � �p�X 
 E� � �� �

We now have enough machinery to give an easy proof of our main result�

Theorem ��� �Main Theorem�� WCE � E 
WCE� �

Proof� It is clear that WCE � E� To see that WCE �WCE� � let C �WCE� Then ��Pm�C�jE� �� ��
so Lemma 
�� tells us that ��Pm�C�jE�� � ��Pm�Pm�C��jE�� �� �� Thus C � WCE� � completing
the proof that WCE � E 
WCE� �

To see that E 
 WCE� �� WCE� �x C � RAND�p� 
WCE� � �Such a language C exists by

Theorems ��� and 
�	�� Fix k � � such that C � DTIME�	n
k

� and let

C� � f�jxj
k

�x j x � Cg�

Note that C� � E and C� �P
m C� whence C� � E 
WCE� �

Since C � P��m �C��
RAND�p�� we have �p�P
��
m �C��� �� �� Since C� � E� it follows by the Small

Span Theorem that ��Pm�C��jE� � �� Thus C� �� WCE� completing the proof that E 
WCE� ��
WCE� �

Putting the Main Theorem together with previously known results� we have

E 
 CE� � CE � WCE � E 
WCE� �
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