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Abstract

It is shown that almost every language in ESPACE is very hard to
approximate with circuits. It follows that P # BPP implies that E is
a measure 0 subset of ESPACE.

1 Introduction

Hartmanis and Yesha [HY84] proved that P is a proper subset of P/Poly N
PSPACE if and only if E is a proper subset of ESPACE. (See section 2

for notation and terminology used in this introduction.) This refined the
downward separation result

E ESPACE = P 3 PSPACE
of Book [Boo74] and also led immediately to the upward separation result
P S BPP = E 3 ESPACE (1.1)

of Hartmanis and Yesha [HY84]. (Work of Gill [Gil77], Adleman [AdI78],
and Bennett and Gill [BG81] had already established that BPP is contained
in P/Poly N PSPACE.)

[t is reasonable to conjecture that BPP is in fact a proper subset of P/Poly N
PSPACE, and hence that the P ; BPP hypothesis might yield a stronger
conclusion than the separation of F from ESPACE. This paper supports this
intuition by proving the following.

Main Theorem. If P g BPP, then y(E | ESPACE) = 0.

The conclusion here states that E is a measure 0, i.e., negligibly small, subset
of ESPACE in the resource-bounded measure theory of Lutz [Lut89, Lut90].
(This theory, which has the classical and effective Lebesgue measure theories

(cf. Halmos [Hal50], Freidzon [Fre72], Mehlhorn [Meh74]) as special cases,
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describes the internal measure-theoretic structure of ESPACE and other com-
plexity classes.) Thus the Main Theorem is an upward measure separation
result which extends (1.1) by asserting that any separation of P from BPP
implies a measure separation of E from ESPACE.

The proof of the Main Theorem makes essential use of two recent results,
presented as Theorems 1 and 2 below. Theorem 1, from Nisan and Wigder-
son [NW88, NW89], states that P = BPP if E contains any problem “with
hardness 2°" for some a > 0.” Theorem 2, from Lutz [Lut89], states that al-
most every problem in ESPACE has “high selective space-bounded program-
size complexity” almost everywhere. Precise statements of these theorems,
together with necessary definitions, are given in section 3. The proofs of
Theorems 1 and 2, which involve pseudorandom bit generators and resource-
bounded measure theory, respectively, are not repeated here. In fact, Theo-
rem 2 captures all the resource-bounded measure theory needed for the Main
Theorem, so no measure theory is used in this paper. Details of resource-
bounded measure theory may be found in Lutz [Lut89, Lut90], but such
details are not needed to follow the argument of this paper.

In section 4, Theorem 2 is used to prove Theorem 3, which states that almost
every problem in ESPACE “has hardness greater than 2" for every 0 < a <
%,” i.e., is very hard to approximate with circuits. The Main Theorem follows

immediately from Theorems 1 and 3.

2 Preliminaries

All results in this paper are robust with respect to reasonable choices of the
underlying model of computation. Our machines can thus be interpreted as
Turing machines, pointer machines, random access machines, etc.

All languages here are sets L C {0,1}". We write L_, for L N {0,1}". The
characteristic string of L_, is the 2"-bit string y7_. whose 7" bit is 1 iff
w; € L, where w; is the :'" string in the lexicographic enumeration of {0,1}".
We write |z| for the length of a string x € {0,1}".

The symmetric difference of sets A and B is denoted by AA B =(A\ B)U
(B\ A). The cardinality of a finite set A is denoted by |A].

Our circuits are Boolean, combinational (acyclic) circuits with bounded fan-
in, unbounded fan-out, and a single output gate. An n-input circuit v com-
putes the set L(v) of all strings w € {0,1}" for which y(w), the Boolean
value of the output gate on input w, is 1. The size of a circuit 7, written



size(), is the number of gates in 4. The circuit-size complexity of a language

L is the function CS; : N — N defined by
CS;(n) = min{size(y) | L(v) = L=n}.

Further details (which are standard and can be varied in minor ways) may
be found in Balcazar, Didz, and Gabarré [BDGS88|, Lutz [Lut89], or any

standard reference on circuit complexity.

We are interested in the polynomial complexity classes P and PSPACE,
the exponential complexity classes E = DTIME(2"¢") and ESPACE =
DSPACE(25mear)  the bounded-error probabilistic time complexity class BPP

defined by Gill [Gil77], and the nonuniform complexity class
P/Poly = {L | CS, (n) = nW},
consisting of all languages which have polynomial-size circuits.

A property ¢(n) of natural numbers n holds infinitely often (i.0.) if it holds
for infinitely many n € N, and almost everywhere (a.e.) if it holds for all but
finitely many n € N.

In section 4 we use (a special case of) the Chernoff [Che52] bound which
can be found in Erdoés and Spencer [EST4], Lutz [Lut88], and many other
references. This result states that

> (]Z.V)pi(l —p)V <Y (2.1)

0<i<aN

for all 0 < a < p < 1, where

= () (=)

If we set p =1, then (2.1) tells us that

> (N) < 2NN, (2.2)

0<i<aN \'?

We will use (2.2) in the case where p = 1 and @ = £(1 — ¢) for some ¢ > 0.
In this case,
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3 Two Recent Results

This section summarizes two recent results which are used to prove the up-
ward measure separation.

Definition (Nisan and Wigderson [NW88, NW89]). Given 6 > 0 and n,s €
N, a language L C {0,1}" is (8, s)-hard at n if

|L(y) A L=,| > 2" (1 = ¢)

for every n-input circuit v with size(y) < s. The hardness of a language

L C {0,1}" is the function Hy : N — N defined by
Hy(n) = max{h € N| Lis (h~', h)-hard at n}.

Thus a language L is (6, s)-hard at n if every n-input circuit of size s computes
L incorrectly on at least 50(1 — &) percent of the inputs in {0,1}". Note that
Hz(n) is bounded above by the size of the smallest circuit which correctly
computes L_,.

For each 0 < a < 1, we define the set
H, ={L C{0,1}" |HL(n) > 2°" a.e.}
of languages with hardness greater than 2% almost everywhere.

A new construction of a pseudorandom bit generator was recently used to
prove the following:

Theorem 1 (Nisan and Wigderson [NW88, NW89]). If ENH, # § for some
a > 0, then P = BPP. O

The second result which we review in this section is (a special case of) an
almost everywhere lower bound on the space-bounded program-size com-
plexity of languages in ESPACE. (Program-size complexity was originally
introduced by Solomonoff [Sol64], Kolmogorov [Kol65], and Chaitin [Cha66].
Time- and space-bounded program-size complexities have since been inves-
tigated by Hartmanis [Har83], Sipser [Sip83], Levin [Lev84], Huynh [Huy86],
Ko [Ko86], Longpré [Lon86], Lutz [Lut89, Lut90], and many others. For an
overview of work in this area, see Kolmogorov and Uspenskii [KU87] or Li

and Vitanyi [LV88].)

Definition. Given a machine M, a resource bound ¢ : N — N, a language
L € {0,1}", and a natural number n, the t-space-bounded program-size com-
plexity of L_, relative to M is

KS%(L=,) = min{|r| | M(7,n) = xz_, in < #(2") space},
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i.e., the length of the shortest program = such that M, on input (7, n),
outputs the characteristic string of L_, and halts without using more than
1(2") workspace.

Well-known simulation techniques show that there exists a machine U/ which
is optimal in the sense that for each machine M there is a constant ¢ such
that for all ¢, L, and n we have

KSite(L=,) < KSy(L=p) +c.
As usual, we fix an optimal machine U and omit it from the notation.
It can easily be seen that, if x € {0,1}" is the characteristic sequence of
L C {0,1}", then KS'(L-,) is precisely KS'(x A & | 2"*! — 1), the t-space

bounded &-selective program-size complexity of @, as defined in Lutz [Lut89].
We thus have the following result.

Theorem 2 (Lutz [Lut89]). For any polynomial ¢ and any real ¢ > 1, if
X ={LC{0,1}"|KS*(L=,) > 2" —an a.e.},

then (X | ESPACE) = 1. O

The conclusion of Theorem 2 says that almost every language in ESPACE
is in X, i.e., has high ¢-space bounded program-size complexity almost ev-
erywhere. A precise definition of the condition u(X | ESPACE) = 1 may
be found in Lutz [Lut89, Lut90], but is not needed here because Theorem
2 gives us the means to prove a variety of measure-theoretic results without
explicitly discussing measure.

The only other properties of measure which we use are the following trivial
facts.

(i) If X CY and u(X | ESPACE) = 1, then p(Y | ESPACE) = 1.
(il) X NY =0 and (X | ESPACE) = 1, then (Y | ESPACE) = 0.
Beyond this, we hope that the reader will accept (or acquire from Lutz [Lut89,

Lut90]) the intuition that (X | ESPACE) = 0 means that X N ESPACE is
a very small subset of ESPACE.



4 Upward Measure Separation
The following result is the technical content of this section.

Theorem 3. If H= (| H,, then u(H|ESPACE) = 1.

0<a<i

This result is interesting in and of itself, since it says that almost every
language in ESPACE is very hard to approximate with circuits. In this
paper we are especially interested in the following application.

Main Theorem. If P g BPP, then y(E | ESPACE) = 0.
Proof. et H be as in Theorem 3. If P ; BPP, then ENH = () by Theorem
1. Since u(H | ESPACE) = 1, it follows that u(E | ESPACE) = 0. O

Thus any separation of P from BPP implies a measure separation of E from

ESPACE.

The rest of this section is devoted to the proof of Theorem 3. We use the
following lemmas.

Lemma 4. For any real b < 1, for all sufficiently small reals £ > 0,

(1 —52)_1 G ;i)s <1 — be?

Lemma 5. There exist a polynomial ¢ and a constant ¢ > 0 with the follow-
ing property. For every two reals 0 < a < 3 < 1, for all sufficiently large n,
for every language L C {0,1}", if Hp(n) < 2°", then

KSY(L_,) < 2" — 2072)n 4 90n,
Proof of Theorem 3. Choose ¢ and ¢ as in Lemma 5 and define X as in

Theorem 2, using a = 2. We will show that X C H, whence Theorem 3
follows from Theorem 2.

Assume that L € H, i.e., that L ¢ H, for some 0 < a < % Fix  such that
a < 3 <1—=2a. Then Hi(n) < 2% i.0., so the inequality in the conclusion
of Lemma 5 holds for infinitely many n. Since f < 1 — 2a, the right-hand
side of this inequality is less than 2" — 2n for all sufficiently large n, so it

follows that L ¢ X. O



Proof of Lemma 4. Calculating with Taylor approximations, we have

1 _ 1
P

_ 6—252+o(62) — 1 — 922 + 0(52)
ase — 0. Sinceb< 1 and (1 —&?)(1 —be?) =1—(1+b)e* 4 o0(c?) as ¢ — 0,

it follows that | .
—¢

1 —e?)(1 — be?

(1) <a-e-

for all sufficiently small e. O

Proof of Lemma 5. Call an n-input circuit v novel if no n-input circuit
which precedes v (in a standard enumeration of all circuits; no circuit pre-
cedes a smaller one in this enumeration) computes the same set as 4. The
predicate “v is a novel n-input circuit” can clearly be tested in space which

is polynomial in n 4 size(7y). Let y1,..., 750 be the enumeration of all novel
n-input circuits (in their order of appearance in the standard enumeration).
Also, let N = 2" and let Ay, ..., Ay be the enumeration of {0, 1}N which
is lexicographic, except that no string precedes a string which has fewer 1’s.
(Of course J(n) = 2V = 2% in both cases.) It is routine to design a ma-
chine M which takes inputs # € {0,1}" and n € N and has the following
property. If # = (t,d), where t,d € {1,...,J(n)} are represented in binary,
then M(x,n) = graph(y:) & Ay, where graph(~;) is the N-bit characteristic
string of the set computed by ~;, & denotes bitwise exclusive-or, and this
computation is carried out in space which is polynomial in 2". Since the
pairing function can be implemented with |(t,d)| < |t| + |d| + 2log |t| + 4,
and since we have fixed an optimal machine in defining KS, it follows that
there exist a polynomial ¢ and a constant ¢; such that

KSY(L=pn) < |t| + |d| 4 2log |t] + 1 (4.1)
whenever graph(v;) & Ay is the characteristic string of L—,.

Now fix 0 < @ < < 1. A standard counting argument (see, for example,

Shannon [Sha49], Balcazar, Diaz, and Gabarré [BDG88], or Lutz [Lut89])

gan

shows that at most [48¢2°"]?"" = [48e N]V" n-input circuits v are novel
and have size(y) < 2°". The number D(n) of N-bit strings A which have
Z(1— N=) =2""1(1 — 27°") or fewer 1’s is given by

P = ¥ (N )

where we write ¢ = %(1 —¢)and e = N=° for convenience. By the Chernoff
[Cheb2] bound discussed in section 2, this implies that

D(n) < 2NpN,
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where

p=[0-2" (59T

It follows by Lemma 4 that
e? N 2
D(n) < 2N 1—— = 2N+?log(1—%)
B 2

for all sufficiently large n. Since

g2 1 g2 —?
log(l — =)= —1In(l— —) <
og(l = 5) =5l -5) < 575
for all ¢, it follows that
D(n) S 2N—CN62 — 2N—CN1_2‘1 (42)

for all sufficiently large n, where ¢ = 411?.

Now let n be large enough that (4.2) holds and
2+ log K + 2log(1 +log K) + ¢ < N”, (4.3)

where K = [48e N®]N" and ¢; is as in (4.1). Assume that Hy(n) < 2°". Then,
by (4.2) and our estimate of the number of novel circuits of size < 29" there
exist t < K and d < 2V=N""* guch that graph(v:) @& Ay is the characteristic
string of L—,. It follows by (4.1) and (4.3) that

KSY(L_y) < |t]+ |d| + 2log |t| + &
< 14logK +1+N —cN'"™** 4 2log(l +log K) + ¢
< N —e¢N'™2* 4 NF

on _ cQ(l—?Oz)n 4 2571

5 Conclusion

This paper refines the picture
P 3 BPP = P 3 P/Poly N PSPACE <= E G ESPACE

to the form

P S BPP —  u(E|ESPACE) =0

Y
P S P/PolyNPSPACE <=  ESESPACE.

It will be interesting to see the situation clarified further.
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