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The Quantitative Structure of
Exponential Time

Jack H. Lutz !

ABSTRACT Recent results on the internal, measure-theoretic structure of
the exponential time complexity classes E and EXP are surveyed. The mea-
sure structure of these classes is seen to interact in informative ways with
bi-immunity, complexity cores, polynomial-time reductions, completeness,
circuit-size complexity, Kolmogorov complexity, natural proofs, pseudoran-
dom generators, the density of hard languages, randomized complexity, and
lowness. Possible implications for the structure of NP are also discussed.

1 Introduction

In the past five years, new developments in resource-bounded measure have
opened the way for a systematic investigation of the internal, measure-
theoretic structure of the exponential time complexity classes E and EXP.
The investigation is very far from complete, but it has already yielded a
number of interesting insights and results. This paper surveys the motiva-
tions, ideas, and results of the earliest phase of the investigation, i.e., the
part completed by mid-1995.

It should be emphasized that the material surveyed here is the work of
several investigators. The ongoing efforts of these investigators, together
with the efforts of more recent participants, virtually guarantee that this
survey will be incomplete by the time it appears. (At the time of this
writing, there are already several papers in review and manuscripts in cir-
culation that appear to extend the body of knowledge presented here.)
Nevertheless, it is to be hoped that the “organized snapshot” provided by
this survey will provide context and motivation for future research.

There are three reasons for our interest in the complexity classes E and
EXP.

(i) E and EXP have rich, apparently well-behaved, internal structures.
These structures have many interacting facets, including a variety of
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reducibilities [LLS75], complete languages under these reducibilities
[SCT9, Wat87b], measure structure [Lut92], and category structure
[Lut90, Fen91, Fen95].

(ii) EXP is the smallest deterministic time complexity class known to
contain NP. It also contains PSPACE, and hence the polynomial-time
hierarchy and many other classes of interest in complexity theory. E
is a proper subset of EXP, but it contains P and “the essential part
of NP” [Wat87b], i.e., many NP-complete problems.

(iii) E and EXP have been proven to contain intractable problems [HS65].
From the standpoint of complexity theory, this existence of intractabil-
ity is a valuable resource. This is because, in practice, a proof that
a specific language A is intractable proceeds by inferring the in-
tractability of A from the intractability of some language B chosen
or constructed for this purpose.

Taken together, (i), (ii), and (iii) suggest E and EXP as appropriate
spaces in which to investigate (embed) problems involving NP, PH, PSPACE,
and other classes in this range.

Until recently, the issues addressed by research on the structure of com-
plexity classes have been largely qualitative rather than quantitative. (In-
deed, the introduction to [Sch86b] offered “qualitative” as a synonym for
“structural.”) This seemed to be an inevitable aspect of the subject. A
problem is, or is not, complete for a complexity class. One complexity class
is, or is not, contained in another. This was unfortunate, since the objec-
tive of complexity theory is a quantitative theory of computation. However,
since the sets of interest are all countably infinite, there appeared to be no
possibility of making quantitative versions of these judgments.

The main objective of the work surveyed here is to remedy this situation.

Suppose that a language A C {0,1}* is chosen by a random experi-
ment in which an independent toss of a fair coin is used to decide whether
each string is in A. Then classical Lebesgue measure theory (described
in [Hal50, Oxt80], for example) identifies certain measurable sets of lan-
guages (also called events) and assigns to each measurable set X a mea-
sure u(X), which is the probability that A € X in this experiment. A set
X of languages is then small in the sense of measure if it has measure 0.
Effective measure theory, which says what it means for a set of decidable
languages to have measure 0 as a subset of the set of all such languages, has
been investigated by Freidzon [Fre72], Mehlhorn [Meh74], and others. The
resource-bounded measure theory introduced by Lutz [Lut92, Lutb] has the
classical and effective theories as special cases, but also defines measurabil-
ity and measure for subsets of many complexity classes. The small subsets
of such a complexity class are then the measure 0 sets; the large subsets are
the measure 1 sets (complements of measure 0 sets). We say that almost
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every language in a complexity class C has a given property if the set of
languages in C exhibiting the property is a measure 1 subset of C.

Thus, resource-bounded measure provides a means of investigating the
sizes of various subsets of E and EXP. This is a priori a hopeful devel-
opment, both because quantitative results are more informative and be-
cause Lebesgue measure has been so useful in analysis, probability, and
mathematical physics. However, much of the ongoing motivation for this
work arises not from a priori considerations, but rather from the fact that
resource-bounded measure turns out to interact informatively with many
properties of interest in computational complexity. Such interactions sur-
veyed in this paper involve bi-immunity (section 4), complexity cores (sec-
tions 5, 7, and 8), the structure of E and EXP under polynomial-time
reductions (sections 6,7, and 8), circuit-size complexity and time-bounded
Kolmogorov complexity (section 9), natural proofs and pseudorandom gen-
erators (section 9), the density of hard languages (section 11), and other
properties that had been extensively studied prior to the advent of resource-
bounded measure. It is to be hoped that sustained, systematic investigation
along these lines will lead to a detailed, quantitative understanding of E
and EXP.

From the standpoint of classical mathematics and recursion theory, classes
like P, NP, PH, and PSPACE are all negligibly small, hence difficult to dis-
tinguish by quantitative structural means. From the standpoint of E and
EXP, matters may be very different. If EXP is, indeed, the smallest deter-
ministic time class containing NP, then there may well be a natural “notion
of smallness” for subsets of EXP such that P is a small subset of EXP, but
NP is not. Similarly, it may be that P is a small subset of E, but that
NP NE is not.

It is possible that resource-bounded measure already provides such a
notion of smallness. It is certainly the case that P has measure 0 in E
and EXP [Lut92]. In section 12 we discuss the reasonableness and known
consequences of the hypothesis that NP is not small in this sense. This is a
very strong hypothesis that appears to have much more explanatory power
than traditional, qualitative hypotheses, such as P # NP or the separation
of the polynomial-time hierarchy. Only further investigation will determine
whether this hypothesis is reasonable.

2 Preliminaries

In this paper, [¢] denotes the Boolean value of the condition v, i.e., [¢] =
if ¢ then 1 else 0.

All languages here are sets of binary strings, i.e., sets A C {0,1}*. We
identify each language A with its characteristic sequence xa € {0,1}°
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defined by
xa = [so € A][s1 € A][s2 € A]...,

where sp = A, s1 = 0, s = 1, s3 = 00, ... is the standard enumeration
of {0,1}*. Relying on this identification, the set {0,1}°°, consisting of all
infinite binary sequences, will be regarded as the set of all languages.

We say that a condition #(n) holds almost everywhere (a.e.) if it holds
for all but finitely many n € N. We say that 6(n) holds infinitely often
(i.0.) if it holds for infinitely many n € N.

For A C {0,1}* and n € N, we use the notations A—,, = AN {0,1}" and
A<, = An{0,1}=". A language A is sparse if there is a polynomial g(n)
such that |A<,| < ¢(n) a.e. A language A is dense if there is a real number
£ > 0 such that [A<,| > 2" ae.

The symmetric difference of languages A and Bis AAB = (A—-B)U
(B — A). The complement of a language A C {0,1}* is A® = {0,1}* — A.
The complement of a set X of languages is X = {AC {0,1}*|A ¢ X }.

We fix a one-to-one pairing function (, ) from {0, 1}*x {0, 1}* onto {0, 1}*
such that the pairing function and its associated projections, (z,y) — =
and (z,y) — y, are computable in polynomial time.

For a function f : {0,1}* — {0,1}* and a natural number i, we define
the function f; : {0,1}* — {0,1}* by fi(z) = f((0%,z)). We then regard f
as a “uniform enumeration” of the functions fo, f1, fo, - .

In general, complexity classes of functions from {0,1}* into {0, 1}* will
be denoted by appending an ‘F’ to the notation for the corresponding
complexity classes of languages. Thus, for ¢ : N — N, DTIMEF(¢) is the
set of all functions f : {0,1}* — {0,1}* such that f(z) is computable in
O(t(|z|)) time.

3 Resource-bounded measure

In this section we introduce a fragment of resource-bounded measure that
is sufficient for understanding the meaning of the results surveyed in this
paper. Although resource-bounded measure is a very general theory whose
special cases include classical Lebesgue measure, the measure structure of
the class REC of all recursive languages, and measure in various complexity
classes, our discussion here will be specific to the classes E and E,. The
interested reader is referred to [Lut92, Lutb, May94b, Jue94, JL95b, ATZ]
for more discussion, examples, and technical machinery.

Definition. A martingale is a function d : {0,1}* — [0,00) with the
property that, for all w € {0, 1}*,

d(w0) + d(wl) _

d(w) = 5

(%)
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A martingale d succeeds on a language A C {0,1}* if

limsup d(x4[0..n — 1]) = oo.
n—o00

Intuitively, a martingale d is a betting strategy that, given a language
A, starts with capital (amount of money) d(A) and bets on the member-
ship or nonmembership of the successive strings so, s1, s2, - - - (the standard
enumeration of {0,1}*) in A. Prior to betting on a string s, the strategy
has capital d(w), where w = [sg € A]--+[sn—1 € A]. After betting on the
string sy, the strategy has capital d(wb), where b = [s, € A]. Condition
(x) ensures that the betting is fair. The strategy succeeds on A if its capital
is unbounded as the betting progresses.

Martingales were used extensively by Schnorr [Sch70, Sch71a, Sch71b,
Sch73] in his investigation of random and pseudorandom sequences. Here
we use martingales as a way to define measure 0 sets.

Consider the random experiment in which a language A C {0,1}* is
chosen probabilistically, using an independent toss of a fair coin to decide
membership of each string in A. Given a set X of languages, let Pr(X) =
Proby[A € X] denote the probability that A € X when A is chosen in this
fashion. (If X is not Lebesgue measurable, then Pr(X) will not exist, but
this issue can be safely ignored here.) The following fact is intuitively clear
and not difficult to prove.

Proposition 3.1. For every set X of languages, the following two condi-
tions are equivalent.

(1) Pr(X) = 0.

(2) There is a martingale d such that d succeeds on every element of X.

In order to generalize Proposition 3.1 we need to consider martingales
that are computable within some resource bound. Since martingales are
real-valued, their computations must employ finite approximations of real
numbers. For this purpose, we consider functions of the form d : N* x
{0,1}* — Q, where Q is the set of rational numbers. Formally, in or-
der to have uniform criteria for computational complexity, we consider
all such functions to map {0,1}* to {0,1}*. For example, a function d :
N x {0,1}* — Q is formally interpreted as a function d : {0,1}* — {0, 1}*.
Under this interpretation, d(r,w) = ¢ means that d((0",w)) = (u, v), where
u and v are the binary representations of the numerator and denominator
of g, respectively. We also write d,.(w) for d(r,w).

Definition. The classes p; = p and p2, both consisting of functions f :
{0,1}* — {0, 1}*, are defined as follows.

p1 = {f|f is computable in polynomial time}
P2 = {f | f is Computable in n(10g n)o(l) tlme}
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Guided by Proposition 3.1, the measure structures of E and EXP are
now developed in terms of the classes p;, for ¢ = 1,2.

Definition. A martingale d is p;-computable if there is a function d :
N x {0,1}* — Q such that d € p; and, for all r € N and w € {0,1}*,

d, (w) — d(w)‘ <2
A p;-martingale is a martingale that is p;-computable.

We now come to the key idea of this section.

Definition. A set X of languages has p;-measure 0, and we write yp, (X) =
0, if there is a p;-martingale d that succeeds on every element of X. A set
X of languages has p;-measure 1, and we write pp, (X) = 1, if pp, (X©) = 0.

We now turn to the internal measure structures of the classes E; = E
and E, = EXP. !

Definition. A set X has measure 0 in E;, and we write u(X | E;) =0, if
tp; (X NE;) = 0. A set X has measure 1 in E;, and we write p(X | E;) =1,
if u(Xe|E;) =0.If u(X | E;) =1, we say that almost every language in
E;isin X.

We write u(X | E;) # 0 to indicate that X does not have measure 0 in
E;. Note that this does not assert that “u(X | E;)” has some nonzero value.
The following is obvious but useful.

Fact 3.2. For every set X C {0,1},
pp(X) =0 = pup,(X)=0 = Prl[Ae X]=0
U
wX |E)=0 (X | EXP) =0,

where the probability Pr[A € X] is computed according to the random
experiment in which a language A C {0,1}* is chosen probabilistically,

!The classes E and EXP are the first two classes in a natural hierarchy

Ei,E3,Es,... of exponential time complexity classes. In [Lut92], the measure
structures of these classes are developed in terms of a corresponding hierarchy
P1,P2,P3, - - - of function classes. Consequently, most papers on resource-bounded

measure (including all of the author’s papers) use the notation E» in place of
EXP. However, in this book, for the sake of consistency, we refrain from using
the E; notation. The only exceptions are the present section and a brief mention
of the class E3 in section 9.



1. The Quantitative Structure of Exponential Time 7

using an independent toss of a fair coin to decide whether each string
xz € {0,1}* is in A.

It is shown in [Lut92] that these definitions endow E and EXP with
internal measure structure. This structure justifies the intuition that, if
u(X | E) =0, then X NE is a negligibly small subset of E (and similarly for
EXP). The most important component of this justification is the Measure
Conservation Theorem [Lut92], which implies the following.

Theorem 3.3 (Lutz [Lut92]). u(E|E) # 0 and pu(EXP|EXP) # 0.

The following result shows that, if C is a “reasonable” complexity class
that contains almost every element of E (respectively, EXP), then C con-
tains every element of E (respectively, EXP).

Theorem 3.4 (Regan, Sivakumar, and Cai [RSC95]). Let C be a set of
languages that is either closed under symmetric difference or closed under
(finite) union and intersection.

1. If u(C|E) =1, then E C C.
2. If u(C|IEXP) =1, then EXP C C.

Resource-bounded measure in E and EXP is known to be robust with
respect to various changes in the definition [Lut92, Lutb, May94b, JLI5b].
Recently, Buhrman and Longpré [BL96] have shown that resource-bounded
measure can also be characterized in terms of the compressibility (and
decompressibility) of languages.

4 Incompressibility and bi-immunity

Many results on the structure of E and EXP under <P -reducibility use
languages that are “incompressible by many-one reductions.” This idea,
originally exploited by Meyer [Mey77], is developed in the following defini-
tions.

Definition. The collision set of a function f: {0,1}* — {0,1}* is

Cr={re{0,1}" | @y <2)f(y) = f(2)}.

Here, we are using the standard ordering sop < s1 < s3 < --- of {0,1}*.
Note that f is one-to-one if and only if Cy = (.

Definition. A function f : {0,1}* — {0,1}* is one-to-one almost every-
where (or, briefly, one-to-one a.e.) if its collision set Cy is finite.
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Definition. Let A, B C {0,1}* and let ¢t : N - N. A SaTIME(t)—reduction

of A to Bis a function f € DTIMEF(¢) such that A = f~'(B), i.e., such
that, for all z € {0,1}*, x € A iff f(z) € B. A SRTIME(t)

a function f that is a <DTIME®)_peduction of A to f(A).

-reduction of A is

It is easy to see that f is a SgTIME(t)—reduction of A if and only if there

exists a language B such that f is a ggTIME(t)—reduction of A to B.

Definition. Let ¢t : N — N. A language A C {0,1}* is incompressible
by SgTIME(t)—reductions if every SRTIME(t)—reduction of A is one-to-one
a.e. A language A C {0,1}* is incompressible by <L -reductions if it is

DTIME(q)

incompressible by <p, -reductions for all polynomials q.

Intuitively, if f is a SRTIME(t)—reduction of A to B and CY is large, then
f compresses many questions “x € A?” to fewer questions “f(z) € B?”
If A is incompressible by <F -reductions, then very little such compression
can occur.

Meyer [Mey77] proved that E contains languages that are incompressible
by <P -reductions. The following result shows that almost every language
in E has this property.

Theorem 4.1 (Juedes and Lutz [JL95a]). Let ¢ € Z™ and define the sets

X = {A C {0,1}*|A is incompressible by <DTIME(™) —reductions},

Y = {A C {0,1}*|A is incompressible by <DTIME(™) —reductions}.

Then pp(X) = pp,(Y) = 1. Thus almost every language in E is incom-

pressible by ggTIME@M)—reductions, and almost every language in EXP is

DTIME(2"")

incompressible by <, -reductions.

Sketch of proof that p,(X) = 1. It suffices to exhibit a p-martingale d :
{0,1}* — [0, 00) that succeeds on every element of X°.

Let f € DTIMEF(2(¢t)™) be universal for DTIMEF(2°"), in the sense
that DTIMEF(2°") = {f;|i € N}. For each i € N, define a set Z; of
languages as follows. If the collision set CY, is finite, then Z; = (). Otherwise,
if Cy, is infinite, then Z; is the set of all languages A such that f; is a

<2TIME(2M)—reduction of A. Note that X¢ is the union of the sets Z;. The

martingale d is defined by

d(w) = Z 27 d; (w),

where the functions d; : {0,1}* — [0,00) are defined as follows. Let i €
N, w € {0,1}*, and b € {0,1}. Recall that sg,s1,$2,--- is a standard
enumeration of {0, 1}*.
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(i) di(\) = 1.
(11) If S|w| ¢ Cfi7 then dz(wb) = dz(w)

(iii) If s € Cy,, then fix the least j € N such that fi(s;) = fi(s},) and
set
d;(wd) =2 - d;(w) - [b = wlj]]-

It is easy to check that each d; is a martingale, whence d itself is a martin-
gale. Intuitively, d; bets on membership of strings in a language A. Clause
(i) says that d; starts with 1 dollar. Clause (ii) says that d; does not bet on
the status of strings @ ¢ Cy,. Clause (iii) says that, for strings o € Cy,, d;
bets all its capital that z € A iff y € A, where y is the first string such that
filz) = fi(y). If A € Z;, then this bet will be correct, thereby doubling d;’s
capital, infinitely often. Thus d; succeeds on every element of Z;. It follows
from this that d succeeds on every element of X°.
Finally, to see that d is p-computable, define d : N x {0,1}* — Q by

7+ w]

dp(w) = Y 270d;(w).
=0

Since f € DTIMEF(2(c+1)") and the computation of d;(w) only uses values
fi(u) for strings u with |u| = O(log|w]), it is clear that d € p. Since

o0 o0
b -dw)|= 3 e Y oo
i=r+|w|+1 i=r+|w|+1
for all r € N and w € {0,1}*, it follows that d is p-computable. |

Corollary 4.2 (Juedes and Lutz [JL95a]). Almost every language in E and
almost every language in EXP is incompressible by <F -reductions.

Corollary 4.3 (Meyer [Mey77]). There is a language A € E that is incom-
pressible by <P -reductions.

We conclude this section with a brief discussion of P-bi-immunity.
Definition. A language A C {0,1}* is P-immune if, for all languages
B C A, B € P implies that B is finite. A language A C {0,1}* is P-bi-

immaune if A and A° are both P-immune.

Intuitively, a language that is P-bi-immune “cannot be nontrivially ap-
proximated, from inside or outside,” by any language in P.

Proposition 4.4 (Ko and Moore [KM75]). Every language that is incom-

pressible by <P -reductions is P-bi-immune.
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In light of this proposition, languages that are incompressible by <P -
reductions are sometimes called “strongly P-bi-immune” [BS85, BDG90].

The following result shows that almost every language in E is P-bi-
immune.

Theorem 4.5 (Mayordomo [May94a]). Almost every language in E, and
almost every language in EXP, is P-bi-immune.

Although Theorem 4.5 follows immediately from Corollary 4.2 and Propo-
sition 4.4, it should be noted that Mayordomo’s proof of this result pre-
ceded, and was independent of, the proofs of Theorem 4.1 and Corollary
4.2,

5 Complexity cores

Complexity cores, first introduced by Lynch [Lyn75], have been studied ex-
tensively. (See [BDGI0] for an overview of such work.) Intuitively, a com-
plexity core of a language A is a fixed set K of inputs such that every
machine whose decisions are consistent with A fails to decide efficiently
on all but finitely many elements of K. The meaning of “efficiently” is a
parameter of the definition that varies according to the context. In this sec-
tion we make this definition precise and note that almost every language
in E and EXP has very large complexity cores.

Given a machine M and an input z € {0,1}*, we write M(z) = 1 if
M accepts z, M(z) = 0 if M rejects z, and M(z) = L in any other case
(i.e., if M fails to halt or M halts without deciding z). If M(z) € {0, 1},
we write timeys(x) for the number of steps used in the computation of
M(z). If M(z) = L, we define timeps(x) = co. We partially order the set
{0,1,1} by L < 0 and L < 1, with 0 and 1 incomparable. A machine
M is consistent with a language A C {0,1}* if M(z) < [z € A] for all
z €{0,1}*

Definition. Let ¢ : N — N be a time bound and let A, K C {0,1}*. Then
K is a DTIME(t(n))-complexity core of A if, for every ¢ € N and every
machine M that is consistent with A, the “fast set”

F ={z|timey (z) < c-t(|z]) + ¢}
satisfies |F'N K| < oo. (By our definition of timeps(z), M(z) € {0,1} for
all z € F. Thus F is the set of all strings that M “decides efficiently.”)

Note that every subset of a DTIME(t(n))-complexity core of A is a
DTIME(t(n))-complexity core of A. Note also that, if s(n) = O(t(n)), then
every DTIME(t(n))-complexity core of A is a DTIME(s(n))-complexity
core of A.
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Definition. Let A, K C {0,1}*.

1. K is a polynomial complexity core (or, briefly, a P-complezity core) of
Aif K is a DTIME(n*)-complexity core of A for all k € N.

2. K is an exponential complexity core of A if there is a real number € > 0
such that K is a DTIME(2"")-complexity core of A.

Intuitively, a P-complexity core of A is a set of infeasible instances of
A, while an exponential complexity core of A is a set of extremely hard
instances of A.

The following observation, an obvious generalization of a result of Balcazar
and Schoning [BS85] (see Corollary 5.2 below), relates incompressibility to
complexity cores.

Lemma 5.1 (Juedes and Lutz [JL95a]). If t : N — N is time constructible

then every language that is incompressible by SaTIME(t)—reductions has

{0,1}* as a DTIME(t)-complexity core.

Corollary 5.2. Let ¢ € N.
1. (Balcazar and Schoning [BS85]) Every language that is incompressible

by <P -reductions has {0,1}* as a P-complexity core.

2. Every language that is incompressible by SgTIME(Qm)—reductions has

{0,1}* as a DTIME(2°™)-complexity core.
DTIME(2"")

3. Every language that is incompressible by <,
{0,1}* as a DTIME(2™")-complexity core.

-reductions has

Theorem 4.1 and Corollary 5.2 now tell us that almost every language
decidable in exponential time has complexity cores of the largest possible
size.

Corollary 5.3 (Juedes and Lutz [JL95a]). Let c € Z*.

1. Almost every language in E has {0,1}* as a DTIME(2°")-complexity
core.

2. Almost every language in EXP has {0, 1}* as a DTIME(2"")-complexity
core.

6 Small span theorems

In this section we describe research on small span theorems, which illumi-
nate key aspects of the structure of E and EXP under polynomial reduc-
tions. We begin with the Small Span Theorem for <F -reductions.

Define the lower <P -span of a language A C {0,1}* to be

P (A) ={B C{0,1}* | B <}, A}.
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Similarly, define the upper <F -span of A to be

P, (4) = {B C{0,1}* | A<E B).

m

Intuitively, in the <P -reducibility structure of the set of all languages,
we think of P,,(A) as lying “below” A, while P, 1(A) lies “above” A. (See
Figure 1.) We will be especially concerned with the size, i.e., the resource-
bounded measure, of the upper and lower spans of various languages. If
neither of these spans is small (i.e., neither has resource-bounded measure
0), then we have the configuration depicted schematically in Figure 1. On
the other hand, if one or both of these spans is small, then we have one
of the “small-span” configurations depicted schematically in Figure 2. The
Small <F -Span Theorem says that, if A is in E or EXP, then at least one
of the sets P,,,(A), P-1(A) is small. That is, only small-span configurations

m
can occur in E or EXP.

-1
P.(A)

e. degTA) = P.(A) NP(A)

P(A)

FIGURE 1. The upper span, lower span (shaded), and degree of A.

Theorem 6.1 (Small <P -Span Theorem—Juedes and Lutz [JL95a]).
1. For every A € E,
#(Pm(A) | E) =0

or
1o (P (4)) = (P (A) | E) = 0.
2. For every A € EXP,
#(Pu(4) | EXP) =0

or
ppe (P (A)) = p(PL! (4) | EXP) = 0.
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Ambos-Spies [Amb86] has shown that P,, " (A) has Lebesgue measure
0 whenever A ¢ P. The following lemma obtains a stronger conclusion
(resource-bounded measure 0) from a stronger hypothesis on A.

Lemma 6.2 (Juedes and Lutz [JL95a]). Let A be a language that is
incompressible by <P -reductions.

1.If A € E, then pu,(P;'(A)) =0, and hence u(P,'(4) | E) = 0.

2. If A € EXP, then pyp, (P1(A)) =0, and hence u(P;,'(4) | EXP) = 0.

We do not prove this lemma here, but we use it to prove the Small Span
Theorem.
Proof of Theorem 6.1. To prove 1, let A € E and let X be the set of all
languages that are incompressible by <P -reductions. We have two cases.

Case I. If P,,(A) N E N X = {, then Corollary 4.2 tells us that
(P rm(A) | B) =0.

Case IL. If P,,,(A)NEN X # 0, then fix a language B € P,,(A)NEN X.
Since B € EN X, Lemma 6.2 tells us that

pp(P(B)) = u(P,'(B) | E) = 0.
Since P;1(A) C P,,;}(B), it follows that
pp(P! (4)) = p(P(4) | E) = 0.

This proves 1. The proof of 2 is identical. |
Using the Small Span Theorem, we note that <! -hard languages for E
are extremely rare.

Theorem 6.3 (Juedes and Lutz [JL95a]). Let H,,(E) be the set of all
languages that are <P -hard for E. Then p,(H,(E)) = 0.

Proof. Let A be as in Corollary 4.3. Then H,,,(E) C P;,'(A), so Lemma
6.2 tells us that

1o (Hm (E)) = 1p (P71 (4)) = 0.
O

Recently, Ambos-Spies, Neis, and Terwijn [ANT] have used resource-
bounded genericity to prove the extension of Lemma 6.2 obtained by sub-
stituting <F ,-reductions and P;', (A) for <% -reductions and Py;!(A),
respectively, where k is a fixed positive integer. From this they have ob-

tained the following extension of Theorem 6.1.

Theorem 6.4 (Small <} -Span Theorem - Ambos-Spies, Neis, and Ter-
wijn [ANT]). Let k be a positive integer.
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P.(A)

-1
PL(A)

P{A) R(A)

-1
PL(A)

©

FIGURE 2. Small-span configurations. (Narrow regions depict measure 0 spans.)

1. For every A € E,
1(Pe—w(A)[E) =0

up(P (A) = u(P L (A)[E) = 0

2. For every A € EXP,
1(Pr—tt (A)[EXP) =0

Hp2 (P;_ltt(A)) = M(Pﬁ_ltt(A)lEXP) =0

This immediately yields the following extension of Theorem 6.3.

Theorem 6.5 (Ambos-Spies, Neis, and Terwijn [ANT]). Let & be a posi-
tive integer. If Hy—_y (E) is the set of all languages that are gl,:_tt—hard for
E, then Mp(Hk—tt (E)) =0.
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At the time of this writing, it is not known whether Theorems 6.4 and
6.5 remain true when Pp(A4), Py t(A), and Hi(E) are substituted for
Pi_(A), P, (4), and Hy—¢(E), respectively. Buhrman and Mayordomo
[BM95b] and, independently, Ambos-Spies, Neis, and Terwijn [ANT], have
shown that the class Hpit (E) has pa-measure 0.

The Small <P -Span Theorem has immediate consequences for the <P -
degree structure of E and EXP.

The <P -degree of a language A C {0,1}* is the set

deg), (A) = Pp(A) NPy ' (A).
Theorem 6.6 (Juedes and Lutz [JL95a]). For all A C {0, 1}*,
(degh (A) | E) = pu(degt, (4) | EXP) = 0.
Proof. This follows immediately from Theorem 6.1. a

Theorem 6.7 (Mayordomo [May94a]). Let C,, (E), Cy,, (EXP) be the sets of
languages that are <P -complete for E, EXP, respectively. Then u(Cp,(E) |
E) = u(C, (EXP) | EXP) = 0.

Mayordomo’s original proof of this result used Theorem 4.5 and Berman’s
result [Ber76] that no <! -complete language for E or EXP is P-immune.
We now see that Mayordomo’s result also follows from Theorem 6.3 and
from Theorem 6.6.

Using Theorem 6.4 in place of Theorem 6.1 gives the following extension
of Theorem 6.6.

Theorem 6.8 (Ambos-Spies, Neis, and Terwijn [ANT]). For all A C
{0,1}* and all positive integers k,

p(degi_y(A)|E) = u(degi_ (A)|EXP) = 0

It is not currently known whether all <}, -degrees have measure 0 in E
or EXP, but this at least holds for the complete <[ -degree.

Theorem 6.9 (Ambos-Spies, Neis, and Terwijn [ANT]). Let Cut (E), Cort (EXP)

be the sets of languages that are Sgtt—complete for E, EXP, respectively.

7 Weakly hard problems

To date, our principal means of establishing the intractability of a specific
computational problem has been to prove that the problem is hard for
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some complexity class with respect to some class of efficient reductions.
For example, a problem that is <F -hard for NP, PSPACE, or some class in
between is presumably intractable because we are inclined to believe that
P # NP. A problem that is <! -hard for E is provably intractable by the
time hierarchy theorem of Hartmanis and Stearns [HS65]. In fact, problems
that are <P -hard for E are now known to have very strong intractability
properties [BS85, Huy86, KOSW94, 0S86, Sch86a].

In order to extend the class of provably intractable problems, Lutz [Lut90]
proposed investigation of the following measure-theoretic generalization of
<P _hardness.

Definition. A language A C {0, 1}* is weakly <P -hard for E (respectively,
for EXP) if u(P,(A)|E) # 0 (respectively, u(P,(A)|EXP) # 0).

Thus a language A is weakly <P -hard for E if a nonnegligible subset of
the languages in E are <P -reducible to A. Clearly, every language that is
<P _hard for E is also weakly <F -hard for E.

Weak hardness under other classes of reductions (e.g. weak <F-hardness)
is defined analogously.

The first thing to note about weakly hard problems is that they are,
indeed, intractable. Specifically, it is easy to see that u(P|E) = u(P|EXP) =
0 [Lut92], so we have the following.

Observation 7.1. If A is weakly <t-hard for E, then A ¢ P.

In fact, languages that are weakly <F-hard for E are intractable in a
much stronger sense. For example, consider the following strong intractabil-
ity result.

Theorem 7.2 (Orponen and Schéning [0S86]). Every language that is
<P _hard for E has a dense P-complexity core.

The following theorem extends Theorem 7.2 (in somewhat stronger form)
to all weakly <P -hard languages for E.

Theorem 7.3 (Juedes and Lutz [JL95a]). Every language that is weakly
<P _hard for E or EXP has a dense exponential complexity core.

Thus the weakly <P -hard problems for E and EXP are, like the <! -hard
problems, provably strongly intractable. It is then natural to ask whether
there are problems that are weakly <P -hard, but not <F -hard, for these
classes. We now discuss this question and, more generally, the distribution
of the weakly hard languages.

Definition. A language A C {0,1}* is weakly <% -complete for E (respec-
tively, for EXP) if A is weakly <P -hard for E (respectively, for EXP) and
A € E (respectively, A € EXP).
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As in section 6, we use the notations H,,(E), H,(EXP),Cn(E), and
Crm(EXP) to denote the classes of languages that are <F -hard for E, <P -
hard for EXP, <P _complete for E, and <F -complete for EXP, respec-
tively. We also use the notations WH,,(E), WH,,(EXP), WC,,,(E), and
WC,,(EXP) to denote the classes of languages that are weakly <P -hard
for E, weakly <P -hard for EXP, weakly <P -complete for E, and weakly
<P _complete for EXP, respectively.

We first discuss the known inclusions among the above-defined hardness
classes. We then discuss the non-inclusions. (This was not the chronologi-
cal order of discovery.) It is well known that #H,,(E) = H,,(EXP), whence
Cm(E) =ENC,,(EXP). (This is clear because EXP = P,,,(E).) Also, The-
orem 3.3 implies that #H,,(E) C WH,,(E) and H(EXP) C WH,,(EXP).
Using the martingale dilation technique developed by Ambos-Spies, Ter-
wijn, and Zheng [ATZ], Juedes and Lutz proved the following.

Lemma 7.4 (Juedes and Lutz [JLI5b]). Let X be a set of languages.

1. If pp, (P (X)) =0, then pp(X) =0.

2. If (P (X)|EXP) = 0, then (X |E) = 0.

This yields the following,.
Theorem 7.5 (Juedes and Lutz [JL95b]). WH,,(E) C WH,,,(EXP).
Proof. Let H € WH,,(E). Then p(P,,,(H)|E) # 0, so Lemma 7.4(2) with
X = P, (H) tells us that (P, (H)[EXP) = pu(Ppy (Pry (H))[EXP) # 0. Thus
H e WH,,,(EXP). O

The foregoing discussion, in combination with obvious facts, yields the
inclusion structure depicted in Figure 3.

WO (EXP) ——————— UH, (EXP)

e

£, (EXP) ,(EXP)

e (E) ~|¥ N, (E)

O(E) ————— > 4 (E)

FIGURE 3. Inclusion structure of hardness classes.
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We now turn to the non-inclusions. Lutz [Lut95] developed the martin-
gale diagonalization technique and used it to prove the following.

Theorem 7.6 (Lutz [Lut95]). Cp(E)  WCn(E).
Corollary 7.7. C,,,(EXP) ; WC,,, (EXP).

Proof. By Theorems 7.6, 7.5, and elementary facts,
ENCn(EXP) = Cphph(E) ; WCn(E) C ENWC,,(EXP).

O

Theorem 7.6 is significant because, in combination with Observation 7.1
and Theorem 7.3, it implies that the class of weakly <P -hard problems for
E is, indeed, a strictly larger class of provably strongly intractable problems
than the class of < -hard problems for E. In fact, much more is true. Juedes
[Jue95] refined the martingale diagonalization of [Lut95] to prove that the
class WC,,,(E) does not have measure 0 in E. (By Theorem 6.7, this result
implies Theorem 7.6.) More significantly, Ambos-Spies, Terwijn, and Zheng
developed martingale dilation (a padding technique) and used it to prove
the following.

Theorem 7.8 (Ambos-Spies, Terwijn, and Zheng [ATZ]).
i WHon (E)) = 1.
Corollary 7.9 (Ambos-Spies, Terwijn, and Zheng [ATZ]).
pps WHp (EXP)) = 1.
Proof. This follows immediately from Theorems 7.8 and 7.5. a

By Theorems 7.8 and 6.7, then, almost every language in E is weakly
<P _complete, but not <P -complete, for E.

Finally, we note that the converse of Theorem 7.5 does not hold, even if
we restrict attention to languages in E.

Theorem 7.10 (Juedes and Lutz [JLI95b]). ENWC,,(EXP) € WC,,,(E).

By Theorems 7.6, 7.10, and elementary observations, Figure 3 is com-
plete, in the sense that it depicts (either directly or via transitivity) all the
inclusions that hold among these eight hardness classes.
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8 Upper bounds for hard problems

We saw in Theorem 6.3 that <P -hard languages for E are very rare. As we
see in this section, this is because there is a nontrivial upper bound on the
sizes of complexity cores of such languages.

Recall that a language D C {0,1}* is dense if there is a real number
£ > 0 such that |[D<,| > 2" ae.

The following result states that every <P -hard language for E can be
decided in time 24" on a dense set of instances that can itself be decided
in time 24",

Theorem 8.1 (Juedes and Lutz [JL95a]). For every <P -hard language H
for E, there exist B, D € DTIME(2%") such that D is dense and B = HND.

It is straightforward to use Theorem 8.1 to prove that <P -hard languages
for E obey the following upper bound on the sizes of complexity cores.

Theorem 8.2 (Juedes and Lutz [JL95a]). Every DTIME(2")-complexity
core of every <P -hard language for E has a dense complement.

By Corollary 5.3, almost every language in E has {0, 1}* as a DTIME(2*")-
complexity core. Thus, Theorem 8.2 says that <! -hard languages for E are
unusually simple, in the sense that they have unusually small complexity
cores, for languages in E. This immediately implies, and also explains, The-
orems 6.3 and 6.7.

Lutz [Lut95] constructed a weakly <! -hard language H for E that has
{0,1}* as a DTIME(2*")-complexity core, so Theorem 8.2 is a property
of <F-hard languages that does not extend to weakly <P -hard languages.
In fact, by Corollary 4.3 and Theorem 7.8, almost every language in E
is a weakly <P -complete language that does not satisfy the conclusion of
Theorem 8.2.

9 Nonuniform complexity, natural proofs, and
pseudorandom generators

Much remains to be discovered about the nonuniform complexities of lan-
guages in E and EXP. For example, it is a long-standing conjecture that
E ¢ P/Poly, i.e., that E does not have polynomial-size circuits, but it has
not been proven that E does not have linear-size circuits, or that EXP does
not have polynomial-size circuits. It is known, however, that the highest
levels of circuit-size and time-bounded Kolmogorov complexity known (or
provable by relativizable methods) to be exceeded infinitely often by any
problem in EXP are in fact exceeded almost everywhere by almost every
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problem in the class. Moreover, recent work of Regan, Sivakumar, and Cai
[RSC95], exploiting the “natural proofs” idea of Razborov and Rudich
[RR94], has shown that, if sufficiently secure pseudorandom generators
exist, then these results are optimal for circuit-size complexity. We now
describe these developments more fully.

Some terminology and notation will be useful. For a fixed machine M
and “program” « € {0,1}* for M, we say that “M(m,n) = w in < t time”
if M, on input (7, n), outputs the string w € {0,1}* and halts in at most ¢
execution steps. We are especially interested in situations where the output
string is of the form w = xa_,, i.e., the 2™-bit characteristic string of A—,,,
for some language A C {0,1}*.

Given a machine M, a time-bound ¢ : N — N, a language A C {0, 1}*,
and a natural number n, the t(n)-time-bounded Kolmogorov complexity of
A_, relative to M is

KA, = min{|7r|

M(m,n) = xa_, in < t(n) time}.

Well-known simulation techniques show that there is a machine U that is
optimal in the sense that for each machine M there is a constant ¢ such
that, for all ¢, A, and n,

Kl mIs T4 ) < KIS (AL,) +c.

As is standard in this subject, we fix an optimal machine and omit it
from the notation. (See [LV93] for a thorough treatment of Kolmogorov
complexity.)

Theorem 9.1 (Lutz [Lut92]). If ¢t and ¢ are fixed polynomials, then the
set of all languages A satisfying

K'™(A_,) > q(n) a.e.
has measure 1 in EXP.

We now consider circuit-size complexity. Following standard usage (see
[BDG95], for example), we define a (Boolean) circuit to be a directed acyclic
graph v with vertex set I UG, where I = {wy,...,w,} is the set of inputs
(n >0) and G = {g1,...,9s} is the set of gates (s > 1). Each input has
indegree 0 and each gate has indegree 0, 1, or 2. Each gate of indegree
0 is labeled either by the constant 0 or by the constant 1. Each gate of
indegree 1 is labeled either by the identity function ID: {0,1} — {0,1}
or by the negation function NOT: {0,1} — {0,1}. Each gate of indegree
2 is labeled either by the conjunction AND: {0,1}? — {0,1} or by the
disjunction OR: {0,1}% — {0, 1}. The output gate g; has outdegree 0. The
other gates and the inputs have unrestricted outdegree. The size of such a
circuit v is size(y) = |G| = s, the number of gates.
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An n-input circuit v computes a Boolean function v : {0,1}" — {0,1} in
the usual way. For w € {0,1}",v(w) is the value computed at the output
gate gs when the inputs are assigned the bits wy,...,w, of w. The set
computed by an n-input circuit v is then the set of all w € {0, 1}" such that
y(w) = 1.

The circuit-size complezxity of a language A C {0,1}* is the function
CS4 : N — N defined by

CS(n) = min {size(7y) | v computes A_, }.
For each function f : N — N, we define the circuit-size complexity classes

SIZE(f) = {A|CSa(n) < f(n) ae.},
SIZE'>(f) = {A|CSa(n)< f(n)io.}.

The class P/Poly is then defined by

P/Poly = | ] SIZE(n*),

k=0
and we write

[ee]
P/Poly"* = | J SIZE"* (n*).
k=0
Using a known quantitative relationship between circuit size and time-

bounded Kolmogorov complexity, the following result can be derived from
Theorem 9.1.

Theorem 9.2 (Lutz [Lut92]). For each fixed k € N, the set SIZE!"* (n*)
has measure 0 in EXP.

A similar argument proves the following.

Theorem 9.3 (Lutz [Lut92]). The set P/Poly"® has measure 0 in the
class Eg = DTIME(2""""™").

As noted earlier, it is a long-standing conjecture that E ¢ P/Poly. Intu-
itively, this conjecture says that E contains problems that are combinatori-
ally, as well as computationally, intractable. In light of the various strong
intractability results of sections 4, 5, and 8, the stronger conjecture that
P/Poly has measure 0 in E and in EXP seems to suggest itself. However,
as we now explain, there is reason to be cautious about such a conjecture.

We first note that Wilson [Wil85] has exhibited oracles relative to which
E C SIZE(3n) and EXP C P/Poly, so nonrelativizable techniques will be
required to prove EXP ¢ P/Poly, let alone the stronger conjecture that
(P /Poly|EXP) = 0.
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In recent years, many nonrelativizable combinatorial techniques for prov-
ing lower bounds on nonuniform complexity have been developed (see
[RR94] for references to such developments), so Wilson’s oracle construc-
tions are not as daunting today as they were when he discovered them.
However, all such techniques developed to date are for proving lower bounds
with respect to restricted nonuniform models (bounded-depth circuits, mono-
tone circuits, etc.), and do not seem to yield to lower bound techniques for
general circuit-size complexity.

Razborov and Rudich [RR94] developed the notion of natural proofs
in order to better understand these limitations on known techniques. The
central idea in their work is that of a “natural combinatoral property,”
which we now describe, not in full generality, but in terms of the present
discussion.

Definition 9.4 (Razborov and Rudich [RR94]).

1. A combinatorial property is a sequence P = (Po, P1, P2, ...), where
each P, is a set of subsets of {0, 1}".

2. A language A C {0,1}* is drawn from a combinatorial property P if,
foralln € N, A_,, € P,.

As part 2 of the above definition suggests, we regard each component P,
of a combinatorial property P as a “set of candidate n-slices” A_,, for lan-
guages A that are drawn from P. We identify each set S € P, with its 2"-bit
characteristic string y g, and we regard the “complexity” of P as the com-
plexity of deciding membership of 27-bit strings in P,,. As with martingales
and measure, we will use the lower-case notations p, ps, etc. for complexity
classes of functions whose inputs are characteristic sequences. At present,
we are interested in nonuniform ps-complexity, where the nonuniformity is
provided by an advice function.

Definition. A nonuniform ps-advice function is a function h : N — {0, 1}*
for which there is a constant k¥ € N such that, for all n > 0,|h(n)| < k +

2(logn)" (Note that h need not be computable; this is the nonuniformity.)

Definition. A combinatorial property P is nonuniformly ps-decidable if
there exist a nonuniform ps-advice function h and a function f € ps such
that, for all n € N and S C {0,1}",

flxs, h(2")) = [xs € Pnl-

In a lower bound argument, the typical role of a combinatorial property
is to reliably diagonalize against some complexity class.

Definition 9.5 (Razborov and Rudich [RR94]). Let P be acombinatorial
property, and let C be a class of languages.
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1. P is useful infinitely often (useful i.0.) against C if, for every A € C,
there exist infinitely many n € N such that A_,, € P,,.

2. P is useful almost everywhere (useful a.e.) against C if, for every
A € C, for all sufficiently large n € N, A_, &€ P,.

The crucial thing that Razborov and Rudich observed is that the com-
binatorial properties used in lower bound proofs are typically large, in the
following sense.

Definition 9.6 (Razborov and Rudich [RR94]). A combinatorial property
P is large if there is a constant k& € N such that, for all sufficiently large
n €N,

| P, |Z 22"—kn_

To rephrase the definition probabilistically, let Pr(P,,) denote the prob-
ability that S € P, when S C {0,1}" is chosen according to a random
experiment in which all subsets of {0,1}" are equally probable. Then P is
large if there exists k such that, for all sufficiently large n, Pr(P,) > 27*",

We now have all the elements of the notion of a “natural combinatorial
property.”

Definition 9.7 (Razborov and Rudich [RR94]). A combinatorial property
P is nonuniformly pa-natural i.0. against a class C of languages if P is
nonuniformly ps-decidable, P is useful i.0. against C, and P is large.

Here we are specifically interested in the EXP versus P/Poly question,
so we have specialized the above definition to nonuniform ps-decidability
and i.o. diagonalization. The interested reader is referred to [RR94, Raz]
for more general aspects of Razborov and Rudich’s work.

Regan, Sivakumar, and Cai’s work on natural combinatorial properties
involves the existence of a certain kind of secure pseudorandom generator.
We now develop the required definitions.

Definition. Let p be a polynomial such that p(n) > n+1. A p(n)-generator
is a function g € PF such that, for all z € {0,1}*, | g(z) |= p(|z]).

Intuitively a generator g, given a short, random seed x, outputs a long,
hopefully pseudorandom, string g(z). The desired notion of pseudorandom-
ness, also called “security,” is given by the following definition, due to Yao
[Yao82].

Definition. Let s = N — N. A p(n)-generator g is nonuniformly s(n)-
secure if, for every sufficiently large n € N, for every p(n)-input, 1-output
circuit v with size(y) < s(n),

1

| Pr[y(g(z)) = 1] = Pr[y(y) = 1]| < )’
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where the probabilities are computed according to the uniform distributions
on z € {0,1}" and y € {0,1}?(") respectively.

Intuitively, a generator g is s(n)-secure if no s(n)-gate circuit can statisti-
cally distinguish the uniform distribution on {0, 1}?(" from the distribution
induced on {0,1}?(") by the generator g with the uniform distribution on
the seed space {0,1}".

Definition.

1. A p(n)-generator g is nonuniformly polynomially secure if g is s(n)-
secure for every polynomial s.

2. A p(n)-generator g is nonuniformly exponentially secure if there is a
real constant 6 > 0 such that g is 2" _secure.

It is easy to show that, if there exists a nonuniformly polynomially secure
p(n)-generator g, then NP & P/Poly (whence P # NP). In fact, such gener-
ators are widely conjectured to exist. The existence of p(n)-generators that
are nonuniformly exponentially secure is an even stronger conjecture, but
not entirely implausible. For example, Regan, Sivakumar, and Cai [RSC95)
have pointed out that the smallest circuits known to break pseudorandom
generators that are based on the discrete logarithm problem have nearly
2V gates.

In any case, the following result shows that the existence of nonuni-
formly exponentially secure generators is not consistent with the existence
of nonuniformly ps-natural properties against P /Poly.

Theorem 9.8 (Razborov [Raz]; see also [RSC95]). If there is a nonuni-
formly exponentially secure 2n-generator, then there is no combinatorial
property that is nonuniformly po-natural i.o. against P/Poly.

The following result relates these issues to the measure of P/Poly in
EXP.

Theorem 9.9 (Regan, Sivakumar, and Cai [RSC95]). If u(P/Poly|EXP) =
0, then there is a combinatorial property that is nonuniformly ps-natural
i.o. against P/Poly.

By Theorems 9.4 and 9.5, we have the following.

Theorem 9.10 (Regan, Sivakumar, and Cai [RSC95]). If there is a
nonuniformly exponentially secure 2n-generator, then u(P/Poly|EXP) # 0.

By Lemma 7.4, p(P/Poly|EXP) = 0 implies that p(P/Poly|E) = 0. At
the time of this writing, the converse is not known to hold, nor is an ana-
logue of Theorem 9.6 known to hold for E. It is thus conceivable that
P/Poly has measure 0 in E and (by Theorem 9.3) in E3, but not in E, =
EXP.
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10 Weak stochasticity

It is now known that almost every language in E, and almost every language
in E,, is statistically unpredictable by feasible deterministic algorithms,
even with some nonuniform advice. This result, which appears to be very
useful, is explained in this section.

Properties defined in terms of limiting frequencies of failure of predic-
tion schemes are called stochasticity properties in the terminology of Kol-
mogorov [KU87, USS90]. (Such properties were originally proposed by von
Mises [vM39] and Church [Chu40] in their efforts to define randomness.)
Because the prediction schemes allowed in this section are of a restricted
sort, the property discussed here is a weak stochasticity property.

We now make our terminology precise. Our notion of advice classes is
standard [KL80]. An advice function is a function h : N — {0,1}*. Given
a function ¢ : N — N, we write ADV(q) for the set of all advice functions
h such that |h(n)| < g(n) for all n € N. Given a language A C {0,1}* and
an advice function h, we define the language A/h (“A with advice h”) by

A/h={z € {0,1}" | (z,h(|z])) € A}.
Given functions t,q : N — N, we define the advice class

DTIME(t)/ADV(q) = {A/h | A € DTIME(t), h € ADV(q)}.

Definition. Let ¢,q,v : N — N and let A C {0,1}*. Then A is weakly
(t,q,v)-stochastic if, for all B,C € DTIME(t)/ADV(q) such that |C=,| >
v(n) for all sufficiently large n,

[(AAB)NC-,| 1

i 1C_] 2

Intuitively, B and C together form a “prediction scheme” in which B tries
to guess the behavior of A on the set C. A is weakly (¢, q, v)-stochastic if
no such scheme is better in the limit than guessing by random tosses of a
fair coin. (This definition is slightly stronger than the weak stochasticity
defined in [LM94], in that the language C' is allowed advice here.)

Theorem 10.1 (Weak Stochasticity Theorem—Lutz and Mayordomo [LM94]).
For every fixed k € N and every fixed real number v > 0,

p(WS(2F" kn,2"™)|E) = up(WS(2F" kn,2")) =1
and

Lo, (W S(2™" 0k 27")) = p(WS(2"",nk,2"")|EXP) = 1.

That is, almost every language in E, and almost every language in EXP,
is weakly stochastic with the indicated parameters.



1. The Quantitative Structure of Exponential Time 26

Regan and Sivakumar [RS95] have recently given a more precise analysis
of the Weak Stochasticity Theorem, especially with respect to the rate of
convergence.

11  Density of hard languages

As noted in section 9 above, it is a long-standing open conjecture that
E ¢ P/Poly, i.e., that not every language in E has polynomial circuit-size
complexity. Many ongoing efforts to prove this conjecture follow a program
that began with the following results of Meyer.

Recall that alanguage A C {0, 1}* is sparse if there is a polynomial ¢ such
that |A<y,| < ¢(n) a.e., and dense if there is a real number € > 0 such that
|A<,| > 2™ a.e. We write SPARSE for the set of all sparse languages and
DENSE for the set of all dense languages. Note that SPARSE ; DENSES,
where DENSE® is the complement of DENSE. For each reducibility <F,
each language A, and each set S of languages, we write

P.(4)={B|B < A}

and

P.(S) = | P.(S).

AeS

Theorem 11.1 (Meyer [Mey77]). P/Poly = Pp(SPARSE).

Theorem 11.2 ( Meyer [Mey77]). Every <P -hard language for E (or any
larger class) is dense. That is, E Z P,,,(DENSE®).

Corollary 11.3 (Meyer [Mey77]). E € P,,,(SPARSE).

Meyer’s results suggest proving theorems of the form
E Z P, (SPARSE)
for successively larger classes P,.(SPARSE) in the range
P,,(SPARSE) C P,.(SPARSE) C Pt (SPARSE).

Along the way, we should try to make our results as strong as possible.
(For example, results of Nisan and Wigderson [NW88, Nis92| indicate
that sufficiently strong lower bounds on the nonuniform complexity of E
could lead to the construction of useful pseudorandom generators.)

The next big step in this program was taken by Watanabe, who proved
the following result concerning SEWP -reducibility (polynomial-time truth-
table reducibility with ¢(n) queries on inputs of length n).



1. The Quantitative Structure of Exponential Time 27

Theorem 11.4 (Watanabe [Wat87b]). Every gg(log n)_-hard language
for E is dense. That is, E Z Po(iog n)-t+(DENSE?).

Recently, a measure-theoretic attack on this problem has led to the fol-
lowing strengthening of Theorem 11.4.

Theorem 11.5 (Lutz and Mayordomo [LM94]). For every real number
a <1 (eg, a=0.99), u(Ppe_t(DENSE®) | E) = pu(Ppo_y(DENSES) |
EXP) = 0.

Corollary 11.6 (Lutz and Mayordomo [LM94]). For every real number
a <1 (eg,a=099),E ¢ P, 4DENSE®), ie., every <F._,,-hard
language for E is dense.

The proof of Theorem 11.5 uses a simple combinatorial technique—the
sequentially most frequent query selection—to show that every language
in P«_4(DENSE®) is predictable, i.e., fails to be weakly stochastic with
suitable parameters. The result then follows immediately from Theorem
10.1, the Weak Stochasticity Theorem.

Given the Weak Stochasticity Theorem, which is a very general princi-
ple, this proof of Corollary 11.6 (via Theorem 11.5) is much simpler than
the stage construction originally used to prove Theorem 11.4. This is not
surprising, once it is noted that our proof of Corollary 11.6 is an appli-
cation of (a resource-bounded generalization of) the probabilistic method
[Erd47, Sha48, Shad9, ES74, Spe87, AS92], which exploits the fact that it
is often easier to establish the abundance of objects of a given type than
to construct a specific object of that type.

It should be emphasized here that Theorem 11.5 is more than a means of
proving Corollary 11.6. (By analogy, the value of classical Lebesgue measure
and probability far surpasses their role as tools for existence proofs.) The
quantitative content of Theorem 11.5—that the set Pno_i (DENSE®) NE
is a negligibly small subset of E—is much stronger than the qualitative
separation of Corollary 11.6.

Recently, Fu has independently proven the following, related result.

Theorem 11.7 (Fu [Fu95]).
1. For every real a < §, E € Pra_1(DENSE®).

2. For every real a < 1, EXP € P,,o_7(DENSE).

Note that the reducibilities here are Turing, i.e., adaptive, as opposed to
the nonadaptive truth-table reducibilities of Corollary 11.6.
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W(NP|EXP)#0 <=  w(NP|E)#0
fip, (NP) # 0 = up(Ng) #0
(Vk)NP ¢ gTIME(an) — (Vo) NP ¢ §TIME(26")
P ;AUNP

FIGURE 4. Non-smallness conditions for NP.

12 Strong hypotheses

At our present state of knowledge (i.e., lack thereof), many results in com-
plexity theory contain strong, unproven hypotheses. Here are just three
examples.

Theorem 12.1 (Karp and Lipton [KL80]). If 5 # IIY, then NP ¢
Pr(SPARSE).

Theorem 12.2 (Mahaney [Mah82]). If P # NP, then NP Z P,,,(SPARSE).

Theorem 12.3 (Ogiwara and Watanabe [OW91]). If P # NP, then NP ¢
Py (SPARSE).

(This last result refers to polynomial-time truth-table reducibility with
an arbitrary but fixed number of queries.)

The proofs of the above three theorems have given complexity theory
some its most beautiful and useful techniques. However, the conclusions of
these theorems are far weaker than the observation that all known Sql?—hard
languages for NP are dense. In this sense, relative to our current knowledge,
the hypotheses P # NP and X¥ # 1Y lack explanatory power.

In order to make progress on matters of this type, we have proposed
investigation of various strong measure-theoretic hypotheses. For example,
Figure 4 gives the implications among various conditions asserting the non-
smallness of NP. In this section we briefly discuss the reasonableness and
known consequences of the weakest measure-theoretic hypothesis in Figure
4, namely, the hypothesis that NP does not have p-measure 0.

This hypothesis is best understood by considering the meaning of its
negation, that NP has p-measure 0. This latter condition occurs if and
only if there is a p-martingale that succeeds (bets successfully) on every
language A € NP. The fact that the strategy d is p-computable means
that, when betting on the condition “z € A”, d requires only 2¢/*! time for
some fixed constant c. (This is because the running time of d for this bet is
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polynomial in the number of predecessors of x in the standard ordering of
{0,1}*). On the other hand, for all £ € N, there exist languages A € NP
with the property that the apparent search space (space of witnesses) for
each input x has 221" elements. Since c is fixed, we have z¢" < z"" for
large values of k. Such a martingale d would thus be a very remarkable
algorithm! It would bet successfully on all NP languages, using far less
than enough time to examine the search spaces of most such languages.
It is reasonable to conjecture that no such martingale exists, i.e., that NP
does not have p-measure 0.

Kautz and Miltersen [KM94] have shown that, if A is an algorithmically
random oracle, then g, (NPA) # 0. This proof, though interesting for its
analysis of independence and randomness, gives no evidence for the truth
of the unrelativized u,(NP) # 0 conjecture.

Since pp(NP) # 0 implies P # NP, and p,(NP) = 0 implies NP # EXP,
we are unable to prove or disprove the u,(NP) # 0 conjecture at this time.
Until such a mathematical resolution is available, the condition p,(NP) # 0
is best investigated as a scientific hypothesis, to be evaluated in terms of
the extent and credibility of its consequences.

We now survey known consequences of the hypothesis that NP does not
have p-measure 0. The first follows immediately from Theorem 4.5.

Theorem 12.4 (Mayordomo [May94a]). If NP does not have measure 0,
then NP contains a P-bi-immune language.

Using standard techniques, the following result has been derived from
Theorem 12.4.

Theorem 12.5 (Lutz and Mayordomo [LM]). If NP does not have p-
measure 0, then E # NE and EE # NEE.

Corollary 12.6 (Lutz and Mayordomo [LM]). If NP does not have p-
measure 0, then there is an NP search problem that does not reduce to the
corresponding decision problem.

Proof. Bellare and Goldwasser [BG94] have shown that, if EE # NEE,
then there is an NP search problem that does not reduce to the correspond-
ing decision problem. The present corollary follows immediately from this
and Theorem 12.5. |

We now consider complexity cores of languages that are <P -hard for
NP. The following result is well-known.

Theorem 12.7 (Orponen and Schéning [OS86]). If P # NP, then every
language that is <P -hard for NP has a nonsparse P-complexity core.
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Strengthening the hypothesis of Theorem 12.7 gives a stronger conclu-
sion. (This essentially follows from Theorem 7.3.)

Theorem 12.8 (Juedes and Lutz [JL95a]). If NP does not have p-measure
0, then every language that is <! -hard for NP has a dense exponential
complexity core.

Concerning the density of hard languages for NP, Theorem 11.5 gives
us the following result. Note that the hypothesis and conclusion are both
stronger than in Theorem 12.6.

Theorem 12.9 (Lutz and Mayordomo [LM94]). If NP does not have p-
measure 0, then for every real number @ < 1, NP € P« _4(DENSE?), i.e.,
every <P._,,-hard language for NP is dense.

The next result concerns NP-completeness. The NP-completeness of de-
cision problems has two principal, well-known formulations. These are the
<EF-completeness introduced by Cook [Coo71] and the <P -completeness
introduced by Karp [Kar72] and Levin [Lev73]. It is widely conjectured
([LLST75, You83, LY90, Hom90]) that these two notions are distinct:

CvKL Conjecture. (“Cook versus Karp-Levin”). There exists a language
that is <F-complete, but not <P -complete, for NP.

The CvKL Conjecture is very ambitious, since it implies that P # NP.
The question has thus been raised [LLS75, Sel79, Hom90, BHT91] whether
the CvKL Conjecture can be derived from some reasonable complexity-
theoretic hypothesis, such as P # NP or the separation of the polynomial-
time hierarchy into infinitely many levels. To date, despite extensive work
[Sel79, KMT75, Wat87a, Wat87b, WT92, Wat87b, BHT91, LY90, LLS75,
Sel79, Hom90, BHT91] , even this more modest objective has not been
achieved.

The following result shows that the CvKL Conjecture holds under our
strong measure-theoretic hypothesis.

Theorem 12.10 (Lutz and Mayordomo [LM]). If NP does not have p-
measure 0, then there is a language C' that is <P-complete, but not <P -
complete for NP.

Of the measure-theoretic results mentioned thus far in this section, The-
orems 12.4, 12.8, and 12.9 hold with NP replaced by any class whatsoever.
Theorem 12.5, Corollary 12.6, and Theorem 12.10 are more specific to NP.

The hypothesis u,(NP) # 0 also has consequences involving the com-
plexity classes BPP and BPP(XF) for k > 1. In fact, these consequences
all follow from the hypothesis that the class AY does not have p-measure
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0. Since NP C AP the hypothesis u,(AY) # 0 follows from, and is thus at
least as plausible as, the hypothesis u,(NP) # 0.

The first consequence of p,(AY) # 0 is a tightening of the result, due to
Lautemann [Lau83] and Sipser and Géacs [Sip83], that BPP C ¥5 Nn1IY.

Theorem 12.11 (Allender and Strauss [AS94]). If u,(AF) # 0, then
BPP C AL.

A slight strengthening of the proof of Theorem 12.11 yields the following.

Theorem 12.12 (Lutz [Luta]). If 4, (AY) # 0, then for all k > 1, BPP(XY)
AF. .
+1

Theorem 12.12 has consequences for lowness and polynomial advice. If
C and L are classes of languages, then £ is low for C if C(L) C C. The
following corollary follows easily from Theorem 12.12 and the fact, due to
Kobler, Schoning, and Tordn [KST93], that AM N co-AM is low for AM.
(See [KST93] for the definition and basic properties of the “Arthur-Merlin”
class AM.)

Corollary 12.13 (Lutz [Luta]). If p(AY) # 0, then AM N co-AM is low
for AF.

Corollary 12.14 (Lutz [Luta]). If u,(AY) # 0, then BPP is low for AL

Corollary 12.15 (Lutz [Luta]). Assume that u,(AY) # 0. Then the graph
isomorphism problem is low for AY. Thus, if A} # PH, then the graph
isomorphism problem is not <P -complete, <F-complete, or even <SNF-
complete for NP.

(The strong nondeterministic polynomial-time reducibility S?FNP is de-
fined by A <3NP B if and only if A € NP(B) N co-NP(B).)

By Theorem 11.1, Theorem 12.1 says that, if ¥ # PH, then NP ¢
P/Poly. A recent, significant improvement of this result is the following.

Theorem 12.16.[BCKT94, KW95] If ZPP(NP) # PH then NP Z P /Poly.

(See [BDGI5] for the definition and basic properties of the zero-error
probabilistic polynomial-time complexity class ZPP. It is well-known that
AY czppc i nmy.)

The following result, which follows immediately from Theorems 12.12
and 12.16, derives the same conclusion as Theorems 12.1 and 12.16 from a
somewhat different hypothesis.

Corollary 12.17 (Lutz [Luta]). If u,(AY) # 0 and A} # PH, then NP ¢
P/Poly.
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13 Conclusion

Resource-bounded measure has been shown to interact in informative,
quantitative ways with polynomial-time reductions, bi-immunity, complex-
ity cores, completeness, circuit complexity, Kolmogorov complexity, the
density of hard languages, randomized complexity, lowness, and other much-
studied structural aspects of the exponential time complexity classes E and
EXP. This work has expanded the class of provably intractable problems
(section 7), and there are indications throughout that it may have profound
implications for the structure of NP and other classes that characterize im-
portant computational problems.

Ultimately, the objective of this work is a detailed account of the quan-
titative structure of E and EXP, with sufficient resolution to yield useful
bounds on the complexities of natural computational problems. The results
achieved to date are only a very small beginning. Here we mention just a
few directions for further work.

1. One of the most significant challenges is to find natural examples of
languages that are weakly <! -complete, but not <F -complete, for
EXP. Theorem 7.8 suggests the existence of such natural examples,
and Theorem 7.3 underscores the importance of finding them.

2. Most of the results mentioned in sections 4-8 concern the structure
of E and EXP under <! -reducibility. It will be worthwhile to inves-
tigate how far in the direction of <P-reducibility these results can
be extended. For example, a Small Span Theorem for <}-reductions
(or even for <fi-reductions) in EXP would imply that EXP ¢ BPP
[JL95a, ANT].

3. In light of Theorem 11.4 and Corollary 11.6, it may well be that
measure arguments can be used to simplify or replace other known
stage constructions. Such simplification might clarify issues, leading
to further progress.

4. Many other structural aspects of E and EXP remain to be investi-
gated from the standpoint of resource-bounded measure. For exam-
ple, it seems likely that resource-bounded measure will shed light on
the theory of average-case complexity. Cai and Selman [CS96] have
made one observation in this regard, but we hope that this is only a
beginning.

5. Work to date has focused on the measure-theoretic structure of classes
of languages, i.e., decision problems. Classes of functions, search prob-
lems, optimization problems, approximation problems, etc., should
also be investigated in this light.

6. The reasonableness and consequences of strong hypotheses such as
those mentioned in section 12 require further investigation. Are the
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hypotheses 1, (NP) # 0 and pp(AY) # 0 equivalent, or is the latter
in some sense weaker? Does u,(NP) # 0 imply that there is a lan-
guage that is <F-complete, but not <f-complete, for NP? Do these
hypotheses have unreasonable consequences? Many significant ques-
tions remain.

7. Ambos-Spies, Neis, and Terwijn [ANT] have recently shown that the
notion of resource-bounded genericity introduced by Ambos-Spies,
Fleischhack, and Huwig [AFH87, AFHS88| interacts very usefully
with resource-bounded measure. (See [Amb95] for a survey of this
and other types of resource-bounded genericity.) Balcdzar and May-
ordomo [BM95a] have characterized this genericity as a strong kind
of bi-immunity, and Ambos-Spies, Mayordomo, Wang, and Zheng
[AMWZ96] have further investigated the relationships between gener-
icity and measure, but more investigation is needed to fully under-
stand the relative power of these two methods.

8. One of the most challenging tasks remaining is the development of
measure in subexponential complexity classes. Mayordomo [May94c,
May94b] and Allender and Strauss [AS94] have proposed (inequiv-
alent) definitions of measure in PSPACE, and Allender and Strauss
[AS94, AS95] have investigated various formulations of measure in
P and other subexponential classes, but at the time of this writing,
many issues are unresolved.

Resource-bounded measure is a powerful generalization of Lebesgue mea-
sure. There is reason to hope that it will be as fruitful in complexity the-
ory as Lebesgue measure has been in analysis and mathematical physics.
Many investigators will have to ask and answer many questions in order
for resource-bounded measure to achieve its full potential.
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