
An Upward Measure Separation Theorem�

Jack H� Lutz
Department of Computer Science

Iowa State University
Ames� IA �����

Abstract

It is shown that almost every language in ESPACE is very hard to

approximate with circuits� It follows that P �� BPP implies that E is

a measure � subset of ESPACE�

� Introduction

Hartmanis and Yesha �HY��� proved that P is a proper subset of P	Poly �
PSPACE if and only if E is a proper subset of ESPACE� 
See section �
for notation and terminology used in this introduction�� This re
ned the
downward separation result

E �
�� ESPACE �� P �

�� PSPACE

of Book �Boo��� and also led immediately to the upward separation result

P �
�� BPP �� E �

�� ESPACE 
����

of Hartmanis and Yesha �HY���� 
Work of Gill �Gil���� Adleman �Adl����
and Bennett and Gill �BG��� had already established that BPP is contained
in P	Poly � PSPACE��

It is reasonable to conjecture that BPP is in fact a proper subset of P	Poly�
PSPACE� and hence that the P �

�� BPP hypothesis might yield a stronger
conclusion than the separation of E from ESPACE� This paper supports this
intuition by proving the following�

Main Theorem� If P �
�� BPP� then �
E j ESPACE� � ��

The conclusion here states that E is a measure �� i�e�� negligibly small� subset
of ESPACE in the resource�bounded measure theory of Lutz �Lut��� Lut����

This theory� which has the classical and e�ective Lebesgue measure theories

cf� Halmos �Hal���� Freidzon �Fre���� Mehlhorn �Meh���� as special cases�
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describes the internal measure�theoretic structure of ESPACE and other com�
plexity classes�� Thus the Main Theorem is an upward measure separation

result which extends 
���� by asserting that any separation of P from BPP
implies a measure separation of E from ESPACE�

The proof of the Main Theorem makes essential use of two recent results�
presented as Theorems � and � below� Theorem �� from Nisan and Wigder�
son �NW��� NW���� states that P � BPP if E contains any problem �with
hardness ��n for some � � ��� Theorem �� from Lutz �Lut���� states that al�
most every problem in ESPACE has �high selective space�bounded program�
size complexity� almost everywhere� Precise statements of these theorems�
together with necessary de
nitions� are given in section �� The proofs of
Theorems � and �� which involve pseudorandom bit generators and resource�
bounded measure theory� respectively� are not repeated here� In fact� Theo�
rem � captures all the resource�bounded measure theory needed for the Main
Theorem� so no measure theory is used in this paper� Details of resource�
bounded measure theory may be found in Lutz �Lut��� Lut���� but such
details are not needed to follow the argument of this paper�

In section �� Theorem � is used to prove Theorem �� which states that almost
every problem in ESPACE �has hardness greater than ��n for every � � � �
�
�
�� i�e�� is very hard to approximate with circuits� The Main Theorem follows

immediately from Theorems � and ��

� Preliminaries

All results in this paper are robust with respect to reasonable choices of the
underlying model of computation� Our machines can thus be interpreted as
Turing machines� pointer machines� random access machines� etc�

All languages here are sets L � f�� �g�� We write L�n for L � f�� �gn� The
characteristic string of L�n is the �n�bit string �L�n whose ith bit is � i�
wi � L� where wi is the ith string in the lexicographic enumeration of f�� �gn�
We write jxj for the length of a string x � f�� �g��

The symmetric di�erence of sets A and B is denoted by A�B � 
A nB� �

B nA�� The cardinality of a 
nite set A is denoted by jAj�

Our circuits are Boolean� combinational 
acyclic� circuits with bounded fan�
in� unbounded fan�out� and a single output gate� An n�input circuit � com�

putes the set L
�� of all strings w � f�� �gn for which �
w�� the Boolean
value of the output gate on input w� is �� The size of a circuit �� written
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size
��� is the number of gates in �� The circuit�size complexity of a language
L is the function CSL �N�N de
ned by

CSL
n� � minfsize
�� j L
�� � L�ng�

Further details 
which are standard and can be varied in minor ways� may
be found in Balc�azar� Di�az� and Gabarr�o �BDG���� Lutz �Lut���� or any
standard reference on circuit complexity�

We are interested in the polynomial complexity classes P and PSPACE�
the exponential complexity classes E � DTIME
�linear� and ESPACE �
DSPACE
�linear�� the bounded�error probabilistic time complexity class BPP
de
ned by Gill �Gil���� and the nonuniform complexity class

P	Poly � fL j CSL
n� � nO���g�

consisting of all languages which have polynomial�size circuits�

A property �
n� of natural numbers n holds in�nitely often 
i�o�� if it holds
for in
nitely many n � N� and almost everywhere 
a�e�� if it holds for all but

nitely many n � N�

In section � we use 
a special case of� the Cherno� �Che��� bound which
can be found in Erd�os and Spencer �ES���� Lutz �Lut���� and many other
references� This result states that

X
��i�aN

�
N

i

�
pi
� � p�N�i 	 	N 
����

for all � � a � p � �� where

	 �
�
p

a

�a ��� p

� � a

���a

�

If we set p � �
�� then 
���� tells us that
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� Two Recent Results

This section summarizes two recent results which are used to prove the up�
ward measure separation�

De�nition 
Nisan and Wigderson �NW��� NW����� Given � � � and n� s �
N� a language L � f�� �g� is 
�� s��hard at n if

jL
��� L�nj � �n��
�� ��

for every n�input circuit � with size
�� 	 s� The hardness of a language
L � f�� �g� is the function HL �N�N de
ned by

HL
n� � maxfh � N j L is 
h��� h��hard at ng�

Thus a language L is 
�� s��hard at n if every n�input circuit of size s computes
L incorrectly on at least ��
�� �� percent of the inputs in f�� �gn� Note that
HL
n� is bounded above by the size of the smallest circuit which correctly
computes L�n�

For each � � � � �� we de
ne the set

H� � fL � f�� �g� jHL
n� � ��n a�e�g

of languages with hardness greater than ��n almost everywhere�

A new construction of a pseudorandom bit generator was recently used to
prove the following�

Theorem � 
Nisan and Wigderson �NW��� NW����� If E�H� 
� � for some
� � �� then P � BPP� �

The second result which we review in this section is 
a special case of� an
almost everywhere lower bound on the space�bounded program�size com�
plexity of languages in ESPACE� 
Program�size complexity was originally
introduced by Solomono� �Sol���� Kolmogorov �Kol���� and Chaitin �Cha����
Time� and space�bounded program�size complexities have since been inves�
tigated by Hartmanis �Har���� Sipser �Sip���� Levin �Lev���� Huynh �Huy����
Ko �Ko���� Longpr�e �Lon���� Lutz �Lut��� Lut���� and many others� For an
overview of work in this area� see Kolmogorov and Uspenskii �KU��� or Li
and Vitanyi �LV�����

De�nition� Given a machine M � a resource bound t � N � N� a language
L � f�� �g�� and a natural number n� the t�space�bounded program�size com�

plexity of L�n relative to M is

KStM 
L�n� � minfj�j jM
�� n� � �L�n in 	 t
�n� spaceg�
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i�e�� the length of the shortest program � such that M � on input 
�� n��
outputs the characteristic string of L�n and halts without using more than
t
�n� workspace�

Well�known simulation techniques show that there exists a machine U which
is optimal in the sense that for each machine M there is a constant c such
that for all t� L� and n we have

KSct�cU 
L�n� 	 KStM 
L�n� � c�

As usual� we 
x an optimal machine U and omit it from the notation�

It can easily be seen that� if x � f�� �g� is the characteristic sequence of
L � f�� �g�� then KSt
L�n� is precisely KSt
x � �
 j �n�� � ��� the t�space
bounded �
�selective program�size complexity of x� as de
ned in Lutz �Lut����
We thus have the following result�

Theorem � 
Lutz �Lut����� For any polynomial q and any real a � �� if

X � fL � f�� �g� jKSq
L�n� � �n � an a�e�g�

then �
X j ESPACE� � �� �

The conclusion of Theorem � says that almost every language in ESPACE
is in X� i�e�� has high q�space bounded program�size complexity almost ev�
erywhere� A precise de
nition of the condition �
X j ESPACE� � � may
be found in Lutz �Lut��� Lut���� but is not needed here because Theorem
� gives us the means to prove a variety of measure�theoretic results without
explicitly discussing measure�

The only other properties of measure which we use are the following trivial
facts�


i� If X � Y and �
X j ESPACE� � �� then �
Y j ESPACE� � ��


ii� If X � Y � � and �
X j ESPACE� � �� then �
Y j ESPACE� � ��

Beyond this� we hope that the reader will accept 
or acquire from Lutz �Lut���
Lut���� the intuition that �
X j ESPACE� � � means that X � ESPACE is
a very small subset of ESPACE�
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� Upward Measure Separation

The following result is the technical content of this section�

Theorem �� If H �
�

���� �

�

H�� then �
H j ESPACE� � ��

This result is interesting in and of itself� since it says that almost every
language in ESPACE is very hard to approximate with circuits� In this
paper we are especially interested in the following application�

Main Theorem� If P �
�� BPP� then �
E j ESPACE� � ��

Proof� Let H be as in Theorem �� If P �
�� BPP� then E �H � � by Theorem

�� Since �
H j ESPACE� � �� it follows that �
E j ESPACE� � �� �

Thus any separation of P from BPP implies a measure separation of E from
ESPACE�

The rest of this section is devoted to the proof of Theorem �� We use the
following lemmas�

Lemma �� For any real b � �� for all su�ciently small reals 
 � ��

�
� � 
�

��� ��� 


� � 


��
� � � b
��

Lemma �� There exist a polynomial q and a constant c � � with the follow�
ing property� For every two reals � � � � � � �� for all su�ciently large n�
for every language L � f�� �g�� if HL
n� 	 ��n� then

KSq
L�n� � �n � c�������n � ��n�

Proof of Theorem �� Choose q and c as in Lemma � and de
ne X as in
Theorem �� using a � �� We will show that X � H� whence Theorem �
follows from Theorem ��

Assume that L 
� H� i�e�� that L 
� H� for some � � � � �
�� Fix � such that

� � � � � � ��� Then HL
n� 	 ��n i�o�� so the inequality in the conclusion
of Lemma � holds for in
nitely many n� Since � � � � ��� the right�hand
side of this inequality is less than �n � �n for all su�ciently large n� so it
follows that L 
� X� �
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Proof of Lemma �� Calculating with Taylor approximations� we have

�
�� 


� � 


��
� 
�� �
� o

��� � e� ln������o����

� e���
��o���� � � � �
� � o

��

as 
� �� Since b � � and 
�� 
��
�� b
�� � �� 
� � b�
� � o

�� as 
� ��
it follows that �

� � 


� � 


��
� 
�� 
��
�� b
��

for all su�ciently small 
� �

Proof of Lemma �� Call an n�input circuit � novel if no n�input circuit
which precedes � 
in a standard enumeration of all circuits� no circuit pre�
cedes a smaller one in this enumeration� computes the same set as �� The
predicate �� is a novel n�input circuit� can clearly be tested in space which
is polynomial in n�size
��� Let ��� � � � � �J�n� be the enumeration of all novel
n�input circuits 
in their order of appearance in the standard enumeration��
Also� let N � �n and let ��� � � � ��J�n� be the enumeration of f�� �gN which
is lexicographic� except that no string precedes a string which has fewer ��s�

Of course J
n� � �N � ��

n

in both cases�� It is routine to design a ma�
chine M which takes inputs � � f�� �g� and n � N and has the following
property� If � � ht� di� where t� d � f�� � � � � J
n�g are represented in binary�
then M
�� n� � graph
�t� 
�d� where graph
�t� is the N �bit characteristic
string of the set computed by �t� 
 denotes bitwise exclusive�or� and this
computation is carried out in space which is polynomial in �n� Since the
pairing function can be implemented with jht� dij 	 jtj � jdj � � log jtj � ��
and since we have 
xed an optimal machine in de
ning KS� it follows that
there exist a polynomial q and a constant c� such that

KSq
L�n� 	 jtj� jdj� � log jtj� c� 
����

whenever graph
�t�
�d is the characteristic string of L�n�

Now 
x � � � � � � �� A standard counting argument 
see� for example�
Shannon �Sha���� Balc�azar� Di�az� and Gabarr�o �BDG���� or Lutz �Lut����
shows that at most ���e��n��

�n

� ���eN��N
�

n�input circuits � are novel
and have size
�� 	 ��n� The number D
n� of N �bit strings � which have
N

� 
� �N��� � �n��
�� ���n� or fewer ��s is given by

D
n� �
X

��i�aN

�
N

i

�
�

where we write a � �
�

� � 
� and 
 � N�� for convenience� By the Cherno�

�Che��� bound discussed in section �� this implies that

D
n� 	 �N	N �

�



where

	 �
��
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�
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� � 


��� �
�

�

It follows by Lemma � that

D
n� 	 �N
�
� �


�

�

�N

�

� �N�N

�
log��� �

�

�
�

for all su�ciently large n� Since

log
� �

�

�
� �

�

ln �
ln
��


�

�
� 	

�
�

� ln �

for all 
� it follows that

D
n� 	 �N�cN�� � �N�cN
����


����

for all su�ciently large n� where c � �
� ln�

�

Now let n be large enough that 
���� holds and

� � logK � � log
� � logK� � c� � N�� 
����

whereK � ���eN��N
�

and c� is as in 
����� Assume that HL
n� 	 ��n� Then�
by 
���� and our estimate of the number of novel circuits of size 	 ��n� there
exist t 	 K and d 	 �N�cN

����

such that graph
�t�
�d is the characteristic
string of L�n� It follows by 
���� and 
���� that

KSq
L�n� 	 jtj� jdj � � log jtj� c�

	 � � logK � � �N � cN���� � � log
� � logK� � c�

� N � cN���� �N�

� �n � c�������n � ��n�

�

� Conclusion

This paper re
nes the picture

P �
�� BPP �� P �

�� P	Poly � PSPACE�� E �
�� ESPACE

to the form

P �
�� BPP �� �
E j ESPACE� � �
� �

P �
�� P	Poly � PSPACE �� E �

�� ESPACE�

It will be interesting to see the situation clari
ed further�
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