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A significant segment of the complexity theory community has taken up the study of
resource-bounded measure as a tool in understanding complexity classes. For many theo-
reticians, however, the central problems and accomplishments of this area remain unknown.
In this edition of the Column, two leaders in the area of resource-bounded measure map
out the frontiers of the field.

Twelve Problems in Resource-Bounded Measure
Jack H. Lutz 1 and Elvira Mayordomo 2

1 Introduction

Investigation of the measure-theoretic structure of complexity classes began with the de-
velopment of resource-bounded measure in 1991 [56]. Since that time, a growing body
of research by more than forty scientists around the world has shown resource-bounded
measure to be a powerful tool that sheds new light on many aspects of computational com-
plexity. Recent survey papers by Lutz [60], Ambos-Spies and Mayordomo [3], and Buhrman
and Torenvliet [22] describe many of the achievements of this line of inquiry. In this column,
we give a more recent snapshot of resource-bounded measure, focusing not so much on what
has been achieved to date as on what we hope will be achieved in the near future.

Section 2 below gives a brief, nontechnical overview of resource-bounded measure in
terms of its motivation and principal ideas. Sections 3, 4, and 5 describe twelve specific
open problems in the area. We have used the following three criteria in choosing these
problems.

1. Their statements are reasonably crisp (not of the form “develop a theory of x” or
“find applications of y to z”).

2. We believe that most of them can be solved in the near future.

3. We believe that their solutions will lead to further progress in computational com-
plexity.

Some very important problems have been excluded by criteria 1 and 2. Needless to say,
criteria 2 and 3 involve judgments of the uncertain future. We hope that your research
helps validate these judgments!
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2 Intractability, Measure, and Betting

Since the early 1970’s, the main technique for classifying an apparently intractable problem
A has been to identify and study the class of all problems that are efficiently reducible to A.
Most typically, A is a decision problem, i.e., A ⊆ {0, 1}∗, and “efficiently reducible” is taken
to mean reducible by a polynomial-time many-one reduction (briefly, a ≤P

m-reduction). In
such a case, the set of all problems that are efficiently reducible to A is the lower ≤P

m-span
of A, which is the set

Pm(A) = {B ⊆ {0, 1}∗ | B≤P
mA}.

For example, if Pm(A) = NP (i.e., A is NP-complete), then A is presumably intractable,
because we believe that P �= NP. If Pm(A) ⊇ E2 = DTIME(2poly) (i.e., A is hard for
exponential time), then A is provably intractable, because the time hierarchy theorem of
Hartmanis and Stearns [34] implies that P �= E2. Inferences of this kind constitute the
primary motivation for studying complexity classes of the form Pm(A) for various apparently
intractable problems A. (It is also useful to consider other notions of efficient reducibility
here, e.g., to study complexity classes of the form

PT(A) = {B ⊆ {0, 1}∗ | B≤P
TA},

where ≤P
T denotes polynomial-time Turing reducibility.)

In typical cases of interest, then, one is investigating the structure of a complexity class
C of the form C = Pm(A) (or some similar form like C = PT(A)), where A is a scientifically
interesting decision problem that appears to be intractable. Most typically, the class C can
be proven to satisfy the inclusions

P ⊆ C ⊆ E2

and is conjectured to satisfy the conditions

1. P �= C;

2. C �= E2;

3. for every fixed k, C �⊆ DTIME(2nk
).

(For example, these conditions are widely conjectured to hold if C is any of NP, coNP, DP,
PH, PP, PSPACE, etc.) More concisely, we believe that

P � C � E2,

and that E2 is the smallest deterministic time complexity class containing C. A substantial
part of current research in computational complexity is devoted to studying those structural
properties of such a class C that might yield useful information about the corresponding
problem A.

The most natural question to ask about the structure of a class C ⊆ E2 is, “How big is
it?” The most extensively developed mathematical notion of the size of a class of decision
problems is its Lebesgue measure, but as the late Richard Hamming complained in a recent
essay, Lesbesgue measure “assigns a measure 0 to each countable set, hence to all of the
computable numbers, hence in my opinion, all of reality that you can ever name or talk



about!” [33]. Indeed, E2 is countable, so all the classes C that we are considering have
measure 0, so classical Lesbesgue measure does not offer a useful way to distinguish their
sizes.

This situation is remedied by resource-bounded measure, a generalization of classical
Lesbesgue measure developed by Lutz [56, 52]. This theory contains a parameter ∆ (the
resource bound), which is a class of functions from {0, 1}∗ to {0, 1}∗. Various choices of ∆
give measures on corresponding classes R(∆) of decision problems. If ∆ = all contains every
function from {0, 1}∗ to {0, 1}∗, then R(all) is the class P({0, 1}∗) of all decision problems,
and resource-bounded measure is precisely equivalent to classical Lesbesgue measure on this
class. It is useful to think of this measure in probabilistic terms: The Lesbesgue measure
of a class C of decision problems is the probability that A ∈ C when the decision problem
A ⊆ {0, 1}∗ is chosen by using, for each string x ∈ {0, 1}∗, an independent toss of a fair coin
to decide whether x ∈ A. In complexity theory, this measure has been used extensively for
random oracle research (dating from the work of Bennett and Gill [14]), but as Hamming
noted, every countable class C, hence every class C of decidable problems, has Lesbesgue
measure 0.

If we instead take ∆ to be the set rec, consisting of all computable functions from {0, 1}∗
to {0, 1}∗, then resource-bounded measure induces a measure on the class R(rec) = REC,
consisting of all decidable problems. (This measure was shown by Terwijn [82] to be a
technical improvement of the measure on REC developed by Freidzon [31].) This measure
assigns to each suitable class C of decision problems a measure µ(C | REC) (pronounced
“the measure of C in REC”), which is the size of C ∩ REC as a subset of REC. (The class
C is “suitable” here if it is “measurable in REC,” a technical condition defined in [52].
We deliberately ignore measurability issues in this column, but it should be kept in mind
that classes of interest may fail to be measurable.) In general, 0 ≤ µ(C | REC) ≤ 1, with
µ(REC | REC) = 1. We say that a class C is negligibly small in REC if µ(C | REC) = 0.
For every fixed computable time bound t : N → N, the class DTIME(t(n)) is negligible in
REC [56], so µ(E2 | REC) = 0. Thus measure in REC, like Lesbesgue measure, fails to
distinguish the sizes of classes C ⊆ E2.

The situation is very different if we take ∆ to be the set p2 of all functions from {0, 1}∗

to {0, 1}∗ that are computable in quasipolynomial time, i.e., n(log n)O(1)
= npolylog n time.

In this case, R(p2) = E2 and resource-bounded measure assigns each suitable class C of
decision problems a measure µ(C | E2) (“the measure of C in E2”), which is the size of
C ∩ E2 as a subset of E2. In general, 0 ≤ µ(C | E2) ≤ 1, with µ(E2 | E2) = 1. For every
fixed k ∈ N, the class DTIME(2nk

) is negligible in E2, i.e., µ(DTIME(2nk
) | E2) = 0 [56].

In particular, µ(P | E2) = 0, so almost every decision problem in E2 is intractable.
The smaller exponential time-complexity class E = DTIME(2linear) has an analogous

measure structure induced by the resource bound ∆ = p, consisting of all functions from
{0, 1}∗ to {0, 1}∗ that are computable in polynomial time. Here we have R(p) = E, with
0 ≤ µ(C | E) ≤ 1 for suitable classes C. The measure of E in E is 1, but for every fixed
c ∈ N, µ(DTIME(2cn) | E) = 0, whence µ(P | E) = 0. Note also that µ(E | E2) = 0.

We conclude this section with a brief discussion of the manner in which these measures
are defined. Let ∆ be any one of the above-defined resource bounds p, p2, rec, all, so that
R(∆) is one of the classes E, E2, REC,P({0, 1}∗). In general, the definition of µ(C | R(∆))
requires the somewhat involved theory described in [61], which in fact requires us to expand



the set ∆ to include type-2 functionals satisfying the appropriate constraint (polynomial
time, quasipolynomial time, computable, or unrestricted, corresponding to the four pos-
sibilities for ∆ that we have mentioned.) However, for most applications of interest, the
resource-bounded Kolmogorov zero-one law [61] implies that it suffices to define the condi-
tions µ(C | R(∆)) = 0 and µ(C | R(∆)) = 1, and these conditions are easy to define using
the resource bound ∆ as we have defined it here, with no type-2 functionals involved. (This
conceptual gap is already present, though less explicit, in classical measure theory. It is why
most mathematics students learn what a measure 0 set is as undergraduates — typically in
the characterization of Riemann integrability — but do not learn general measurability and
measure until graduate school.) We thus restrict our discussion to the “zero/one fragment”
of resource-bounded measure theory.

Resource-bounded measure is based on martingales, which are strategies for betting on
the membership or nonmembership of successive strings in a decision problem. Martingales
were introduced more than sixty years ago by Ville [84] in connection with early efforts
by von Mises [85], Wald [86], and Church [28] to define the randomness of individual se-
quences. Ville’s work proved the inadequacy of these efforts, and it was not until 1966 that
Martin-Löf [64] used computability theory to give the first successful definition of random
sequences. Soon afterwards, Schnorr [73, 74, 75, 76] made extensive use of martingales in
his investigations of Martin-Löf’s definition and several variants thereof.

Formally, a martingale is a function d : {0, 1}∗ −→ [0,∞) with the property that, for all
w ∈ {0, 1}∗, d(w0)+d(w1) = 2d(w), i.e., d(w) is the average of d(w0) and d(w1). Intuitively,
d(λ) — the value of the martingale d at the empty string λ — is the initial capital (amount
of money) that the martingale d has prior to betting on the membership or nonmembership
of the successive strings s0, s1, s2, . . . (the standard enumeration of {0, 1}∗) in a decision
problem A. Prior to betting on a string sn, the martingale has capital d(A[0..n − 1]),
where A[0..n − 1] is the binary string representing the membership status of s0, . . . , sn−1

in A. After betting on the string sn, the martingale has capital d(A[0..n]). The condition
d(w0) + d(w1) = 2d(w) ensures that the betting is “fair.”

A martingale d succeeds on a decision problem A if its capital is unbounded when it bets
on A. It was proven by Ville [84] (and it is easy to see) that a set X of decision problems has
classical (Lesbesgue) measure 0 if and only if there is a martingale d such that d succeeds
on every element of X . Generalizing this idea, Lutz [56] made the following definitions. Let
X be a set of decision problems.

1. X has ∆-measure 0, and we write µ∆(X) = 0, if there is a martingale d ∈ ∆ such
that d succeeds on every element of X .

2. X has ∆-measure 1, and we write µ∆(X) = 1, if the complement Xc of X has ∆-
measure 0.

3. X has measure 0 in R(∆), and we write µ(X | R(∆)) = 0, if µ∆(X ∩ R(∆)) = 0.

4. X has measure 1 in R(∆), and we write µ(X | R(∆)) = 1, if µ(Xc | R(∆)) = 0. In
this case, we say that X contains almost every element of R(∆).

Thus, for example, a set X has measure 0 in E2 if there is a martingale d ∈ p2 — i.e., a
martingale computable in quasipolynomial time — such that d succeeds on every element
of X ∩ E2.



It was shown in [56] that these definitions endow E, E2, and other complexity classes
with nontrivial measure-theoretic structure.

3 Weak Completeness and Derandomization

As noted in section 2, problems that are ≤P
m-hard for exponential time are provably in-

tractable by the time hierarchy theorem of Hartmanis and Stearns [34]. In fact, in the 1980’s,
such problems were shown to have very strong intractability properties [11, 37, 69, 77]. In
order to extend the class of provably intractable problems, Lutz [54] introduced a general-
ization of hardness, called weak hardness.

A decision problem A ⊆ {0, 1}∗ is weakly ≤P
m-hard for E2 if Pm(A) does not have measure

0 in E2. That is, A is weakly ≤P
m-hard for E2 if all the decision problems in a nonnegligible

subset of E2 are ≤P
m-reducible to A. A decision problem A is weakly ≤P

m-complete for E2 if
A ∈ E2 and A is weakly ≤P

m-hard for E2.
Elementary properties of measure in E2 [56] imply immediately that every ≤P

m-hard
problem for E2 is weakly ≤P

m-hard, and that no element of P can be weakly ≤P
m-hard for E2.

Thus weak hardness generalizes hardness, weak completeness generalizes completeness, and
weakly hard problems are necessarily intractable. In fact, Juedes and Lutz [41] have shown
that weakly ≤P

m-hard problems for E2 have the strongest intractability properties known to
hold for ≤P

m-hard problems for E2.
The next question to answer was whether weak completeness is a proper generalization

of completeness. That is, do there exist problems that are weakly ≤P
m-complete, but not

≤P
m-complete, for E2? This question was answered affirmatively by Lutz [58], who used

a “martingale diagonalization” to prove the existence of such problems. Juedes [40] then
refined this technique to prove that the weakly ≤P

m-complete problems form a non-measure
0 subset of E2. Since Mayordomo [65] and Juedes and Lutz [41] had already shown that the
≤P

m-complete problems form a measure 0 subset of E2, this established that a nonnegligible
subset of E2 consists of problems that are weakly ≤P

m-complete but not ≤P
m-complete.

Much more turned out to be true. Ambos-Spies, Terwijn, and Zheng [5] developed the
martingale dilation technique and used it to prove that the weakly ≤P

m-complete problems
form a measure 1 subset of E2. That is, almost every problem in E2 is weakly ≤P

m-complete
but not ≤P

m-complete. We thus have an abundance of problems that are provably strongly
intractable but not ≤P

m-hard for exponential time. In contrast, existing proofs of the in-
tractability of natural problems (see, for example [81]) have been proofs that these problems
are ≤P

m-hard for exponential time. Since developing techniques for proving the intractability
of natural problems is arguably the main objective of computational complexity theory, this
leads to the first and most important of our twelve problems.

Problem 1 ([58, 60]) Prove that some specific, natural decision problem is weakly com-
plete, but not complete, for E2. (The word “natural” here is necessarily informal. It defi-
nitely excludes constructions by diagonalization or randomization as in [58, 40, 5]. Ideally,
a natural example would be a decision problem of independent interest that has already been
studied in some other context.) Alternatively, prove a theorem indicating the nonexistence
of such natural examples.



The investigation of small span theorems has played a key role in several recent develop-
ments. The lower ≤P

m-span of a decision problem A is the set Pm(A) that we have already
discussed, namely, the set of all decision problems that are ≤P

m-reducible to A. Similarly,
the upper ≤P

m-span of A is the set Pm
−1(A) consisting of those decision problems B to which

A is ≤P
m-reducible.

The Small Span Theorem for ≤P
m in E2 is the assertion that for every A ∈ E2, it must

be the case that µ(Pm(A) | E2) = 0 or µp2(Pm
−1(A)) = µ(Pm

−1(A) | E2) = 0. That is,
at least one of the upper and lower spans of A is small. Juedes and Lutz [41] proved this
result and the corresponding Small Span Theorem for ≤P

m in E. Since the ≤P
m-degree of

A is the intersection of the upper and lower ≤P
m-spans of A, it follows easily that every

≤P
m-degree has measure 0 in each of E and E2. Juedes and Lutz [41] also noted that a Small

Span Theorem for ≤P
T in E or E2 would (in combination with a result of Bennett and Gill

[14]) imply the long-sought separation of BPP from E2, and thus called for a program of
proving Small Span Theorems for reductions of increasing power between ≤P

m-reductions
and ≤P

T-reductions. (Ambos-Spies, Neis and Terwijn [4] subsequently pointed out that a
Small Span Theorem for ≤P

tt in E and E2 would also imply BPP �= E2.) A number of
steps have now been taken in this program. Lindner [50] refined the argument in [41] to
prove Small Span Theorems for ≤P

1−tt in E and E2. Ambos-Spies, Neis, and Terwijn [4]
used resource-bounded genericity to prove Small Span Theorems for ≤P

k−tt in E and E2 (for
each fixed positive integer k) and, in the same paper, proved that their technique could not
be extended to reductions with an unbounded number of queries. Lutz [51, 43] proved a
Small Span Theorem for ≤P/Poly

T -reductions (Turing reductions computed by nonuniform
polynomial size circuits) in ESPACE. Finally, in a breakthrough result, Buhrman and van
Melkebeek [23] used a clever betting argument to prove a Small Span Theorem for ≤P

no(1)−tt
-

reductions in E2. Curiously, their proof does not work in E, where the above-mentioned
≤P

k−tt-result of [4] is still the best that is known.

Problem 2 ([23]) Prove (or disprove) a Small Span Theorem for unbounded-query reduc-
tions in E.

An explicit pseudorandom generator construction by Nisan and Wigderson [68] has been
the basis for several interactions between resource-bounded measure and the BPP question.
Using this work, Lutz showed that P �= BPP implies that E has measure 0 in ESPACE [55]
(improving the result by Hartmanis and Yesha [35] that P �= BPP implies E �= ESPACE)
and that the ≤P

T-hard problems for BPP form a set of pspace-measure 1 [57] (improving the
result by Bennett and Gill [14] that this set has classical measure 1). More significantly,
Allender and Strauss [1] improved this latter result by showing that the ≤P

T-hard problems
for BPP form a set of p-measure 1. Thus almost every problem in E is ≤P

T-hard for BPP
(and similarly for E2). It follows easily that, if the ≤P

T-complete degree does not have
measure 1 in E (or does not have measure 1 in E2), then BPP �= E2. This appears to be a
considerable improvement over the earlier observation [41] that a Small Span Theorem for
≤P

T in E or E2 would imply BPP �= E2. For example, Buhrman, Fortnow, van Melkebeek,
and Torenvliet [21] have shown that every ≤P

T-complete problem for E2 is ≤P
T-autoreducible,

and Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss [24] have used this fact (and
its ≤P

tt analog) together with betting games closely related to martingales to give a dozen
seemingly plausible conditions, each of which would be sufficient to establish BPP �= E2.



Some natural conditions involving weak completeness also imply BPP �= E2. Juedes
and Lutz [42] proved that there are decision problems in E that are weakly ≤P

m-complete
for E2, but not for E. As we have already noted, Lutz [58] proved that there are decision
problems that are weakly ≤P

m-complete, but not ≤P
m-complete, for E2. The ≤P

T-analogs
of these results are conditions 2 and 3 of the following problem. (The ≤P

tt analog of this
problem is also of interest.)

Problem 3 Consider the following five conditions.

1. The Small Span Theorem for ≤P
T in E.

2. There is a decision problem in E that is weakly ≤P
T-complete for E2, but not for E.

3. There is a decision problem that is weakly ≤P
T-complete, but not ≤P

T-complete, for E2.

4. The ≤P
T-complete degree does not have measure 1 in E2.

5. BPP �= E2.

Using results of Juedes and Lutz [42], Ambos-Spies, Terwijn, and Zheng [5], and Allender
and Strauss [1], it is easy to see that

1 ⇒ 2 ⇒ 3 ⇔ 4 ⇒ 5

What else can be proven about the relative strengths of these five conditions?

Recent, more sophisticated pseudorandom generator constructions appear to be verging
on a complete derandomization of BPP. Impagliazzo and Wigderson [38] (improving on
results of Andreev, Clementi, and Rolim, surveyed in this column [29]) have proven that
P = BPP unless every problem in E has subexponential-size Boolean circuits. More recently,
Impagliazzo and Wigderson [39] have proven that, if BPP �= E2, than every problem in BPP
can be decided deterministically in subexponential time for almost all inputs of infinitely
many input lengths. As pointed out by van Melkebeek [83], this result implies that BPP
has the “zero-one property” that, if BPP �= E2, then BPP has p-measure 0, hence measure
0 in E and E2. (This improved the result by Buhrman, Fenner, and Fortnow [19] that, if
AM �= E2, then BPP has p-measure 0.)

The Graph Isomorphism problem is perhaps the canonical example of a problem known
to be in NP but widely conjectured to be neither in P nor NP-complete [49]. This problem
is known to be in NP ∩ coAM [48], and this fact has been used by many investigators to
give increasingly strong evidence that it is not NP-complete. (See [48] for a survey of such
results, and [59, 8] for more recent work using resource-bounded measure.) Very recently,
Klivans and van Melkebeek [46] have used nontrivial derandomization techniques to give
evidence that AM = NP, whence Graph Isomorphism would be in NP∩ coNP. It should be
noted, however, that all these results involve unproven (though plausible) hypotheses, and
none of them uses any property of Graph Isomorphism more specific than its membership
in NP ∩ coAM. The following problem suggests that an absolute result might be obtained
by using resource-bounded measure and specific properties of Graph Isomorphism.

Problem 4 Prove that Graph Isomorphism is not weakly complete (and hence not com-
plete) for exponential time.



4 Nonuniform Complexity

The difficulty of solving an intractable problem may arise from one or both of two aspects
of complexity. The problem may have high nonuniform complexity, meaning that it is
combinatorially, or information-theoretically, infeasible. Even failing this, it may have high
uniform complexity, meaning that no single algorithm can solve the problem on all inputs
of all lengths. Understanding the relationship between these two kinds of complexity is one
of the major challenges of computational complexity theory.

It is widely believed that NP �⊆ P/Poly, i.e., that problems complete for NP are com-
binatorially infeasible in the sense that they cannot be solved, even nonuniformly, by
polynomial-size circuits. However, even the conjecture that E2 �⊆ P/Poly (equivalently,
that E �⊆ P/Poly) has not been proven and appears to be very difficult.

Kannan [44] proved that ESPACE �⊆ P/Poly and, in fact, that ΣE
2 ∩ ΠE

2 �⊆ P/Poly,
where ΣE

2 = NE(NP) is the second level of the exponential hierarchy. In one of the first
applications of resource-bounded measure, Lutz [56] strengthened the ESPACE result by
proving that, for every real α < 1, almost every problem in ESPACE requires a Boolean
circuit of more than 2n

n (1+ α logn
n ) gates for all but finitely many input lengths n. This lower

bound actually exceeds the lower bound 2n

n (1 − ε) proven by Shannon [79] for the worst
case complexity of arbitrary problems, and it is not difficult to see that the proof in [56]
also yields the existence of a problem in ΣE

2 ∩ ΠE
2 that requires exponentially many gates

for all but finitely many input lengths. Very recently, Buhrman, Fortnow, and Thierauf
[20] have proven that PE2 �⊆ P/Poly, where PE2 is the exponential-time version of PP.
(Curiously, it is still not known whether PE2 requires exponentially many gates.) Lutz [56]
has shown that P/Poly has measure 0 in E3 = DTIME(2npolylog n

), which is the next class
above E and E2 in a natural hierarchy of exponential-time complexity classes. Lutz [56]
conjectured that P/Poly has measure 0 in E and in E2, and that proving this might be the
easiest way to obtain separations E �⊆ P/Poly and E2 �⊆ P/Poly. This conjecture should
now be viewed with extreme caution, because Regan, Sivakumar, and Cai [72] have used
the “natural proofs” idea of Razborov and Rudich [71] to prove that, if exponentially secure
pseudorandom generators exist, then P/Poly is not measurable in E2.

The measure of P/Poly in the classes of the exponential hierarchies over E and E2

is still not understood. As noted above, Kannan [44] showed that ΣE
2 ∩ ΠE

2 �⊆ P/Poly.
Wilson [88] exhibited an oracle relative to which ∆E2

2 ⊆ P/Poly (and Heller [36] improved
this to ∆E2

2 ⊆ BPP), where ∆E2
2 = E2(NP). Regarding measure, Mayordomo [66] used

Stockmeyer’s approximate counting method [80] to prove that P/Poly has measure 0 in
∆E

3 = E(ΣP
2 ). Recently, Köbler and Lindner [47] have shown that, if µp(NP) �= 0 (a

hypothesis discussed in section 5 below), then P/Poly has measure 0 in ∆E2
2 = E2(NP).

Problem 5 Close the gap between the above-mentioned results of [72] and [66]. Does
P/Poly have measure 0 in a class lower than ∆E

3 ? Does the existence of very secure pseu-
dorandom generators imply that P/Poly is not measurable in a class higher than E2?

Meyer [67] showed that P/Poly = PT(SPARSE), i.e., a decision problem has (nonuni-
form) polynomial-size circuits if and only if it is ≤P

T-reducible to some problem S ∈ {0, 1}∗
that is sparse (i.e., there is a polynomial q such that | S ∩ {0, 1}≤n |< q(n) for all n).
Meyer [67] also showed that E �⊆ Pm(SPARSE), and in fact that E �⊆ Pm(DENSEc),



where DENSE is the set of all problems D ⊆ {0, 1}∗ that are dense (i.e., there is a real
ε > 0 such that | D ∩ {0, 1}≤n |> 2nε

for all sufficiently large n) and DENSEc is the
complement of DENSE. This suggested the program of trying to prove theorems of the
form E �⊆ Pr(SPARSE) for successively large classes Pr(SPARSE) in the range between
Pm(SPARSE) and PT(SPARSE). Ideally, of course, such results will be of the stronger
form E �⊆ Pr(DENSEc). Watanabe [87] took the second big step in this program by proving
that E �⊆ PO(logn)−tt(DENSEc). The next big step used resource-bounded measure: Lutz
and Mayordomo [62] proved that, for every real α < 1, Pnα−tt(DENSEc) has measure 0 in
E (and in E2), whence it certainly follows that E �⊆ Pnα−tt(DENSEc). Subsequently, and
independently, Fu [32] proved that, for every α < 1

2 , E �⊆ Pnα−T(DENSEc) and, for every
α < 1, E2 �⊆ Pnα−T(DENSEc). Recently, Lutz and Zhao [53] unified this work with much
of that in [62] by proving that, for every α < 1

2 , Pnα−T(DENSEc) has measure 0 in E and,
for every α < 1, Pnα−T(DENSEc) has measure 0 in E2. These results leave a curious gap
that may be technically significant.

Problem 6 For 1
2 ≤ α < 1, is it the case that Pnα−T(DENSEc) has p-measure 0 (or, at

least, that E �⊆ Pnα−T(SPARSE))?

Problems that are sparse have very low information content, and reducibility to such
problems has been extensively investigated. (Much of this work is surveyed in the ten-author
paper [7].) Reducibility to problems of very high information content is also of interest, but
the study has barely begun. It is already clear that there are some (perhaps surprising)
connections between the two subjects. For example Book and Lutz [16] have shown that, if a
problem in ESPACE is ≤P

btt-reducible to a problem of very high space-bounded Kolmogorov
complexity, then it is ≤P

btt-reducible to a sparse problem. Arvind, Köbler, and Mundhenk
[9, 10] have improved on this result in several respects.

A problem that is random in the sense of Martin-Löf [64] has extremely high information
content. It is sometimes (e.g., in the context of computational depth [13]) of interest to
know whether an algorithm can, from a random object, compute an object that could
not have been computed from any random object with significantly less resources. In this
connection, Book, Lutz, and Martin [17] proved that, if RAND is the set of all random
decision problems, then for every R ∈ RAND and k ∈ N, P(k+1)−tt(R) �⊆ Pk−tt(RAND),
whence Pk−tt(RAND)�P(k+1)−tt(RAND).

Resource-bounded measure provides notions of resource-bounded randomness that are
exactly analogous to Martin Löf’s notion [56]. For example, a problem R is defined to be
p-random, and we write R ∈ RAND(p), if the singleton set {R} does not have p-measure
0. It is easy to see that E∩RAND(p) = ∅, but it is known that almost every element of E2

is p-random [56].

Problem 7 Prove (or disprove) that, for all k ∈ N, Pk−tt(RAND(p))�P(k+1)−tt(RAND(p)).
Ideally, prove that, for all k ∈ N and R ∈ RAND(p), E2∩P(k+1)−tt(R) �⊆ Pk−tt(RAND(p)).

5 Strong Hypotheses

Even if we assume that P �= NP, most open questions about computational complexity
remain open. There are, of course, exceptions, the most notable of which is the proof



by Arora, Lund, Motwani, Sudan, and Szegedy [6] that, if P �= NP, then no MAXSNP-
complete problem has a polynomial-time approximation scheme. Nevertheless, for the most
part, relative to our current knowledge, the P �= NP hypothesis lacks explanatory power in
the sense that we do not know how to use it to resolve many questions. Other “traditional”
complexity-theoretic hypotheses such as the separation of the polynomial-time hierarchy
into infinitely many levels, also lack explanatory power in this sense.

In order to progress toward a remedy of this situation, Lutz proposed investigation of
various strong, measure-theoretic hypotheses, the most notable of which is the hypothesis
that NP does not have p-measure 0 (written µp(NP) �= 0). This hypothesis holds if and only
if NP is a nonnegligible subset of E2 [5]. By the resource-bounded Kolmogorov zero-one
law of Lutz [61] and the “most is all” theorem of Regan, Sivakumar, and Cai [72], this
hypothesis implies that NP is a nonmeasurable subset of E2 (a condition defined in [61])
unless NP = E2. Lutz and Juedes [42] have shown that the µp(NP) �= 0 hypothesis holds
if NP contains a nonnegligible subset of E, but the converse has not been proven. The
µp(NP) �= 0 hypothesis is now known to have many provable, plausible consequences that
are not known to follow from more traditional hypotheses. Among these are the following.

• NP contains a P-bi-immune problem (Mayordomo [65]).

• E �= NE and EE �= NEE (Lutz and Mayordomo [63]).

• There is an NP search problem that does not reduce to the corresponding decision
problem (Bellare and Goldwasser [12], Lutz and Mayordomo [63]).

• Every problem that is ≤P
m-hard for NP has a dense exponential complexity core

(Juedes and Lutz [41]).

• There is a problem that is ≤P
T-complete (in fact, ≤P

2−T-complete), but not ≤P
m-

complete, for NP (Lutz and Mayordomo [63]).

• For every k ≥ 2, there is a problem that is ≤P
(k+1)−tt-complete, but not ≤P

k−tt-
complete, for NP (Ambos-Spies and Bentzien [2]).

• For every k ≥ 1, there is a problem that is ≤P
(k+1)−T-complete, but not ≤P

k−T-
complete, for NP (Ambos-Spies and Bentzien [2]).

• There is a problem that is ≤P
tt-complete, but not ≤P

btt-complete, for NP (Ambos-Spies
and Bentzien [2]).

• For every real number α < 1, every ≤P
nα−tt-hard problem for NP is dense (Lutz and

Mayordomo [62]).

• For every real number α < 1/2, every ≤P
nα−T-hard problem for NP is dense (Lutz and

Zhao [53]).

• For every k ≥ 2, there is a sequence �D = (D1, . . . , Dk) of NP decision problems
such that �D is sequentially complete for NP, but no nontrivial permutation of �D is
sequentially complete for NP (Dai and Lutz [30]).



• There is a decision problem that, relative to every polynomial time computable dis-
tribution, is in DistNP but not AVP (Cai and Selman [25]).

• Every DistNP-complete problem has a reasonable distribution (Pavan and Selman
[70]).

• BPP ⊆ ∆P
2 (Allender and Strauss [1]).

• For all k ≥ 2, BP ·∆P
k = ∆P

k . Thus ∆P
2 �= PH implies that Graph Isomorphism is not

NP-complete, and that NP �⊆ P/Poly (Lutz [59]).

• For all k ≥ 2, BP ·ΣP
k = ΣP

k and BP ·ΘP
k = ΘP

k (Arvind and Köbler [8]).

• AM ⊆ NP/log (Arvind and Köbler [8]).

• P/Poly has measure 0 in ∆E2
2 = E2(NP) (Köbler and Lindner [47]).

It is evident that the hypothesis µp(NP) �= 0 has considerable explanatory power, but
the full extent of this power has yet to be understood.

Problem 8 Does µp(NP) �= 0 imply an exponential lower bound on approximation schemes
for MAXSAT?

Problem 9 ([63], [22]) Does µp(NP) �= 0 imply the existence of a problem that is ≤P
T-

complete, but not ≤P
tt-complete, for NP?

Problem 10 ([66]) Can the Berman-Hartmanis Isomorphism Conjecture be resolved under
the hypothesis µp(NP) �= 0, or perhaps the hypothesis µp(UP) �= 0? Is the latter hypothesis
reasonable?

Problem 11 ([78]) Does the hypothesis µp(ΣP
2 − ΠP

2 ) �= 0 imply that NP �⊆ P/Poly?

The reasonableness of the µp(NP) �= 0 hypothesis is not easy to asses. Since it implies
that P �= NP and its negation implies NP �= E2, it is not likely to be proven or refuted
mathematically in the near future. Kautz and Miltersen [45] have shown that it holds
relative to a random oracle, but this appears to tell us nothing about the unrelativized case
[27]. Cai, Sivakumar, and Strauss [26] have shown that a “bounded-depth analog” of the
hypothesis is false, but this involves a severely constrained computational model and also
appears unlikely to tell us anything about the µp(NP) �= 0 hypothesis. For the time being,
Lutz [60] has advocated evaluating µp(NP) �= 0 as a scientific hypothesis, in terms of the
extent and plausibility of its provable consequences.

One more intrinsic aspect of the µp(NP) �= 0 hypothesis has been investigated, namely,
its robustness with respect to the underlying probability measure. Breutzmann and Lutz
[18] have shown that if �β = (β0, β1, . . .) is any P-computable sequence of biases βi ∈ [0, 1]
that are bounded away from 0 and 1, and if µ

�β is the probability measure in which a
decision problem A ⊆ {0, 1}∗ is chosen by placing the i-th string in A with probability βi

independently of all other strings, then µ
�β
p(NP) = 0 if and only if µp(NP) = 0 (and similarly

for other “reasonable” complexity classes). Thus the hypothesis µp(NP) �= 0 is robust with
respect to a wide variety of probability measures. Nevertheless, the hypothesis placed on
µ

�β is substantial, especially in its requirement of independence.



Problem 12 ([18]) How extensive is the class of p-computable probability measures ν for
which νp(NP) = 0 is equivalent to µp(NP) = 0?
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[47] J. Köbler and W. Lindner. On the resource bounded measure of P/poly. In Proceedings
13th IEEE Conference on Computational Complexity, pages 132–140, 1998.
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[64] P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–
619, 1966.

[65] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical
Computer Science, 136(2):487–506, 1994.

[66] E. Mayordomo. Contributions to the study of resource-bounded measure. PhD thesis,
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