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Abstract

This paper investigates the structure of ESPACE under nonuniformTuring reductions
that are computed by polynomial�size circuits �P�Poly�Turing reductions�� A Small
Span Theorem is proven for such reductions� This result says that every language A in
ESPACE satis�es at least one of the following two conditions�

�i� The lower P�Poly�Turing span of A �consisting of all languages that are P�Poly�
Turing reducible to A� has measure � in ESPACE�

�ii� The upper P�Poly�Turing span of A �consisting of all languages to which A is
P�Poly�Turing reducible� has pspace�measure �� hence measure � in ESPACE�

The Small Span Theorem implies that every P�Poly�Turing degree has measure � in
ESPACE� and that there exist languages that are weakly P�many�one complete� but not
P�Poly�Turing complete for ESPACE�

The method of proof is a signi�cant departure from earlier proofs of Small Span
Theorems for weaker types of reductions�
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� Introduction

The measure�theoretic investigation of e�cient reductions has recently yielded new insights
concerning completeness phenomena� Such insights include the existence and distribution
of weakly complete problems ��	� 
� �� ���� lower bounds on the density and complexity of
weakly complete problems ���� � ��� upper bounds on the complexity and abundance of
complete problems �� ��� 	� �� �
�� and various consequences of the hypothesis that SAT is
weakly complete for exponential time ���� � ��� ����

A recurring tool and unifying theme of much of this work is the development of Small

Span Theorems for various reducibilities and complexity classes� Brie�y� given a reducibility
�R and a language A � f�� �g�� the lower �R�span of A is the set of R�A�� consisting of
all languages that are �R�reducible to A� and the upper �R�span of A is the set R���A��
consisting of all languages to which A is �R�reducible� If C is a complexity class that
has measure structure �in the sense of resource�bounded measure ������ then the Small Span

Theorem for �R�reductions in C is the assertion that� for all A � C� at least one of the spans
R�A�� R���A� is negligibly small in C� �Speci�cally� R�A� has measure � in C� or R���A�
has ��measure �� hence measure � in C� where � is the resource bound that induces measure
structure in C� See section 	 for more detailed explanations of notation and terminology
used in this introduction��

The �rst Small Span Theorem� proven by Juedes and Lutz ��� was for �P
m�reductions

in the exponential time complexity class E � DTIME�	linear�� This result says that� for
every A � E� Pm�A� has measure � in E� or P��m �A� has p�measure �� hence measure
� in E� An immediate consequence of this fact is that every �P

m�degree � including the
complete �P

m�degrees for E� NP� PSPACE� etc� � has measure � in E� Juedes and Lutz ��
also proved the Small Span Theorem for �P

m�reductions in the exponential time complexity
class E� � DTIME�	polynomial�� Part of the interest in these results lies in the fact that
E� is the smallest deterministic time complexity class known to contain NP� BPP� PP� PH�
PSPACE� and other important complexity classes�

The task now confronting us is to determine the extent to which Small Span Theorems
hold for stronger types of e�cient reductions� This task is important and nontrivial because
it is closely related to some of the most fundamental questions of complexity theory� For
example� Juedes and Lutz �� have pointed out that a Small Span Theorem for�P

T�reductions
in E or E� would imply that BPP�E�� More recent work of Regan and Sivakumar �	�� �
building on the �natural proof� work of Razborov and Rudich ��� � indicates that a

Small Span Theorem for �
P�Poly
T �reductions �nonuniform Turing reductions computed by

polynomial�size circuits� in E� would imply the nonexistence of pseudorandom generators
and one�way functions with exponential nonuniform security� It is thus to be hoped that a
systematic investigation of Small Span Theorems will shed useful light on such fundamental
questions�

Some initial steps in this investigation have already been taken� Lindner ���� adapted
the method of �� to prove Small Span Theorems for �P

��tt�reductions in E and E�� Ambos�
Spies� Neis� and Terwijn �	� used resource�bounded genericity to generalize the method
of ��� thereby obtaining Small Span Theorems for �P

k�tt�reductions in E and E� for all
positive integers k� More recently� Juedes and Lutz ��� have used a nonuniform extension of

the method of �� to prove the Small Span Theorem for �
P�Poly
m �reductions � nonuniform

�



many�one reductions that are computed by polynomial�size circuits � in the exponential
space complexity class ESPACE � DSPACE�	linear��

In the present paper� we prove the Small Span Theorem for �
P�Poly
T �reductions in ES�

PACE� As noted earlier� �
P�Poly
T �reductions are nonuniform Turing reductions that are

computed by polynomial�size circuits� These reductions are �combinatorially e�cient��
even though they need not be algorithmically computable� As noted by Skyum and Valiant
�	��� the investigation of nonuniform reductions sheds light on the �purely combinatorial�

aspects of the completeness phenomenon� More importantly� �
P�Poly
T �reductions are adap�

tive� In fact� the present result is the �rst instance of a Small Span Theorem for adaptive
reductions�

Our result immediately implies that every �
P�Poly
T �degree has measure � in ESPACE�

It also implies �in combination with a result of Juedes �
� and Ambos�Spies� Terwijn� and

Zheng ���� that there are languages that are weakly �P
m�complete� but not �

P�Poly
T �complete

for ESPACE�
The proof of our result is a signi�cant departure from the methods used in earlier proofs

of Small Span Theorems for weaker� nonadaptive types of reductions� We are hopeful that
this proof is a signi�cant step toward a better understanding of the conditions under which

Small Span Theorems hold for �P
T�reductions and �

P�Poly
T �reductions in E and E��

� Preliminaries

We write f�� �g� for the set of all ��nite� binary� strings and f�� �g� for the set of all
�in�nite� binary� sequences� Every language is a set A � f�� �g�� so P�f�� �g�� is the set of
all languages�

We write jxj for the length of a string x and jSj for the cardinality of a set S� �Notation
and context clearly distinguish strings from sets�� The empty string� �� is the unique string
of length �� We write f�� �gn for the set of all strings of length n� f�� �g�n for the set of
all strings of length at most n� and f�� �g�n for the set of all strings of length less than n�
The standard enumeration of f�� �g� is the sequence s� � �� s� � �� s� � �� s� � ��� � � ��
ordered �rst by length and then lexicographically�

The Boolean value of a condition � is ����� � if � then � else �� For z � f�� �g� and
n � N� the nth bit of z is z�n�� and the n�bit pre�x of z is z����n���� We identify each language
A � f�� �g� with its characteristic sequence �A � f�� �g� de�ned by �A�n� � ��sn � A�� for
all n � N�

The cylinder generated by a string w � f�� �g� is the set Cw � fA � f�� �g� j w �
�A����jwj���g� i�e�� the set of all languages A such that w is a pre�x of �A� The complement

of a set X of languages is Xc � P�f�� �g���X �
Our proof of the Small Span Theorem uses the following theorem of probability theory�

Lemma ��� �Large Deviation Lemma � Ajtai and Fagin ����� Let c � �
��� � let b�� � � � � bn��

be ��� � valued random variables� and let N�n� � jfij� � i � n and bi � �gj� Assume that�
for all � � i � n and all u � f�� �gi� Pr�bi � �jb�� � � � � bi�� � u� � �

� � �If i � �� this says that
Pr�b� � �� � �

� �� Then Pr�N�n� � ��n
�� � � e�cn�

	



Note that Lemma 	�� does not require the random variables b�� � � � � bn�� to be indepen�
dent�

Following standard usage� we let Poly denote the set of all polynomially bounded advice

functions h �N� f�� �g�� If A and B are languages� then A is �
P�Poly
m �reducible to B� and

we write A �
P�Poly
m B� if there exist f � PF and h � Poly such that

A � fx � f�� �g� j f�hx� h�jxj�i� � Bg�

where h� i � f�� �g�� f�� �g�� f�� �g� is a standard pairing function�
Fix a standard enumeration M��M��M�� � � � of polynomial time�bounded oracle Turing

machines� For k � N� B � f�� �g�� and h an advice function� the language accepted by Mk

with oracle B and advice h is the language

L�MB
k �h� � fx � f�� �g� j MB

k accepts hx� h�jxj�ig�

If A and B are languages� then A is �
P�Poly
T �reducible to B� and we write A �

P�Poly
T B�

if there exist k � N and h � Poly such that A � L�MB
k �h�� Using standard techniques

����� it is easy to see that the �
P�Poly
T �reductions �respectively� the �

P�Poly
m �reductions� are

precisely those Turing reductions �respectively� many�one reductions� that are computed by
polynomial�size circuits�

We very brie�y review the fragment of resource�bounded measure that is used in this
paper� The reader is referred to ���� �	� for motivation and details�

A martingale is a function d � f�� �g�� ����� such that� for all w � f�� �g��

d�w� �
d�w�� � d�w��

	
�

A martingale d succeeds on a language A � f�� �g� if

lim sup
n��

d��A����n� ��� � ��

The success set of a martingale d is

S��d� � fA � f�� �g� j d succeeds on Ag�

The unitary success set of a martingale d is

S��d� �
�

d�w���

Cw�

A martingale d is pspace�computable if there is a function bd �N�f�� �g�� Q such thatbd�r� w� is computable in space polynomial in r � jwj and� for all r � N and w � f�� �g��
j bd�r� w�� d�w�j � 	�r �

De�nition� Let X be a set of languages� and let Xc denote the complement of X �

�� X has pspace�measure �� and we write �pspace�X� � �� if there is a pspace�computable
martingale d such that X � S��d��

�



	� X has pspace�measure �� and we write �pspace�X� � �� if �pspace�X
c� � ��

�� X has measure � in ESPACE� and we write ��X j ESPACE� � �� if �pspace�X �
ESPACE� � ��

�� X hasmeasure � in ESPACE� and we write ��X j ESPACE� � �� if ��Xc j ESPACE� �
�� In this case� we say that X contains almost every element of ESPACE�

For each k � N� let
�P
j	�

ak�j be a series of nonnegative real numbers� Then the series

�P
j	�

ak�j � for k � N� are uniformly p�convergent if there is a polynomial q such that� for all

k� r � N�
�P

j	q�k�r�
ak�j � 	�r�

Our proof of the Small Span Theorem uses the following uniform� polynomial space
version of the classical �rst Borel�Cantelli lemma�

Theorem ��� �Lutz ������ Assume that d � N �N � f�� �g� � Q � ����� is a function
with the following properties�

�i� For each k� j � N� the function dk�j � de�ned by dk�j�w� � d�k� j� w�� is a martingale�

�ii� There is an algorithm that� for all k� j � N and w � f�� �g�� computes dk�j�w� in space
polynomial in k � j � jwj�

�iii� The series
�P
j	�

dk�j���� for k � N� are uniformly p�convergent�

Then

�pspace�
��
k	�

��
j	�

��
i	j

S��dk�i�� � ��

Given a reducibility �R and a language A� the lower �R�span R�A� and the upper �R�
span R���A� are de�ned as in the introduction� The �R�degree of A is then degR�A� �
R�A� � R���A�� A language is weakly �R�hard for ESPACE if ��R�A�jESPACE� 	� ��
�This is the negation of the condition ��R�A� j ESPACE� � �� It does not imply that
���R�A� j ESPACE�� has some nonzero value�� A language A is weakly �R�complete for
ESPACE if A � ESPACE and A is weakly �R�hard for ESPACE�

� Small Span Theorem

This section is devoted to proving and exploiting our main result� the Small Span Theorem

for �
P�Poly
T �reductions in ESPACE� Our proof uses a probability measure on a specialized

class ADV of advice functions� We now describe this class and its probability measure�
Let ADV be the class of all advice functions h �N� f�� �g� satisfying jh�n�j � a�n� for

all n � N� where the function a �N� N is de�ned by

a�n� � b�n � ��� b�n��

b�n� � n�
log��
n��

�



�Elements of ADV will be called a�n��advice functions�� Note that� for all n � N�

n��X
m	�

a�m� � b�n��

Also� for every polynomial q�n�� q�n� � o�a�n��� In fact� it is easy to see that� for all

A�B � f�� �g� satisfying A �
P�Poly
T B� there exist k � N and h � ADV such that

A � L�MB
k �h��

where Mk is the kth polynomial time�bounded oracle Turing machine�
We now specify a probability measure on the set ADV� De�ne a partial a�n��advice

function to be a �nite function

h� � f�� �� � � � � k� �g � f�� �g�

such that k � N and� for all � � n � k� jh��n�j � a�n�� For each partial a�n��advice function
h�� de�ne the cylinder generated by h� to be

CYL�h�� � fh � ADV j h�f�� �� � � � � k� �g � h�g�

where h�f�� �� � � �k��g denotes the restriction of h to the set f�� �� � � �k��g� The probability
of this cylinder in the sample space ADV is de�ned to be

Pr�CYL�h��� �
k��Y
n	�

	�a�n��

This probability measure is then extended to a complete probability measure on ADV in
the usual way ��� ���

In the proof of the following theorem� we work in the sample space

� � ADV� P�f�� �g��

with the product probability measure� where probability on ADV is de�ned as above and
we use the uniform distribution on P�f�� �g��� Intuitively� an element �h�B� � � is chosen
probabilistically by performing the following two random experiments independently of one
another�

�i� For each n � N �independently�� choose h�n� � f�� �ga�n� according to the uniform
distribution�

�ii� For each x � f�� �g� �independently�� toss a fair coin to decide whether x � B�

The following result contains most of the technical content of the Small Span Theorem

for �
P�Poly
T �reductions in ESPACE� It says that almost every element of ESPACE has a

very small upper �
P�Poly
T �span� The proof is a nonuniform� space�bounded extension of a

technique used by Fenner� Lutz� and Mayordomo ��� in the investigation of computational
depth�

�



Theorem ���� For almost every A � ESPACE�

�pspace��P�Poly�
��
T �A�� � ��

Proof� For each k� j � N and A � f�� �g�� de�ne the event EAk�j � � by

EAk�j � f�h�B� j �
� � i � j���si � A�� � ��si � L�MB
k �h���g�

For each A � f�� �g�� de�ne a function dA � f�� �g�� ����� by

dA�w� �
�X
k	�

�X
j	�

	�
k�j
� dAk�j�w��

where� for all k� j � N and w � f�� �g��

dAk�j�w� �

�
	jwjPr�ADV �Cw j EAk�j� if Pr�EAk�j� � �

� if Pr�EAk�j� � ��

It is routine to check that each dA is a martingale that is� by depth��rst�search on answers
to oracle queries� pspace�computable if A � ESPACE�

For each k� j � N and A � f�� �g�� let

NA�k� j� � jfi � j j Pr�EAk�i
�� �
�

	
Pr�EAk�i�gj�

Let

X � fA � f�� �g� j for all k � N� for all but �nitely many j �N� NA�k� j��
j

�
g�

The following four claims are proven at the end of this proof�

Claim �� For all k� j � N and A � f�� �g��

Pr�EAk�j� � 	�NA�k�j��

Claim �� For all k� j � N� all A�B � f�� �g�� and all h � ADV� if A � L�MB
k �h�� then

lim inf
l��

dAk�j��B����l� ��� � 	NA�k�j��b�n�j���

where n�j� � dlog�j � ��e�

Claim �� For all A � X � �P�Poly���T �A� � S��dA��

Claim �� �pspace�X� � ��

Let
Y � fA � f�� �g� j �pspace��P�Poly�

��
T �A�� � �g�

�



By Claim � and the fact that dA is pspace�computable when A � ESPACE� we have
X � ESPACE � Y � It follows that Y c � ESPACE � Xc� whence Claim � tells us that

� � ��Y c j ESPACE� � �pspace�Y
c � ESPACE� � �pspace�X

c� � ��

i�e�� that ��Y j ESPACE� � �� This proves Theorem ���� �

Proof of Claim �� This follows immediately from the de�nition of NA�k� j� and the fact
that� for all k� j � N and A � f�� �g�� EAk�j
� � EAk�j � �

Proof of Claim �� Assume the hypothesis� Since A � L�MB
k �h�� we have �h�B� � EAk�j �

so Pr�EAk�j� � �� Let l � N be large enough that� for all � � i � j� all queries of �MB
k �h��si�

are among s�� s�� � � � � sl��� That is� l is large enough that �MB
k �h��s��� � � � � �M

B
k �h��sl���

are determined by the l�bit pre�x wl � �B ����l� �� of B�
Let hj � h�f�� �� � � � � n�j�� �g� Note that n�j� is the least n such that fs�� � � � � sj��g �

f�� �g�n� so hj is the smallest partial a�n��advice function that is a restriction of h and
provides advice for all the inputs s�� � � � � sj��� In particular� since A � L�MB

k �h�� it follows
that CYL�hj��Cwl � EAk�j � whence

Pr�EAk�j jADV�Cwl� � Pr�CYL�hj��Cwl jADV�Cwl�

� Pr�CYL�hj��

�
n�j���Y
n	�

	�a�n�

� 	�
Pn�j���

n��
a�n�

� 	�b�n�j���

It follows that

dAk�n�wl� � 	jwljPr�ADV�Cwl jE
A
k�j�

� 	jwlj
Pr�ADV �Cwl� Pr�E

A
k�j jADV�Cwl�

Pr�EAk�j�

�
Pr�EAk�j jADV�Cwl�

Pr�EAk�j�

�
	�b�n�j��

Pr�EAk�j�

� 	NA�k�j��b�n�j��

by Claim �� �

Proof of Claim �� Assume that A � X � and let B � �P�Poly���T �A�� Fix k � N and
h � ADV such that A � L�MB

k �h�� Then� writing wl � �B ����l� ��� Claim 	 tells us that

lim sup
l��

dA�wl� � lim sup
l��

�X
j	�

	�
k�j
� dAk�j�wl�






�
�X
j	�

	�
k�j
� lim inf

l��
dAk�j�wl�

�
�X
j	�

	NA�k�n��b�n�j���
k�j
� �

Since A � X � we have NA�k� n�� b�n�j�� � j
� for all but �nitely many j � N� Thus there

is a constant c � N such that

lim sup
l��

dA�wl� � �c�
�X
j	�

	�
k
� � ��

Thus B � S��dA�� �

Proof of Claim �� For each k� j � N� let

Zk�j � fA � f�� �g�jNA�k� j� �
j

�
g�

De�ne
d �N�N� f�� �g�� �����

by
dk�j�w� � Pr�Zk�j jCw�

for all k� j �N and w � f�� �g�� It is easy to check that d satis�es conditions �i� and �ii� of
Theorem 	�	�

By the Large Deviation Lemma �Lemma 	��� for each k� j � N�

dk�j��� � Pr�Zk�j� � Pr�NA�k� j��
��j

	�
� � e�cj �

where c � �
��� � Thus the series

P�
j	� dk�j���� for k � N� are uniformly p�convergent�

For all k� j � N and A � Zk�j � it is clear that� for all su�ciently large l� dk�j��A����l���� �
�� Thus� for all k� j � N� Zk�j � S��dk�j �

The preceding two paragraphs� together with the uniform� pspace �rst Borel�Cantelli
lemma �Theorem 	�	�� tell us that

�pspace�X
c� � �pspace�

��
k	�

��
j	�

��
i	j

Zk�i� � ��

whence �pspace�X� � �� �

Our main result is now easily proven�

Theorem ��� �Small Span Theorem�� For every A � ESPACE�

���P�Poly�T�A� j ESPACE� � �

or
�pspace��P�Poly�

��
T �A�� � ���P�Poly���T �A� j ESPACE� � ��

Proof� Let A � ESPACE� and let

X � fB � f�� �g� j �pspace��P�Poly�
��
T �B�� � �g�

We have two cases�

�



Case I� If �P�Poly�T�A��X � ESPACE � �� then Theorem ��� tells us that

���P�Poly�T�A� j ESPACE� � ��

Case II� If �P�Poly�T�A��X�ESPACE 	� �� then �x a language B � �P�Poly�T�A��X �
Then �pspace��P�Poly�

��
T �B�� � � and �P�Poly���T �A� � �P�Poly���T �B�� so

�pspace��P�Poly�
��
T �A�� � ���P�Poly���T �A� j ESPACE� � ��

�

We conclude this section with some consequences of the Small Span Theorem� Let

H
P�Poly
T �ESPACE� and C

P�Poly
T �ESPACE� denote the sets of languages that are�

P�Poly
T �hard

and �
P�Poly
T �complete� respectively� for ESPACE� We �rst show that the set of �

P�Poly
T �hard

languages for ESPACE is very small�

Theorem ���� �pspace�H
P�Poly
T �ESPACE�� � ��

Proof� Fix a language C that is �P
m�complete for ESPACE� Then ESPACE � Pm�C� �

�P�Poly�T�C�� so ���P�Poly�T�C� j ESPACE� 	� �� Hence� the Small Span Theorem tells

us that �pspace��P�Poly�
��
T �C�� � �� Since H

P�Poly
T �ESPACE� � �P�Poly���T �C�� it follows

that �pspace�H
P�Poly
T �ESPACE�� � �� �

Corollary ���� ��C
P�Poly
T �ESPACE� j ESPACE� � �� �

Theorem ��	� Theorem ���� and Corollary ��� generalize the corresponding results for

�
P�Poly
m �reductions� proven by Juedes and Lutz ���� Corollary ��� also generalizes Mayor�

domo�s proof ��
� that the set of all �P
tt�complete languages for ESPACE has measure � in

ESPACE�
The method of Ambos�Spies� Terwijn� and Zheng ��� can be modi�ed in a straightforward

way to show that� in contrast with Theorem ��� and Corollary ���� almost every language
in ESPACE is weakly �P

m�complete for ESPACE� We thus have the following�

Corollary ���� Almost every language in ESPACE is weakly�P
m�complete� but not�

P�Poly
T �

complete� for ESPACE� �

We next show that every �
P�Poly
T �degree has measure � in ESPACE�

Theorem ���� For all A � f�� �g��

��deg
P�Poly
T �A� j ESPACE� � ��

Proof� Let A � f�� �g�� If deg
P�Poly
T �A��ESPACE � �� the theorem is clearly a�rmed� so

assume that deg
P�Poly
T �A� � ESPACE 	� �� and �x B � deg

P�Poly
T �A� � ESPACE� Then� by

the Small Span Theorem� we have

���P�Poly�T�B� j ESPACE� � �





or
���P�Poly���T �B� j ESPACE� � ��

Either of these alternatives implies that ��deg
P�Poly
T �B� j ESPACE� � �� Since deg

P�Poly
T �A� �

deg
P�Poly
T �B�� this completes the proof� �

Theorem ��� generalizes the previously known facts that P�Poly has measure � in ES�

PACE ���� and every �
P�Poly
m �degree has measure � in ESPACE ����

� Conclusion

The most important problems arising from this work are to determine whether Small Span

Theorems hold for �P
T�reductions or �

P�Poly
T �reductions in the exponential�time complexity

classes E and E�� As noted in the introduction� these problems are closely related to
fundamental questions of complexity theory� so they may be very di�cult� More modest�
but nevertheless useful� objectives� would be to �i� investigate whether the work of Ambos�
Spies� Neis� and Terwijn �	� can be extended to obtain Small Span Theorems for unbounded
query reductions in E and E�� and �ii� �nd complexity�theoretic characterizations of the

Small Span Theorems for �P
T�reductions and �

P�Poly
T �reductions in E and E��

There is also an interesting open problem concerning the complexity of �
P�Poly
T �complete

problems for ESPACE� Juedes and Lutz ��� showed that every �
P�Poly
m �complete language

for ESPACE obeys upper bounds on nonuniform complexity �space�bounded Kolmogorov
complexity and size of nonuniform complexity cores� that are violated by almost every

language in ESPACE� i�e�� that the �
P�Poly
m �complete languages for ESPACE are unusually

simple elements of ESPACE� Similar results hold for �P
m�complete languages for E and E�

��� However� it remains an open problem whether there is a natural sense in which the

�
P�Poly
T �complete languages for ESPACE are unusually simple elements of ESPACE�
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