Why Computational Complexity Requires Stricter
Martingales*

John M. Hitchcock® and Jack H. Lutz?
Department of Computer Science
lowa State University
Ames, TA 50011

Abstract

The word “martingale” has related, but different, meanings in probability theory and the-
oretical computer science. In computational complexity and algorithmic information theory, a
martingale is typically a function d on strings such that E(d(wb)|w) = d(w) for all strings w,
where the conditional expectation is computed over all possible values of the next symbol b. In
modern probability theory a martingale is typically a sequence &g, &1, €, - . . of random variables
such that E(&,+1/&, ..., &) = &, for all n.

This paper elucidates the relationship between these notions and proves that the latter notion
is too weak for many purposes in computational complexity, because under this definition every
computable martingale can be simulated by a polynomial-time computable martingale.

1 Introduction

Since martingales were introduced by Ville [21] in 1939 (having been implicit in earlier works of Lévy
[8, 9]), they have followed two largely disjoint paths of scientific development and application. Along
the larger and, to date, more significant path, Doob developed them into a powerful tool of prob-
ability theory that, especially following his influential 1953 book [5], has become central to many
areas of research, including probability, stochastic processes, functional analysis, fractal geometry,
statistical mechanics, and mathematical finance. Along the smaller and more recent path, effective
martingales (martingales satisfying various computability conditions) have been used in theoretical
computer science, first in the 1970’s by Schnorr [17, 18, 19, 20] in his investigations of Martin-Lof’s
definition of randomness [14] and variants thereof, and then in the 1990’s by Lutz [11, 13] in the
development of resource-bounded measure. Many researchers have extended these developments,
and effective martingales are now an active research topic that makes frequent contributions to our
understanding of computational complexity, randomness, and algorithmic information.

*This research was supported in part by National Science Foundation Grant 9988483.
"E-mail: jhitchco@cs.iastate.edu
YE-mail: lutz@cs.iastate.edu

A curious thing about these two paths of research is that they interpret the word “martin-
gale” differently. In computational complexity and algorithmic information theory, a martingale is
typically a real-valued function d on {0,1}* such that

E[d(wb)|w] = d(w) (1.1)

for all strings w, where the expectation is conditioned on the bit history w (the string seen thus
far) and computed over the two possible values of the next bit b. When the underlying probability
measure is uniform (0 and 1 equally likely, independent of prior history), equation (1.1) becomes

the familiar identity
d(w) = d(w0) + d(wl)‘
2

Intuitively, a martingale d is a strategy for betting on the successive bits of an infinite binary
sequence, and d(w) is the amount of capital that a gambler using d will have after w if the sequence
starts with w. Thus d(\) is the initial capital, and equation (1.1) says that the payoffs are fair.

On the other hand, in probability theory, a martingale is typically a sequence &g,&1,&o, ... of
random variables such that

(1.2)

E[§n+1|507 v 76“] = gn (13)

for all n € N. Such a sequence is also called a martingale sequence or a martingale process, and we
exclusively use the latter term here in order to distinguish the two notions under discussion.

To understand the essential difference between martingales and martingale processes, we first
need to dispose of three inessential differences. First a martingale is a function from {0,1}* to R,
while a martingale process is a sequence of random variables. To see that this is only a difference
in notation, let C be the Cantor space, consisting of all infinite binary sequences. Then we can
identify each martingale d with the sequence &gy, &1, &o, ... of functions &, : C — R defined by

§n(S) = d(S[0..n — 1]),

where S[0..n — 1] is the n-bit prefix of S. Then &, &1, &2, ... is a sequence of random variables and
equation (1.1) says that

Elén1]w] = &, (1.4)

for all n € N and w € {0,1}". (See sections 2 and 3 for a precise treatment of this and other ideas
developed intuitively in this introduction.)

The other two inessential differences are that martingales, unlike martingale processes, are typi-
cally required to be nonnegative and to have C as their underlying sample space (i.e., as the domain
of each of the random variables £,). To date it has been convenient to include nonnegativity in
the martingale definition because most applications have required martingales that are nonnegative
(or, equivalently, bounded below). Similarly, it has been convenient to have C — or some similar
sequence space — as the underlying sample space because martingales have been used to investigate
the structures of such spaces. However, neither of these requirements is essential or likely to persist
into the future. (E.g., as the use of martingales in computational complexity expands, it is likely
that “nonnegative” will be moved from the definition to the theorems where it is still needed.)
In this paper, in order to facilitate our comparison, we ignore the nonnegativity requirement on

martingales, and for both martingales and martingale processes, we focus on the case where the
underlying sample space is C.

The essential difference between the martingale processes of probability theory and the mar-
tingales of theoretical computer science is thus the difference between equations (1.3) and (1.4).
Translating our remarks following (1.1) into the notation of (1.4), £, denotes the gambler’s capital
after n bets, and equation (1.4) says that for each bit history w € {0, 1}", the expected value of the
gambler’s capital &, after the next bet, conditioned on the bit history w, is the gambler’s capital
&, before the next bet. In contrast, equation (1.3) says that for each capital history co, ..., cy, the
expected value of the gambler’s capital &,4 after the next bet, conditioned on the capital history
&y = co,--.,& = cp, is the gambler’s capital &, before the next bet. As we shall see, it is clear
that (1.3) holds if (1.4) holds, but if two or more bit histories correspond to the same capital his-
tory, then it is possible to satisfy (1.3) without satisfying (1.4). Thus the martingale requirement
of theoretical computer science is stricter than the martingale process requirement of probability
theory.

In this paper we prove that this strictness is essential for computational complexity in the sense
that martingale processes cannot be used in place of martingales as a basis for resource-bounded
measure or resource-bounded randomness.

Resource-bounded measure uses resource-bounded martingales to define measure in complexity
classes [11, 12, 13]. For example, a set X of decision problems has measure 0 in the complexity
class E = DTIME(2!i"®a) " and we write (X |E) = 0, if there is a polynomial time computable
nonnegative martingale that succeeds, i.e., wins an unbounded amount of money on, every element
of X NE. An essential condition for this definition to be nontrivial is that E does not have measure
0 in itself, i.e., that there is no polynomial-time nonnegative martingale that succeeds on every
element of E. This is indeed true by the Measure Conservation Theorem [11].

In contrast, we show here that there is a polynomial-time nonnegative martingale process that
succeeds on every element of E. In fact, our main theorem says that for any computable nonnegative
martingale process d, there is a polynomial-time nonnegative martingale process d’ that succeeds
on every sequence that d succeeds on. That is, computable nonnegative martingale processes
cannot use time beyond polynomial to succeed on additional sequences. It follows that for every
computably presentable class C of decision problems — and hence for every reasonable complexity
class C — there is a polynomial-time nonnegative martingale process that succeeds on every element
of C. Thus martingale processes cannot be used as a basis for resource-bounded measure.

Martingale processes are similarly inadequate for resource-bounded randomness. For example,
a sequence S € C is p-random if there is no polynomial-time nonnegative martingale that succeeds
on it [19, 11]. An essential feature of resource-bounded randomness is the existence [19], in fact
abundance [11, 2], of decidable sequences that are random with respect to a given resource bound.
For example, although no element of E can be p-random, almost every element of the complexity
class EXP = DTIME(2poynomialy js porandom [11, 2]. However, the preceding paragraph implies
that for every decidable sequence S there is a polynomial-time nonnegative martingale process
that succeeds on S, so no decidable sequence could be p-random if we used martingale processes in
place of martingales in defining p-randomness. Moreover, we also show that there exist computably
random sequences (sequences on which no computable nonnegative martingale succeeds) on which

polynomial-time nonnegative martingale processes can succeed.

Historically, the 1939 martingale definition of Ville [21] was the strict definition (1.4) now used
in theoretical computer science. It was Doob [4] who in 1940 relaxed Ville’s definition to the
form (1.3) that is now so common in probability theory [6, 16, 1]. Of course the difference in
usage between these two fields is not at all a dichotomy. The relaxed definition (1.3) is used in
randomized algorithms [15] and other areas of theoretical computer science where the complexities
of the martingales are not an issue, and probability theory also uses the more abstract notion of
an F-martingale process (also formulated by Doob [4] and described in section 3 below), of which
martingales and martingale processes are the two extreme cases.

Our results show that resource-bounded measure and randomness do in fact require martingales
that are stricter than the martingale processes used so commonly in probability theory. However,
these results do not disparage the latter notion. Quite to the contrary, it is to be anticipated that
theoretical computer science will avail itself of and effectivize increasingly sophisticated aspects of
martingales and measure-theoretic probability in the coming years. Our results and the arguments
by which we prove them are to be regarded as steps toward expanding the interface between these
two fields.

2 Preliminaries

A decision problem (a.k.a. language) is a set A C {0,1}*. We identify each language with its char-
acteristic sequence [sg € A][s1 € A][s2 € A]-- -, where sq, s1, S2, ... is the standard enumeration of
{0,1}* and [¢] = if ¢ then 1 else 0. We write A[i..j] for the string consisting of the i-th through
j-th bits of (the characteristic sequence of) A.

A class C of languages is computably presentable (a.k.a. recursively presentable [3]) if there is
an effective enumeration My, My, ... of deterministic Turing machines, each of which halts on all
inputs, such that C = {L(M;)|i € N}, where L(M;) is the language decided by M;.

A prefiz set is a language A such that no element of A is a prefix of any other element of A. If
A is a language and n € N, then we write A_,, = AN {0,1}" and A<, = AN {0,1}=".

The Cantor space C is the set of all infinite binary sequences. If w € {0,1}* and z € {0,1}*UC,
then w C z means that w is a prefix of z. The cylinder generated by a string w € {0,1}* is
Cy={4€C|wLC A}

A o-algebra on C is a nonempty collection F of subsets of C that is closed under complements
and under countable unions. For any collection A of subsets of C there is a unique smallest o-
algebra o(A) on C that contains A. The Borel o-algebra on C is B = o({C,|w € {0,1}*}). We
use the uniform probability measure on C, which is the function p : B — [0, 1] determined by the
values pu(w) = pu(Cy) = 2711 for all w € {0,1}*.

Let F be a o-algebra on C. We say that a function f : C — R is F-measurable if for all ¢t € R,

{S € Cl(S) <t} eF.

A random variable on C is a function ¢ : C — R that is B-measurable. We write E[¢] for the
expectation of a random variable £. The indicator function of a set A C C is the function

14:C—{0,1}

14(S) =

1 ifze A
0 ifzx ¢ A.

If £ is a random variable and A C C satisfies (A) > 0, then the conditional expectation of & given

Ais Ble 1]
El¢|A] = - A
£14] wu(A)
If &,...,&p4+1 are random variables and tg,...,t, € R, we write E[¢,11|¢ = to,...,& = tp] for

El&,1{S € Cl&(S) = to,...,&n(S) =ty }]. If £ is a random variable, A is a countable partition
of C, and F = o(A), then the conditional expectation of & given F is the random variable

E[¢|F]: C — R

E[¢|F](S) = E[¢{|A] where Se A€ A

which is defined for p-almost all S.

We say that a real-valued function f : {0,1}* — R is computable if there is a computable function
f N x {0,1}* — Q such that for all n € N and w € {0,1}", |f(w) — f(n,w)] < 27", We say that
f is a computation of f. We often write f,(w) for f(n,w). If f is computable in polynomial-time
(where n is input in unary), then f is polynomial-time computable. If f : {0,1}* — Q is itself a
(polynomial-time) computable function, then we say that f is (polynomial-time) exactly computable.

We say that f : {0,1}* — R is constructive (a.k.a. lower semicomputable) if there is a com-
putable function A : N x {0,1}* — Q such that for any w € {0,1}*, h(n,w) < h(n+ 1,w) < f(w)
for all n € N and limy,_, o0 h(n, w) = f(w).

3 Varieties of Martingales

In this section we introduce the different notions of martingales used in theoretical computer science
and probability theory. As noted in the introduction, we use the terms “martingale” for the former
and “martingale process” for the latter. We begin with the martingale definition commonly used
in the theory of computing.

Definition. A function d: {0,1}* — R is a martingale if

d(w0) + d(w1l)

d(w) = . (3.1)

for all w € {0,1}*.

Intuitively, a martingale d represents a strategy in a betting game. The gambler begins with
d()) of capital and is betting on an unknown sequence S € C. The gambler places a wager on the
first bit of S being 0 or 1. If the first bit of S is 0, the gambler then holds d(0) capital; otherwise,
the first bit is 1 and the gambler holds d(1) capital. The gambler then bets on the second bit of
S possibly using his knowledge of the first bit of S. In general, after n rounds of this game, the
gambler knows that the first n bits of S are w = S[0..n — 1]. Using this knowledge he wagers on

the (n + 1)-st bit of S. Equation (3.1) says that this is a fair gambling game. That is, the payoffs
are fair: if S is chosen uniformly at random, the gambler can expect to have the same amount of
capital after each stage of the game.

We will use random variables and conditional expectations to make this idea of fair gambling
more precise. Let d : {0,1}* — R be an arbitrary function. For each n € N, we define the function

gd,n :C—=R
£an(S) = d(S[0..n — 1]).

Observe that each &4, is a discrete random variable on (C, B, 1). We associate the sequence of

random variables f_(; = (€4,0,€a,1,---) with d. We can now interpret the martingale condition (3.1)
as a conditional expectation.

Observation 3.1. A function d : {0,1}* — R is a martingale if and only if

El¢4w]+11Cuw] = €4 ju| (3.2)
for all w € {0,1}*.
In probability theory, martingales are typically defined in the following more general form.

Definition. Let 5: (€0,&1,--.) be a sequence of random variables. We say that gis a martingale
process if for all n € N, E[¢{,] < oo and

E[£n+1|£0 =Cpy .- - afn = cn] = Cp (33)

for all values of c,...,c, € R (As we shall see below, condition (3.3) can also be stated more
concisely using a conditional expectation given a o-algebra.)

We can also view a martingale process E as a gambling game. Again the gambler is wagering
on an unknown sequence S € C. The initial capital is £y(S). After the n'" stage of the game, the
gambler has capital &,(S). The condition (3.3) says that the payoffs are fair in this game. This
notion of fairness is more relaxed than the martingale condition (3.2). In order to make a precise
comparison we extend the definition of martingale processes.

Definition. A function d: {0,1}* — R is a martingale process if fji is a martingale process.

The martingale process condition for a function d is

Eldn+11€40 = o5+ -+ &an = Cn] = Cn- (3.4)

This fairness condition involves the capital history of the gambling game rather than revealed bit
history of the sequence S. In (3.2), the conditioning is done on the bit history w. The conditioning
in (3.4) is done on the capital history. Intuitively, the martingale condition is more “local” than
the martingale process condition.

We now give a more concrete characterization of which functions d : {0,1}* — R are martingale
processes. Define an equivalence relation ~4 on {0,1}* by

TRgy <= |z| =|y| and (V1 <i <n) d(z[0..0 — 1] = d(y[0..7 — 1]).

For each w € {0,1}* we define the equivalence class [w]; = {v € {0, 1}*|w =4 v}.

Figure 3.1: The martingale process d of Example 3.3.

Observation 3.2. A function d: {0,1}* — R is a martingale process if and only if

2‘[w]d‘d(w) = Y d(wo) + d(v1) (3.5)

vE[wlq
for all w € {0,1}*.

Any martingale d is also a martingale process; the following example shows that the converse
is not true.

Example 3.3. Define for all v € {0,1}*

d(\) =d(0) =d(1) =1,
d(0u) = 0,
2.

Then d is not a martingale, but d is a martingale process. Because the strings 0 and 1 have the
same capital histories, [0]q = {0, 1}, so the averaging condition (3.5) allows the capital to “shift”
in a manner not allowed by a martingale.

We now discuss a more general formulation of martingales that is used in probability theory.
The following definition will yield the martingales and martingale processes defined above as special
cases.

Definition. 1. A filtration on C is a sequence of ¢-algebras F = (Fo, Fi1,...) on C such that
Fn CFpy foralln e N

2. Let é’ be a sequence of random variables and let F be a filtration on C. Then E is an
F-martingale process if the following conditions hold.

(i) For all n € N, &, is F,, measurable and E[¢,] < oo.
(ii) For all m € N,
Elén+1]|Fn] = &n. (3.6)

We also say that gis a martingale relative to F.

The conditional expectation (3 6) can be viewed as a more generalized notion of falrness in the
gambling game. For example, if f is an F. -martingale process for some filtration .7-" then f is also
a martingale process. Before we make any further comparisons we extend the filtration definition
to functions.

Definition. Let F be a filtration. A function d : {0,1}* - R is an F-martingale process if £y is
an F-martingale process.

For each n € N, let
M, =c({Cylw € {0,1}"}).

Observation 3.4. A function d : {0,1}* — R is a martingale if and only if d is a M—martingale
process.

Let d: {0,1}* — R be arbitrary. For each n € N, define
Ban = {[w]alw € {0,1}"},

Cd,n = { U Cw

weA
fd,n = O'(Cd,n).

Observation 3.5. A function d : {0,1}* — R is a martingale process if and only if d is an
Fq-martingale process.

Ae Bd,n} , and

If d is a martingale relative to some filtration F, then d is also an]-?d—martingale process. That
is, the martingale process requirement uses the coarsest filtration possible. On the other hand, the
martingale requirement uses the essentially finest filtration M. (If F is a finer filtration than M ,
then d is an ﬁ—martingale process if and only if d is an M -martingale process.)

A very useful property of martingales in theoretical computer science is that the sum of two
martingales is a martingale. For any filtration F , the analogous fact also holds for f—martingale
processes. In contrast, the following example shows that the sum of two martingale processes need
not be a martingale process.

Example 3.6. Define for all u € {0,1}* and v € {0,1}*
d1(>\) = d1(0) =di(1) =1
00u) =

da (
dy(0lu) = d1(10u) =0,
dy(11u) =

and

\
(___%_N___j F___%__xt___j
' dy(00)=0 dy(01)=0 0, LdQ(lo)z2 d2(11):_2)'
y———\ —————————— / N NS

Figure 3.2: The martingale processes di, ds and the function d of Example 3.6.

Then d; and dy are martingale processes. Let d = d; + d2. Then [00]; = {00,11}, and
2d(00) = 6 # 8 = d(000) + d(001) + d(110) + d(111),

so d is not a martingale process.

4 Martingale Processes and Complexity

In this section we present our results, all of which concern the complexities and success sets of
martingale processes.

Definition. Let d: {0,1}* — R.

1. We say that d succeeds on a sequence S € C if limsup,,_, . d(S[0..n — 1]) = oo.
2. The success set of d is S*°[d] = {S € C|d succeeds on S}.
The following technical lemma, is crucial for our main theorem.

Lemma 4.1. (Exact Computation Lemma) For every computable martingale process d and every
m € N, there is an ezactly computable martingale process d' such that for all w € {0,1}*, |d'(w) —
dw)| <27™.

Proof. Let d and m be as given, and let d be a computation of d. We define d’' : {0,1}* — Q by
recursion on the lengths of strings.

At length 0 we set d’'(A) = dps1(N).

Assume that d'(w) has been defined for all w € {0,1}=". Then we define a reflexive, symmetric
relation ~ on {0,1}"*! by

T~y = [x' ~g 1y and |dpyy (2) — drgr ()] < 2*’"] :

where ',y are the n-bit prefixes of z,y, respectively, and r = m + 2n + 5. We then let ~ be the
transitive closure of ~, noting that ~ is an equivalence relation on {0,1}"*. For each w € {0,1}"*!
let R

d"(w) = avg dyy1(v), (4.1)

VRIW

where “avg” denotes the arithmetic mean. Finally, for each v € {0,1}" and b € {0, 1}, let

Au=d'(u) — avg d’(vb), (4.2)
VR 1 U
be{0,1}
and
d' (ub) = d" (ub) + Au. (4.3)

This completes the definition of d'.
It is clear that d’ is exactly computable. Also, for all u € {0,1}*, (4.3) and (4.2) ensure that

avg d'(vb) = d'(u),
VRS g1 U
be{0,1}

whence d' is a martingale process.
We now note three things about the construction of d'. First, for all z,y € {0,1}*, it is clear
that
TRGY =T Y. (4.4)

Second, the triangle inequality and the fact that there are only 2"*! strings in {0,1}"*! tell us
that for all z,y € {0,1}"*!

rxy = |da (@) = dra(y)] < 2 - 1)27 (4.5)

10

By (4.1) and (4.5), then, we have
" (w) = dra(w)] < (2" = 1)27,
whence by the triangle inequality,
d"(w) — d(w)| < 271 (4.6)
for all w € {0,1}**L. Third, for all z,y € {0,1}"*!,
d'(z) =d"(y) &= z=y (4.7)

and for all u,v € {0,1}",
Uy v= Au = Aw. (48)

It follows readily from (4.7) and (4.8) that for all 2,y € {0,1}"+!,
TRy Y = TRY. (4.9)
To complete the proof it suffices to show that
() — d(w)] < 27 (1 — 2~ (kD) (4.10)
holds for all w € {0,1}*. We prove this by induction on u. Since
@) = dN)] < 270D = 21 — 30,

it is clear that (4.10) holds for A. Assume that (4.10) holds for u, let n = |ul, and let b € {0,1}.
Then by (4.3) and (4.6) we have

\d' (ub) — d(ub)| < |d"(ub) — d(ub)| + |Au| < 21" +|Aul. (4.11)

Also, by (4.2) and the induction hypothesis, we have

|Au| < |d' (u) — d(u)| + |d(u) — avg d"(vb)
VRS g U
be{0,1} (4.12)

< 271 = 20FY) 4 ld(u) — avg d"(vb)
VRS g1 U
be{g,l}

We now have two cases.

11

Case I. [u]gy = [u]q. Then, since d is a martingale process, (4.6) tells us that

d(u) — avg d"(vb)| = | avg d(vb) — avg d"(vb)
VRS 1 U VRIqU VRIGU
be{0,1} be{0,1} be{0,1}

< avg |d(vb) — d"(vd)|
VRIGU
be{0,1}

< 2n+1—r

Case II. [u|y # [u]q- Then n > 0 and by (4.4) and (4.9) there exist ui,...,u; € {0,1}" such
that {[u1]4, ..., [uk]a} is a partition of [u]y. For each 1 <i <k, (4.9), (4.7), and (4.6) tell us that

jd(u) — d(ug)| < |d(u) — d"(u)| + |d"(u) — d(u;)|
= Jd(w) — d"(w)] + |d" (u5) - d(uy)]
< 2.7
_ 2n+17r

?

whence

d(u) — avg d(u;)| < 27T, (4.13)

1<i<k

Also, since d is a martingale process, (4.6) tells us that

avg d(u;) — avg d"(vb)| = | avg d(u;) — avg avg d”(vb)
1<i<k U U 1<i<k 1<i<k URqui
- be{0,1} be{0,1}

< avg |d(u;) — avg d"(vb)
1<i<k vRIqu;
T be{0,1}

= avg | avg d(vb) — avg d"(vb)

1<i<k | VRqUi URIGU;G
-~ |be{0,1} be{0,1}
< avg avg |d(vb) — d"(vb)]
1<i<k vRqu;
~ 7 be{0,1}
< 2n+1—r.

Combined with (4.13), this tells us that

d(u) — avg d"(vb)| < 27277,
VR 1 U
be{0,1}

12

In either Case I or Case 11, (4.12) tells us that
|Au| < 2—m(1 _ 2—(n+1)) + 2n+2—r’
whence (4.11) and our choice of r tell us that

|d' (ub) — d(ub)| < 27™(1 — 2 (FD)y 4 gnt3—r
— 2—m(1 _ 2—(n+1)) + 2—(m+n+2)

= 27™(1 — 2~ ("2,
i.e., (4.10) holds for ub. O

Our next lemma can be regarded as a “speedup” theorem for exactly computable martingale
processes, but its proof uses a very slow simulation technique analogous to slow diagonalization.

Lemma 4.2. For every exactly computable nonnegative martingale process d there is a polynomial-
time exactly computable nonnegative martingale process d such that S*®[d] = S*®[d'].

Proof. Let d be an exactly computable martingale process. Consider an algorithm that on input w
of length n computes d(v) for all strings v in lexicographic ordering until it has used n? computation
steps. Let m(n) be the largest integer such that d(v) is computed for all strings of length m(n) by
this algorithm and choose N such that m(N) > 0. We define

d:{0,1}* > R
2w — {d(A) if jw| < N
d(w[0..m(Jw|) —1]) if |lw| > N.

Then d' is a polynomial-time exactly computable martingale process and S*®[d] = S*®[d']. O

We now have the main theorem of this paper, which says that polynomial-time computable
martingale processes are equivalent to arbitrary computable martingale processes.

Theorem 4.3. For every computable nonnegative martingale process d there is a polynomial-time
exactly computable nonnegative martingale process d' such that S®[d] = S*>°[d'].

Proof. This follows immediately from Lemmas 4.1 and 4.2. O
Theorem 4.3 has the following consequence for resource-bounded measure.

Corollary 4.4. For every computably presentable class C, there is a polynomial-time exactly com-
putable nonnegative martingale process d such that C C S*®[d).

Proof. Lutz [11] has shown that for every computably presentable class C (called “rec-countable”
in the terminology of [11]) there is a computable nonnegative martingale d such that C C S*°[d].
Since d is a computable martingale process, the conclusion of the corollary follows by Theorem
4.3.]

13

Since complexity classes such as E, EXP, ESPACE, etc. are all computably presentable, Corol-
lary 4.4 implies that martingale processes cannot be used in place of martingales as a basis for
resource-bounded measure.

We now prove a generalized Kraft inequality that enables us to establish an upper bound on
the power of computable martingale processes. For any function d : {0,1}* — R and A C {0, 1},
we say that A is closed under =g if for all w € {0,1}*,

we A= [w]y CA.

Lemma 4.5. If d is a nonnegative martingale process and A C {0,1}* is a prefiz set that is closed
under =g, then

> d(w)2 " < d().

weA

Proof. We first use induction on n to prove that for all n € N, the lemma holds for all prefix sets
A C {0,1}=" that are closed under ~4. For n = 0, this is trivial. Assume that it holds for n, and
let A C {0,1}="*! be a prefix set that is closed under ~,. Let

A'={w e {0,1}" |wb € Aor wl € A},

A" ={v e {0,1}" | Quw € A")v ~q w},
B={we A" | (Vv € [w]y) w < v},

and let
C=A, UA"

Note that C' is a prefix set and C is closed under ~;. Also, A<, N A" = () because A is a prefix set,
so A<, N A" = () because A is closed under ~,4. Also,

> o2 Paw) = 270 Y d(w

w€A=n+1 wGA—n+1

2D N " [d(w0) + d(wl)]

weA’

VAN

VAN

270N " [d(w0) + d(wl)]
we A

= 2~ () Z Z (v0) + d(v1)]

weB ve[w

= 2_(""'1 2‘ w]d‘d w
€B

= 27" Y d(w)

weA

14

Since C C {0, 1}=", it follows by the induction hypothesis that

o2y = ST 2 M)+ YT 2 Mld(w)

wEA wEASn WEA—p 41
< Y 2llagw) +) 27ld(w)
weASn we A
= > 27 ld(w)
wel
< d(N).

This completes the proof that for all n € N, the lemma holds for all prefix sets A C {0,1}=" that
are closed under ~.
To complete the proof of the lemma, let A be an arbitrary prefix set that is closed under ~.

Then
> 2 ldw) =sup Y 27 ld(w) < d(N).
wed neN yeAc,

O

Theorem 4.6. For every computable nonnegative martingale process d there is a constructive
nonnegative martingale d' such that S*°[d] C S>°[d'].

Proof. By Lemma 4.1 we may assume that d is exactly computable. Without loss of generality we
also assume that d(\) < 1. For each k € N, let

Ay = {w € {0,1}*

0;1;12\)24(1(11}[0..2' —1]) < 2¥ < d(w) } .

Then each Ay is a prefix set that is closed under =, so Lemma 4.5 implies that

> 2rlwigk < N o7la(w) < d(n) < 15

wEAL wWEA

Z 2wl < o=k,

wEA

hence

For each k£ € N we define a function

dl - {0,1}" = [0, 0)

1 if (v € Ag)v Cw
di(w) = ¢ S 271wl otherwise.
A
Py

Next we define
d - {0,1}* — [0, 00)

15

d = i ..
k=0

As each d), is a martingale and
o0 oo
F=Y Y oSty
k=0 weAy k=0
d' is a martingale. Also, d’ is constructive because the set
A={<kw>|we A}

is decidable.
For each k € N, let

A = U C..

U}GAk

For all S € Aj, there is some ny, such that d (S[0..n — 1]) = 1 for all n > ny. For each m € N and
S € My Ak, d'(S[0..n —1]) > Zf:o d,.(S[0..n —1]) > k + 1 for all n > max{ng,...,nk}, so

§%°[d] = ﬁ Ay C 8®[d].
k=0

O

Theorem 4.6 implies that no computable nonnegative martingale process can succeed on a
sequence that is random in the sense of Martin-Lof [14]. In contrast, we now show that there
exist computably random sequences (sequences on which no computable nonnegative martingale
succeeds [19]) on which polynomial time nonnegative martingale processes can succeed.

Theorem 4.7. For every S € C satisfying K(S[0..n — 1]) < n — logn almost everywhere, there is
a polynomial-time nonnegative martingale process that succeeds on S.

Proof. We begin by fixing some suitable constants. Choose ¢y € N such that
K(v) < K(uv) + K(Ju|) + ¢o (4.14)
for all u,v € {0,1}*. By Theorem 3.3.1 of [10] we can fix ¢1,c2 > 1 such that for all n € N,
Hv € {0,1}"

Choose Ny € N such that for all n > log Ny,

K(v) <n+ K(n) — cl}‘ < gn-es, (4.15)

K(n)+co < K(2") —¢1. (4.16)

Let S € C such that K(S[0..n —1]) < n —logn for all n > Ny and set N = max{Ny, N1 }.

16

We now describe an inductive procedure that will be used to build a martingale process that
succeeds on S. Initially, we let

my = N,
My = my,
Woo = {01}V,
ag = 0,
Coo = 2V.

)

Now assume that m;, M;, W; 1., a;, and C; ;. have been defined for all 0 < ¢ < k. We use a dovetailing
procedure to compute some string 11 € Wy U---UWy . satisfying K (xg41) < |Tg+1]—log |Tg1]-
Let ¢ be the index of the set W; ;, containing z;,. Now we set

Wik = Wi,
Cik+1 = Cijk
for all j € {0,...,k} — {i},
Wikt1 = Wik —{zp41},

Cikt1 = Cip— (a; +1)2%,
and
my = 2M,
Mgy = Mg +myqa,
Wit k1 = Bpgr - {0, 17+
agy1 = a; +1,
Crriprr = (@p127)2M041.

We define a function d : {0,1}* — R as follows. For all w € {0,1}<M! we let d(w) = 1. For all
kE>1and w € {0,1}<Mk+1 — {0, 1}<Mk we compute the unique index i € {0,...,k} such that w
has a prefix in W; ;, and we let
Cik

dtw) = Wi

Then d is an exactly computable function.

By (4.15), there are fewer than 20~ strings w € {0,1}"° satisfying K (w) < |w| — log |w|, so
Co,j > 0forall j € N. Now let k > 1. Let v € {0,1}™* and suppose that K(z,v) < |z4v|—log|zkv].
Then, applying (4.14) and (4.16), we have

K({v) < K(zpo) + K(|zk|) +co

< |zgo| — log |zgv| + K (Jzk]) + co

< Jv[+log|v] = log|azxv| + K (log |v]) + co
< Jo| + K(log |v]) + co

< Jol+ K(Jv]) — e

17

This together with (4.15) implies that there are no more than 2™+~ strings w € Wy, for which
K(w) < |w| — log |w|. Hence Cy ; > 0 for all j > k, so d is a nonnegative function.

We claim that d is a martingale process. For all w € {0,1}<M1~1 it is clear that the martingale
process condition holds. Suppose it holds for all w € {0,1}<Mk. In the k' stage of the above
procedure, for some 4 an xj € W ,_; is chosen. Let w € {0, 1}Mk=1 and suppose that w has a
prefix in W; ;. Then

> dwo) +dwl) = Y d(w)

’UG[w}d ’U.EWZ',]C,1
ve{0,1}™k
= Z d(uv) + Z d(zpv)
ueW; p—1—{zr} ve{0,1} ™k
ve{0,1}™k
Cik Ch.k
— W k;—l _ 1 ka 3 + 2mk)
Wikt = 2 2
Cig—1 — (ai +1)2° (ag27)2m*
= |Wip_1 — 1]2mF =2 p AL
| ik—1 | |Wi,k—1_1| + o
= 2" Cip
, Cik—1
= 2 (2™ Wy o |)
(| i,k 1|)|Wi,k—1|

= 2|[uld|d(w)

so the martingale process condition holds for w. Now suppose that w has a prefix in W ;_; where
j #i. Then W1 = Wj; and Cj 1 = Cj, so d(v) = d(v0) = d(v1) for all v € [w]; and hence
the martingale process condition holds for w. Also, the martingale process condition holds for all
w € {0, 1}<Me+1=1 — 10 1}<Mr because again d(v) = d(v0) = d(v1) for all v € [w]y. Therefore, by
induction, d is a martingale process.

For all n > N, K(S[0..n — 1]) < n — logn, so for every a € N there is some k(a) € N such that
Ti(a)+1 = S[0..-My o) — 1] and ay(4)11 = a. Then

Chk(a)+1,k(a)+1

= = (],202
Wi(a)+1,k(a)+1]

d(S[0..Mg(ay+1 — 1)

for all a, so it follows that S € S°°[d]. The theorem now follows by Lemma 4.2. O

Corollary 4.8. There exist a computably random sequence S and a polynomial-time nonnegative
martingale d such that d succeeds on S.

Proof. Lathrop and Lutz [7] proved that there is a computably random sequence S € C that
is ultracompressible in the sense that for every computable, non-decreasing, unbounded function
g : N = N, for all but finitely many n € N, K(S[0..n — 1]) < K(n) + g(n). Such a sequence S
clearly satisfies the hypothesis of Theorem 4.7. U

18

References

[1]
2]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 1992.

K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi,
editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathe-
matics, pages 1-47. Marcel Dekker, New York, N.Y., 1997.

J. L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complezity I (second edition). Springer-
Verlag, Berlin, 1995.

J. L. Doob. Regularity properties of certain families of chance variables. Transactions of the
American Mathematical Society, 47:455-486, 1940.

J. L. Doob. Stochastic Processes. Wiley, New York, N.Y., 1953.
R. Durrett. Essentials of Stochastic Processes. Springer, 1999.

J. L. Lathrop and J. H. Lutz. Recursive computational depth. Information and Computation,
153:139-172, 1999.

P. Lévy. Propriétés asymptotiques des sommes de variables indépendantes ou enchainées.
Journal des mathématiques pures et appliquées. Series 9., 14(4):347-402, 1935.

P. Lévy. Théorie de I’Addition des Variables Aleatoires. Gauthier-Villars, 1937 (second edition
1954).

M. Li and P. M. B. Vitadnyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer-Verlag, Berlin, 1997. Second Edition.

J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44:220-258, 1992.

J. H. Lutz. The quantitative structure of exponential time. In L.A. Hemaspaandra and A.L.
Selman, editors, Complezity Theory Retrospective II, pages 225-254. Springer-Verlag, 1997.

J. H. Lutz. Resource-bounded measure. In Proceedings of the 13th IEEE Conference on
Computational Complexity, pages 236-248, New York, 1998. IEEE Computer Society Press.

P. Martin-Lof. The definition of random sequences. Information and Control, 9:602-619, 1966.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
S. M. Ross. Stochastic Processes. Wiley, 1983.

C. P. Schnorr. Klassifikation der Zufallsgesetze nach Komplexitdt und Ordnung. Z.
Wahrscheinlichkeitstheorie verw. Geb., 16:1-21, 1970.

19

[18] C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems
Theory, 5:246-258, 1971.

[19] C. P. Schnorr. Zufalligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, 218, 1971.

[20] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System
Sciences, 7:376-388, 1973.

[21] J. Ville. Etude Critique de la Notion de Collectif. Gauthier—Villars, Paris, 1939.

20

