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Abstract

This paper investigates the structure of ESPACE under nonuniform Turing reductions
that are computed by polynomial-size circuits (P/Poly-Turing reductions). A Small
Span Theorem is proven for such reductions. This result says that every language A in
ESPACE satisfies at least one of the following two conditions.

(i) The lower P/Poly-Turing span of A (consisting of all languages that are P/Poly-
Turing reducible to 4) has measure 0 in ESPACE.

(ii) The upper P/Poly-Turing span of A (consisting of all languages to which A is
P/Poly-Turing reducible) has pspace-measure 0, hence measure 0 in ESPACE.

The Small Span Theorem implies that every P/Poly-Turing degree has measure 0 in
ESPACE, and that there exist languages that are weakly P-many-one complete, but not
P/Poly-Turing complete for ESPACE.

The method of proof is a significant departure from earlier proofs of Small Span
Theorems for weaker types of reductions.

*This work was supported in part by National Science Foundation Grant CCR-9157382, with matching
funds from Rockwell International , Microware Systems Corporation, and Amoco Foundation.



1 Introduction

The measure-theoretic investigation of efficient reductions has recently yielded new insights
concerning completeness phenomena. Such insights include the existence and distribution
of weakly complete problems [12, 7, 3, 10], lower bounds on the density and complexity of
weakly complete problems [15, 9, 8], upper bounds on the complexity and abundance of
complete problems [9, 11, 2, 8, 17], and various consequences of the hypothesis that SAT is
weakly complete for exponential time [16, 9, 15, 14].

A recurring tool and unifying theme of much of this work is the development of Small
Span Theorems for various reducibilities and complexity classes. Briefly, given a reducibility
<g and a language A C {0, 1}*, the lower <g-span of A is the set of R(A), consisting of
all languages that are <g-reducible to A; and the upper <g-span of A is the set R™(A),
consisting of all languages to which A is <g-reducible. If C is a complexity class that
has measure structure (in the sense of resource-bounded measure [13]), then the Small Span
Theorem for <g-reductions in C is the assertion that, for all A € C, at least one of the spans
R(A), R™1(A) is negligibly small in C. (Specifically, R(A) has measure 0 in C, or R™!(A)
has A-measure 0, hence measure 0 in C, where A is the resource bound that induces measure
structure in C. See section 2 for more detailed explanations of notation and terminology
used in this introduction.)

The first Small Span Theorem, proven by Juedes and Lutz [9], was for <F -reductions
in the exponential time complexity class £ = DTIME(thear). This result says that, for
every A € E, Pp(A) has measure 0 in E, or P_1(A) has p-measure 0, hence measure
0 in E. An immediate consequence of this fact is that every <F -degree — including the
complete < -degrees for E, NP, PSPACE, etc. — has measure 0 in E. Juedes and Lutz [9]
also proved the Small Span Theorem for <! -reductions in the exponential time complexity
class By = DTIME(2polymomial) - Part of the interest in these results lies in the fact that
Es is the smallest deterministic time complexity class known to contain NP, BPP, PP, PH,
PSPACE, and other important complexity classes.

The task now confronting us is to determine the extent to which Small Span Theorems
hold for stronger types of efficient reductions. This task is important and nontrivial because
it is closely related to some of the most fundamental questions of complexity theory. For
example, Juedes and Lutz [9] have pointed out that a Small Span Theorem for §$—reductions
in E or Ez would imply that BPPGE,. More recent work of Regan and Sivakumar [20] —
building on the “natural proof” work of Razborov and Rudich [19] — indicates that a
Small Span Theorem for §§/P01y—reductions (nonuniform Turing reductions computed by
polynomial-size circuits) in Eg would imply the nonexistence of pseudorandom generators
and one-way functions with exponential nonuniform security. It is thus to be hoped that a
systematic investigation of Small Span Theorems will shed useful light on such fundamental
questions.

Some initial steps in this investigation have already been taken. Lindner [11] adapted
the method of [9] to prove Small Span Theorems for <! -reductions in E and Ey. Ambos-
Spies, Neis, and Terwijn [2] used resource-bounded genericity to generalize the method
of [9], thereby obtaining Small Span Theorems for §£_tt—reductions in E and E, for all
positive integers k. More recently, Juedes and Lutz [8] have used a nonuniform extension of

the method of [9] to prove the Small Span Theorem for §fn/P01y—reductions — nonuniform



many-one reductions that are computed by polynomial-size circuits — in the exponential
space complexity class ESPACE = DSPACE(2!inear),

In the present paper, we prove the Small Span Theorem for §§/P01y—reductions in ES-
PACE. As noted earlier, §$/P01y—reductions are nonuniform Turing reductions that are
computed by polynomial-size circuits. These reductions are “combinatorially efficient,”
even though they need not be algorithmically computable. As noted by Skyum and Valiant
[21], the investigation of nonuniform reductions sheds light on the “purely combinatorial”
aspects of the completeness phenomenon. More importantly, §$/P01y—reductions are adap-
tive. In fact, the present result is the first instance of a Small Span Theorem for adaptive
reductions.

Our result immediately implies that every §§/P01y—degree has measure 0 in ESPACE.

It also implies (in combination with a result of Juedes [7] and Ambos-Spies, Terwijn, and

/ POly—complete

Zheng [3]) that there are languages that are weakly <I -complete, but not §$
for ESPACE.

The proof of our result is a significant departure from the methods used in earlier proofs
of Small Span Theorems for weaker, nonadaptive types of reductions. We are hopeful that
this proof is a significant step toward a better understanding of the conditions under which

Small Span Theorems hold for §$—reductions and §§/P01y—reductions in E and E,.

2 Preliminaries

We write {0,1}* for the set of all (finite, binary) strings and {0,1}> for the set of all
(infinite, binary) sequences. Every language is a set A C {0,1}*, so P({0,1}*) is the set of
all languages.

We write |z| for the length of a string  and | 9| for the cardinality of a set 5. (Notation
and context clearly distinguish strings from sets.) The empty string, A, is the unique string
of length 0. We write {0,1}" for the set of all strings of length n, {0,1}<" for the set of
all strings of length at most n, and {0, 1}<" for the set of all strings of length less than n.
The standard enumeration of {0,1}* is the sequence s = A, sy = 0, 55 = 1, s3 = 00, ...,
ordered first by length and then lexicographically.

The Boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0. For z € {0,1}* and
n € N, the n'* bitof z is 2[n], and the n-bit prefiz of z is 2[0..n—1]. We identify each language
A C {0, 1} with its characteristic sequence x4 € {0,1}> defined by ya[n] = [s, € A] for
all n € N.

The cylinder generated by a string w € {0,1}* is the set C, = {4 C {0,1}* | w =
X4[0..]w| = 1]}, i.e., the set of all languages A such that w is a prefix of y4. The complement
of a set X of languages is X = P({0,1}*) — X.

Our proof of the Small Span Theorem uses the following theorem of probability theory.

Lemma 2.1 (Large Deviation Lemma — Ajtai and Fagin [1]). Let ¢ = Slﬁ, let bg, ..., b,_1
be 0/1 - valued random variables, and let N(n) = [{i|0 <7 < n and b; = 1}|. Assume that,
for all 0 <i < nand all w € {0,1}*, Pr[b; = 1]bo,...,bi—1 = u] > % (If 7 = 0, this says that

Pr[by = 1] > 1.) Then Pr[N(n) < L2] < e7om.



Note that Lemma 2.1 does not require the random variables bg,...,b,_1 to be indepen-
dent.

Following standard usage, we let Poly denote the set of all polynomially bounded advice
functions h : N — {0, 1}*. If A and B are languages, then A is §fn/P01y-reducz'ble to B, and

we write A §fn/P01y B, if there exist f € PF and h € Poly such that

A=A{z e {0,137 | f({z,h(|]))) € B},

where (,): {0,1}* x {0,1}* — {0,1}* is a standard pairing function.

Fix a standard enumeration Mg, My, M, ... of polynomial time-bounded oracle Turing
machines. For £k € N, B C {0,1}*, and h an advice function, the language accepted by My,
with oracle B and advice h is the language

LMP /) = {o € {0,1}" | ME accepts (z, h(Je]))}-
If A and B are languages, then A is §§/P01y-reducz'ble to B, and we write A §§/P01y B,

if there exist k € N and h € Poly such that A = L(MP/h). Using standard techniques
[18], it is easy to see that the §§/P01y—reductions (respectively, the §fn/P01y—reductions) are
precisely those Turing reductions (respectively, many-one reductions) that are computed by
polynomial-size circuits.

We very briefly review the fragment of resource-bounded measure that is used in this
paper. The reader is referred to [13, 12] for motivation and details.

A martingale is a function d : {0,1}* — [0, o0) such that, for all w € {0,1}*,

d(w0) + d(wl)‘

d(w) = 5

A martingale d succeeds on a language A C {0, 1}* if

lim sup d(x4[0..n — 1]) = oo.

n—oo

The success set of a martingale d is
S<ldl ={A C{0,1}" | d succeeds on A}.
The unitary success set of a martingale d is

S'hdl= |J Cu.
d(w)>1

A martingale d is pspace-computable if there is a function d:N x {0,1}* — Q such that
(r,w) is computable in space polynomial in 7 + |w| and, for all r € N and w € {0,1}%,

|d(r,w) —d(w)| <277,
Definition. Let X be a set of languages, and let X ¢ denote the complement of X.

1. X has pspace-measure 0, and we write fipspace(X ) = 0, if there is a pspace-computable
martingale d such that X C S°°[d].



2. X has pspace-measure 1, and we write fpspace(X) = 1, if fipspace(X ) = 0.

3. X has measure 0 in ESPACE, and we write u(X | ESPACE) = 0, if ppspace(X N
ESPACE) = 0.

4. X has measure 1 in ESPACE, and we write (X | ESPACE) = 1, if u(X° | ESPACE) =
0. In this case, we say that X contains almost every element of ESPACE.

O
For each k € N, let " aj; be a series of nonnegative real numbers. Then the series
=0

O
> ag;, for k € N, are uniformly p-convergent if there is a polynomial ¢ such that, for all
-
! (o)
k,reN, > ap; < 27",
i=a(kr)
Our proof of the Small Span Theorem uses the following uniform, polynomial space

version of the classical first Borel-Cantelli lemma.

Theorem 2.2 (Lutz [13]). Assume that d : N x N x {0,1}* — QN [0,00) is a function
with the following properties.

(i) For each k,j € N, the function dy, ;, defined by dj ;(w) = d(k, j, w), is a martingale.

(ii) There is an algorithm that, for all £, j € N and w € {0, 1}*, computes dj ;(w) in space
polynomial in & + j + |w|.

(iii) The series ‘Zo di ;(A), for k € N, are uniformly p-convergent.
]:

Then

oo 00 00

ppspace( | () U ' [dr]) = 0.

k=0 ;5=0:=3

Given a reducibility <z and a language A, the lower <gr-span R(A) and the upper <g-
span R™1(A) are defined as in the introduction. The <g-degree of A is then degr(A) =
R(A) N R7L(A). A language is weakly <g-hard for ESPACE if u(R(A)|ESPACE) # 0.
(This is the negation of the condition p(R(A) | ESPACE) = 0. It does not imply that
“u(R(A) | ESPACE)” has some nonzero value.) A language A is weakly <g-complete for
ESPACE if A € ESPACE and A is weakly <g-hard for ESPACE.

3 Small Span Theorem

This section is devoted to proving and exploiting our main result, the Small Span Theorem

for §$/P01y—reductions in ESPACE. Our proof uses a probability measure on a specialized

class ADV of advice functions. We now describe this class and its probability measure.
Let ADV be the class of all advice functions h : N — {0, 1}* satisfying |h(n)| = a(n) for

all n € N, where the function a : N — N is defined by

a(n) = bnt 1)~ b(n),
b(n) = pltlog(i+n)



(Elements of ADV will be called a(n)-advice functions.) Note that, for all n € N,

Also, for every polynomial ¢(n), ¢(n) = o(a(n)). In fact, it is easy to see that, for all
A, B C {0, 1} satisfying A §§/P01y B, there exist k € N and h € ADV such that

A= L(MP [h),

where M, is the k£ polynomial time-bounded oracle Turing machine.
We now specify a probability measure on the set ADV. Define a partial a(n)-advice
function to be a finite function

B o{0,1,.. k—1} — {0,1}*

such that £ € N and, for all 0 < n < k, |h/(n)| = a(n). For each partial a(n)-advice function
I, define the cylinder generated by I' to be

CYL(K) = {h € ADV | h}{0,1,....k — 1} = I},

where h[{0,1,...k—1} denotes the restriction of h to the set {0,1,...k—1}. The probability
of this cylinder in the sample space ADV is defined to be

k-1
Pr(CYL(K')) = J] 27
n=0

This probability measure is then extended to a complete probability measure on ADV in
the usual way [6, 4].
In the proof of the following theorem, we work in the sample space

Q = ADV x P({0,1}%)

with the product probability measure, where probability on ADV is defined as above and
we use the uniform distribution on P({0,1}*). Intuitively, an element (h, B) € Q is chosen
probabilistically by performing the following two random experiments independently of one
another.

(i) For each n € N (independently), choose h(n) € {0,1}*") according to the uniform
distribution.

(ii) For each z € {0,1}* (independently), toss a fair coin to decide whether z € B.

The following result contains most of the technical content of the Small Span Theorem

for §§/P01y—reductions in ESPACE. It says that almost every element of ESPACE has a

very small upper §$/P01y—span. The proof is a nonuniform, space-bounded extension of a
technique used by Fenner, Lutz, and Mayordomo [5] in the investigation of computational

depth.



Theorem 3.1. For almost every A € ESPACE,

fpspace((P/Poly)7' (4)) = 0.

Proof. For each k,j € N and A C {0, 1}*, define the event Eéj C Q by

iy ={(h, B) | (Y0 < i < j)[si € A] = [s: € LM /h)]}-

For each A C {0,1}*, define a function d4 : {0,1}* — [0, 0c) by

oo 00

dAw) =33 2l (w),

k=0 7=0
where, for all k,j € N and w € {0, 1}*,

0t () = 2P Pr(ADV x C,, | &) if Pr(g,;;‘j) >0

It is routine to check that each d is a martingale that is, by depth-first-search on answers

to oracle queries, pspace-computable if A € ESPACE.
For each k.7 € N and A C {0, 1}, let

Nak,j) = i < 5 | Pr(edip) < 5 PrEA Y.

Let

X ={4C{0,1}"| for all k£ € N, for all but finitely many 7 € N, Na(k,j) > %}
The following four claims are proven at the end of this proof.
Claim 1. For all k,j € N and A C {0,1}*,

Pl’(gfﬁj) < 9~ Nalki)
Claim 2. For all k,j € N, all A, B C {0,1}*, and all h € ADV, if A = L(MP/h), then
lim inf dil;(xp[0..0 — 1]) > 2V =00,

where n(j) = [log(j + 1)].
Claim 3. For all A € X, (P/Poly)z'(4) C 5°°[d4].
Claim 4. jtpspace(X) = 1.

Let
Y = {4 C {0, 13" | ftpspacel(P/Poly)7'(4)) = 0},



By Claim 3 and the fact that d4 is pspace-computable when A € ESPACE, we have
X NESPACE C Y. It follows that Y° N ESPACE C X°, whence Claim 4 tells us that

0 < u(Y*® | ESPACE) = fipspace(Y° N ESPACE) < fipspace( X©) = 0,
i.e., that p(Y | ESPACE) = 1. This proves Theorem 3.1. o

Proof of Claim 1. This follows immediately from the definition of N4(k,7) and the fact
that, for all k£,j € N and A C {0,1}%, gléj+1 - Eéj. O
Proof of Claim 2. Assume the hypothesis. Since A = L(MP/h), we have (h, B) € Eéj,
S0 Pr(é’;ﬁj) > 0. Let [ € N be large enough that, for all 0 < i < j, all queries of (MP/h)(s;)
are among g, S1,---,8_1. That is, [ is large enough that (MEZ/h)(s0), -+, (ME/R)(s1-1)
are determined by the [-bit prefix w; = yg[0..l — 1] of B.

Let h; = R1{0,1,...,n(j) — 1}. Note that n(j) is the least n such that {sg,...,s;_1} C
{0,1}<", so h; is the smallest partial a(n)-advice function that is a restriction of h and

provides advice for all the inputs so,...,s;_;. In particular, since A = L(MP/h), it follows
that CYL(h;) x C,, C Eéj, whence

Pr(&f|ADV x Cy,)

v

Pr(CYL(h;) x Cyy |[ADV x C,,)

It follows that
dit (w) = 2 Pr(ADV x C,,|&)
Pr(ADV x Cy,) Pr(E{L]ADV x C,,)

= 9lul
Pr(é’;ﬁj)
_ Pr(&,]ADV x Cy,)
B Pr(é’;ﬁj)
N 9—b(n(5))
- Pr(é’;ﬁj)
> 9Na(k,j)—b(n(5))
by Claim 1. a

Proof of Claim 3. Assume that A € X, and let B € (P/Poly);'(4). Fix & € N and
h € ADV such that A = L(MP/h). Then, writing w; = x5[0..l — 1], Claim 2 tells us that

lim sup dA(wl) > lim sup Z Q_k%df’j(wl)

[—o0 [—o0 j=0



v

> 27 lim inf i (w)
=0

o0

Z QNA(k,n)—b(n(j))—%‘

i=0

v

Since A € X, we have Ng(k,n) —b(n(j)) > i for all but finitely many j € N. Thus there
is a constant ¢ € IN such that

lim sup d*(w;) > —c + 22_§ = .
=0

[—0o0
Thus B € §>[d4]. 0
Proof of Claim 4. For each k,j € N, let
Zrj ={A S {0,117 |Na(k,§) < 5}
Define
d:N xN x{0,1}* —[0,00)
by

dy. j(w) = Pr(Z ;|Cy)

for all k,7 € N and w € {0,1}*. It is easy to check that d satisfies conditions (i) and (ii) of
Theorem 2.2.
By the Large Deviation Lemma (Lemma 2.1) for each k,j € N,
11y 4
A j(N) = Pr(Zy,;) < Pr{Na(k,j) < 5] < e,
where ¢ = Slﬁ. Thus the series 3~7%, di ;(A), for k € N, are uniformly p-convergent.
Forall k,j € N and A € Zy;, it is clear that, for all sufficiently large [, dy, ;(x4[0..[—1]) =
L. Thus, for all k,j € N, Z; C S'[dy ;]
The preceding two paragraphs, together with the uniform, pspace first Borel-Cantelli
lemma (Theorem 2.2), tell us that

oo 00 00

,upspace(Xc) = ,upspace( U ﬂ U Zk,z) = 07

k=0 ;5=01=j5

whence fipspace(X) = 1. a
Our main result is now easily proven.

Theorem 3.2 (Small Span Theorem). For every A € ESPACE,
p#((P/Poly)r(A) | ESPACE) =0

or

ppspace((P/Poly)7' (A)) = p((P/Poly)7'(A) | ESPACE) = 0.
Proof. Let A € ESPACE, and let
X = {B C{0.1}" | ftpspace((P/Poly)7'(B)) = 0}.

We have two cases.



Case I. If (P/Poly)r(A)N X NESPACE = (), then Theorem 3.1 tells us that

u((P/Poly)r(A) | ESPACE) = 0.

Case II. If (P/Poly)r(A)N X NESPACE # 0, then fix a language B € (P/Poly)r(4)NX.
Then fipspace((P/Poly)7'(B)) = 0 and (P/Poly)3:'(A) C (P/Poly)z'(B), so

fpspace((P/Poly)T'(A)) = u((P/Poly)3'(A) | ESPACE) = 0.

a

We conclude this section with some consequences of the Small Span Theorem. Let
HE/POIY(ESPACE) and C¥/POIY(ESPACE) denote the sets of languages that are §§/P01y—hard
and §$/P01y—complete, respectively, for ESPACE. We first show that the set of §$/P01y—hard

languages for ESPACE is very small.

Theorem 3.3. ,upspace(HE/POly(ESPACE)) = 0.

Proof. Fix a language C that is <F -complete for ESPACE. Then ESPACE C P, (C) C
(P/Poly)T(C), so u((P/Poly)r(C) | ESPACE) # 0. Hence, the Small Span Theorem tells

us that ppspace((P/Poly)7'(C)) = 0. Since HE/POIY(ESPACE) C (P/Poly)7'(C), it follows
that ipspace(HY' T ¥ (ESPACE)) = 0. 0

Corollary 3.4. u(CY/"Y(ESPACE) | ESPACE) = 0. O

Theorem 3.2, Theorem 3.3, and Corollary 3.4 generalize the corresponding results for
§§/P01y—reductions, proven by Juedes and Lutz [8]. Corollary 3.4 also generalizes Mayor-
domo’s proof [17] that the set of all <;-complete languages for ESPACE has measure 0 in
ESPACE.

The method of Ambos-Spies, Terwijn, and Zheng [3] can be modified in a straightforward
way to show that, in contrast with Theorem 3.3 and Corollary 3.4, almost every language
in ESPACE is weakly <! -complete for ESPACE. We thus have the following.
Corollary 3.5. Almost every language in ESPACE is weakly <! -complete, but not §$/P01y—
complete, for ESPACE. a

We next show that every §§/P01y—degree has measure 0 in ESPACE.

Theorem 3.6. lor all A C {0,1}*,
p(degh/P¥ (A) | ESPACE) = 0.

Proof. Let A C {0,1}*. If degi/de(A) N ESPACE = (), the theorem is clearly affirmed, so
assume that degi/de(A) N ESPACE # 0, and fix B € degi/de(A) N ESPACE. Then, by

the Small Span Theorem, we have

pw((P/Poly)r(B) | ESPACE) =0



or

1((P/Poly)z'(B) | ESPACE) = 0.

Fither of these alternatives implies that ,u(degi/POly(B) | ESPACE) = 0. Since degi/de(A) =
degi/de(B), this completes the proof. O

Theorem 3.6 generalizes the previously known facts that P/Poly has measure 0 in ES-
PACE [13] and every §fn/P01y—degree has measure 0 in ESPACE [8].

4 Conclusion

The most important problems arising from this work are to determine whether Small Span
Theorems hold for §$—reductions or §§/P01y—reductions in the exponential-time complexity
classes E and E;. As noted in the introduction, these problems are closely related to
fundamental questions of complexity theory, so they may be very difficult. More modest,
but nevertheless useful, objectives, would be to (i) investigate whether the work of Ambos-
Spies, Neis, and Terwijn [2] can be extended to obtain Small Span Theorems for unbounded
query reductions in E and Eg; and (ii) find complexity-theoretic characterizations of the

Small Span Theorems for §$—reductions and §§/P01y—reductions in E and E,.

There is also an interesting open problem concerning the complexity of §$/ POly—complete
problems for ESPACE. Juedes and Lutz [8] showed that every §fn/P01y—complete language
for ESPACE obeys upper bounds on nonuniform complexity (space-bounded Kolmogorov
complexity and size of nonuniform complexity cores) that are violated by almost every
language in ESPACE, i.e., that the §fn/P01y—complete languages for ESPACE are unusually
simple elements of ESPACE. Similar results hold for <P -complete languages for E and E,
[9]. However, it remains an open problem whether there is a natural sense in which the

§§/P01y—complete languages for ESPACE are unusually simple elements of ESPACE.

Acknowledgments. I thank David Juedes and Elvira Mayordomo for useful conversations.
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