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The Quantitative Structure of
Exponential Time

Jack H� Lutz �

ABSTRACT Recent results on the internal� measure�theoretic structure of
the exponential time complexity classes E and EXP are surveyed� The mea�
sure structure of these classes is seen to interact in informative ways with
bi�immunity� complexity cores� polynomial�time reductions� completeness�
circuit�size complexity� Kolmogorov complexity� natural proofs� pseudoran�
dom generators� the density of hard languages� randomized complexity� and
lowness� Possible implications for the structure of NP are also discussed�

� Introduction

In the past �ve years� new developments in resource�bounded measure have
opened the way for a systematic investigation of the internal� measure�
theoretic structure of the exponential time complexity classes E and EXP�
The investigation is very far from complete� but it has already yielded a
number of interesting insights and results� This paper surveys the motiva�
tions� ideas� and results of the earliest phase of the investigation� i�e�� the
part completed by mid������
It should be emphasized that the material surveyed here is the work of

several investigators� The ongoing e�orts of these investigators� together
with the e�orts of more recent participants� virtually guarantee that this
survey will be incomplete by the time it appears� 	At the time of this
writing� there are already several papers in review and manuscripts in cir�
culation that appear to extend the body of knowledge presented here�

Nevertheless� it is to be hoped that the �organized snapshot� provided by
this survey will provide context and motivation for future research�
There are three reasons for our interest in the complexity classes E and

EXP�

	i
 E and EXP have rich� apparently well�behaved� internal structures�
These structures have many interacting facets� including a variety of
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reducibilities 
LLS���� complete languages under these reducibilities

SC��� Wat��b�� measure structure 
Lut���� and category structure

Lut��� Fen��� Fen����

	ii
 EXP is the smallest deterministic time complexity class known to
contain NP� It also contains PSPACE� and hence the polynomial�time
hierarchy and many other classes of interest in complexity theory� E
is a proper subset of EXP� but it contains P and �the essential part
of NP� 
Wat��b�� i�e�� many NP�complete problems�

	iii
 E and EXP have been proven to contain intractable problems 
HS����
From the standpoint of complexity theory� this existence of intractabil�
ity is a valuable resource� This is because� in practice� a proof that
a speci�c language A is intractable proceeds by inferring the in�
tractability of A from the intractability of some language B chosen
or constructed for this purpose�

Taken together� 	i
� 	ii
� and 	iii
 suggest E and EXP as appropriate
spaces in which to investigate 	embed
 problems involving NP� PH� PSPACE�
and other classes in this range�
Until recently� the issues addressed by research on the structure of com�

plexity classes have been largely qualitative rather than quantitative� 	In�
deed� the introduction to 
Sch��b� o�ered �qualitative� as a synonym for
�structural��
 This seemed to be an inevitable aspect of the subject� A
problem is� or is not� complete for a complexity class� One complexity class
is� or is not� contained in another� This was unfortunate� since the objec�
tive of complexity theory is a quantitative theory of computation� However�
since the sets of interest are all countably in�nite� there appeared to be no
possibility of making quantitative versions of these judgments�
The main objective of the work surveyed here is to remedy this situation�
Suppose that a language A � f�� �g� is chosen by a random experi�

ment in which an independent toss of a fair coin is used to decide whether
each string is in A� Then classical Lebesgue measure theory 	described
in 
Hal��� Oxt���� for example
 identi�es certain measurable sets of lan�
guages 	also called events
 and assigns to each measurable set X a mea�
sure �	X
� which is the probability that A � X in this experiment� A set
X of languages is then small in the sense of measure if it has measure ��
E�ective measure theory� which says what it means for a set of decidable
languages to have measure � as a subset of the set of all such languages� has
been investigated by Freidzon 
Fre���� Mehlhorn 
Meh���� and others� The
resource�bounded measure theory introduced by Lutz 
Lut��� Lutb� has the
classical and e�ective theories as special cases� but also de�nes measurabil�
ity and measure for subsets of many complexity classes� The small subsets
of such a complexity class are then the measure � sets� the large subsets are
the measure � sets 	complements of measure � sets
� We say that almost
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every language in a complexity class C has a given property if the set of
languages in C exhibiting the property is a measure � subset of C�
Thus� resource�bounded measure provides a means of investigating the

sizes of various subsets of E and EXP� This is a priori a hopeful devel�
opment� both because quantitative results are more informative and be�
cause Lebesgue measure has been so useful in analysis� probability� and
mathematical physics� However� much of the ongoing motivation for this
work arises not from a priori considerations� but rather from the fact that
resource�bounded measure turns out to interact informatively with many
properties of interest in computational complexity� Such interactions sur�
veyed in this paper involve bi�immunity 	section �
� complexity cores 	sec�
tions �� �� and �
� the structure of E and EXP under polynomial�time
reductions 	sections ���� and �
� circuit�size complexity and time�bounded
Kolmogorov complexity 	section �
� natural proofs and pseudorandom gen�
erators 	section �
� the density of hard languages 	section ��
� and other
properties that had been extensively studied prior to the advent of resource�
bounded measure� It is to be hoped that sustained� systematic investigation
along these lines will lead to a detailed� quantitative understanding of E
and EXP�
From the standpoint of classical mathematics and recursion theory� classes

like P� NP� PH� and PSPACE are all negligibly small� hence di�cult to dis�
tinguish by quantitative structural means� From the standpoint of E and
EXP� matters may be very di�erent� If EXP is� indeed� the smallest deter�
ministic time class containing NP� then there may well be a natural �notion
of smallness� for subsets of EXP such that P is a small subset of EXP� but
NP is not� Similarly� it may be that P is a small subset of E� but that
NP � E is not�
It is possible that resource�bounded measure already provides such a

notion of smallness� It is certainly the case that P has measure � in E
and EXP 
Lut���� In section �� we discuss the reasonableness and known
consequences of the hypothesis that NP is not small in this sense� This is a
very strong hypothesis that appears to have much more explanatory power
than traditional� qualitative hypotheses� such as P �� NP or the separation
of the polynomial�time hierarchy� Only further investigation will determine
whether this hypothesis is reasonable�

� Preliminaries

In this paper� 

��� denotes the Boolean value of the condition �� i�e�� 

��� �
if � then � else ��
All languages here are sets of binary strings� i�e�� sets A � f�� �g�� We

identify each language A with its characteristic sequence �A � f�� �g�
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de�ned by

�A � 

s� � A��

s� � A��

s� � A������

where s� � �� s� � �� s� � �� s� � ��� ��� is the standard enumeration
of f�� �g�� Relying on this identi�cation� the set f�� �g�� consisting of all
in�nite binary sequences� will be regarded as the set of all languages�
We say that a condition �	n
 holds almost everywhere 	a�e�
 if it holds

for all but �nitely many n � N� We say that �	n
 holds in�nitely often
	i�o�
 if it holds for in�nitely many n � N�
For A � f�� �g� and n � N� we use the notations A�n � A� f�� �gn and

A�n � A � f�� �g�n� A language A is sparse if there is a polynomial q	n

such that jA�nj � q	n
 a�e� A language A is dense if there is a real number
� � � such that jA�nj � �n

�

a�e�
The symmetric di�erence of languages A and B is A�B � 	A � B
 �

	B � A
� The complement of a language A � f�� �g� is Ac � f�� �g� � A�
The complement of a set X of languages is Xc � fA � f�� �g� jA 	� X g�
We �x a one�to�one pairing function h� i from f�� �g��f�� �g� onto f�� �g�

such that the pairing function and its associated projections� hx� yi 	
 x
and hx� yi 	
 y� are computable in polynomial time�
For a function f � f�� �g� 
 f�� �g� and a natural number i� we de�ne

the function fi � f�� �g� 
 f�� �g� by fi	x
 � f	
�
�i� x

�

� We then regard f

as a �uniform enumeration� of the functions f�� f�� f�� � � � �
In general� complexity classes of functions from f�� �g� into f�� �g� will

be denoted by appending an �F� to the notation for the corresponding
complexity classes of languages� Thus� for t � N 
 N� DTIMEF	t
 is the
set of all functions f � f�� �g� 
 f�� �g� such that f	x
 is computable in
O	t	jxj

 time�

� Resource�bounded measure

In this section we introduce a fragment of resource�bounded measure that
is su�cient for understanding the meaning of the results surveyed in this
paper� Although resource�bounded measure is a very general theory whose
special cases include classical Lebesgue measure� the measure structure of
the class REC of all recursive languages� and measure in various complexity
classes� our discussion here will be speci�c to the classes E and E�� The
interested reader is referred to 
Lut��� Lutb� May��b� Jue��� JL��b� ATZ�
for more discussion� examples� and technical machinery�

De�nition� A martingale is a function d � f�� �g� 
 
���
 with the
property that� for all w � f�� �g��

d	w
 �
d	w�
 � d	w�


�
� 	
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A martingale d succeeds on a language A � f�� �g� if

lim sup
n��

d	�A
���n� ��
 ���

Intuitively� a martingale d is a betting strategy that� given a language
A� starts with capital 	amount of money
 d	�
 and bets on the member�
ship or nonmembership of the successive strings s�� s�� s�� � � � 	the standard
enumeration of f�� �g�
 in A� Prior to betting on a string sn� the strategy
has capital d	w
� where w � 

s� � A�� � � � 

sn�� � A��� After betting on the
string sn� the strategy has capital d	wb
� where b � 

sn � A��� Condition
	

 ensures that the betting is fair� The strategy succeeds on A if its capital
is unbounded as the betting progresses�
Martingales were used extensively by Schnorr 
Sch��� Sch��a� Sch��b�

Sch��� in his investigation of random and pseudorandom sequences� Here
we use martingales as a way to de�ne measure � sets�
Consider the random experiment in which a language A � f�� �g� is

chosen probabilistically� using an independent toss of a fair coin to decide
membership of each string in A� Given a set X of languages� let Pr	X
 �
ProbA
A � X � denote the probability that A � X when A is chosen in this
fashion� 	If X is not Lebesgue measurable� then Pr	X
 will not exist� but
this issue can be safely ignored here�
 The following fact is intuitively clear
and not di�cult to prove�

Proposition ���� For every set X of languages� the following two condi�
tions are equivalent�

	�
 Pr	X
 � ��

	�
 There is a martingale d such that d succeeds on every element of X �

In order to generalize Proposition ��� we need to consider martingales
that are computable within some resource bound� Since martingales are
real�valued� their computations must employ �nite approximations of real
numbers� For this purpose� we consider functions of the form d � Nk �
f�� �g� 
 Q� where Q is the set of rational numbers� Formally� in or�
der to have uniform criteria for computational complexity� we consider
all such functions to map f�� �g� to f�� �g�� For example� a function d �
N�f�� �g� 
 Q is formally interpreted as a function �d � f�� �g� 
 f�� �g��
Under this interpretation� d	r� w
 � q means that �d	h�r� wi
 � hu� vi� where
u and v are the binary representations of the numerator and denominator
of q� respectively� We also write dr	w
 for d	r� w
�

De�nition� The classes p� � p and p�� both consisting of functions f �
f�� �g� 
 f�� �g�� are de�ned as follows�

p� � ff j f is computable in polynomial timeg

p� � ff j f is computable in n�logn�
O���

timeg
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Guided by Proposition ���� the measure structures of E and EXP are
now developed in terms of the classes pi� for i � �� ��

De�nition� A martingale d is pi�computable if there is a function bd �
N� f�� �g� 
 Q such that bd � pi and� for all r � N and w � f�� �g������ bdr	w
 � d	w


���� � ��r�

A pi�martingale is a martingale that is pi�computable�

We now come to the key idea of this section�

De�nition�A setX of languages has pi�measure �� and we write �pi	X
 �
�� if there is a pi�martingale d that succeeds on every element of X � A set
X of languages has pi�measure �� and we write �pi	X
 � �� if �pi	X

c
 � ��

We now turn to the internal measure structures of the classes E� � E
and E� � EXP� �

De�nition� A set X has measure � in Ei� and we write �	X j Ei
 � �� if
�pi	X �Ei
 � �� A set X has measure � in Ei� and we write �	X j Ei
 � ��
if �	Xc j Ei
 � �� If �	X j Ei
 � �� we say that almost every language in
Ei is in X �

We write �	X j Ei
 �� � to indicate that X does not have measure � in
Ei� Note that this does not assert that ��	X j Ei
� has some nonzero value�
The following is obvious but useful�

Fact ���� For every set X � f�� �g��

�p	X
 � � �� �p
�
	X
 � � �� Pr
A � X � � �

� �
�	X j E
 � � �	X j EXP
 � ��

where the probability Pr
A � X � is computed according to the random
experiment in which a language A � f�� �g� is chosen probabilistically�

�The classes E and EXP are the �rst two classes in a natural hierarchy
E��E��E�� � � � of exponential time complexity classes� In �Lut���� the measure
structures of these classes are developed in terms of a corresponding hierarchy
p�� p�� p�� � � � of function classes� Consequently� most papers on resource�bounded
measure �including all of the author�s papers� use the notation E� in place of
EXP� However� in this book� for the sake of consistency� we refrain from using
the Ei notation� The only exceptions are the present section and a brief mention
of the class E� in section ��
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using an independent toss of a fair coin to decide whether each string
x � f�� �g� is in A�

It is shown in 
Lut��� that these de�nitions endow E and EXP with
internal measure structure� This structure justi�es the intuition that� if
�	X j E
 � �� then X �E is a negligibly small subset of E 	and similarly for
EXP
� The most important component of this justi�cation is the Measure
Conservation Theorem 
Lut���� which implies the following�

Theorem ��� 	Lutz 
Lut���
� �	EjE
 �� � and �	EXPjEXP
 �� ��

The following result shows that� if C is a �reasonable� complexity class
that contains almost every element of E 	respectively� EXP
� then C con�
tains every element of E 	respectively� EXP
�

Theorem ��� 	Regan� Sivakumar� and Cai 
RSC���
� Let C be a set of
languages that is either closed under symmetric di�erence or closed under
	�nite
 union and intersection�

�� If �	CjE
 � �� then E � C�

�� If �	CjEXP
 � �� then EXP � C�

Resource�bounded measure in E and EXP is known to be robust with
respect to various changes in the de�nition 
Lut��� Lutb� May��b� JL��b��
Recently� Buhrman and Longpr�e 
BL��� have shown that resource�bounded
measure can also be characterized in terms of the compressibility 	and
decompressibility
 of languages�

� Incompressibility and bi�immunity

Many results on the structure of E and EXP under �P
m�reducibility use

languages that are �incompressible by many�one reductions�� This idea�
originally exploited by Meyer 
Mey���� is developed in the following de�ni�
tions�

De�nition� The collision set of a function f � f�� �g� 
 f�� �g� is

Cf � fx � f�� �g� j 	�y 
 x
f	y
 � f	x
g�

Here� we are using the standard ordering s� 
 s� 
 s� 
 � � � of f�� �g��

Note that f is one�to�one if and only if Cf � ��

De�nition� A function f � f�� �g� 
 f�� �g� is one�to�one almost every�
where 	or� brie�y� one�to�one a�e�
 if its collision set Cf is �nite�
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De�nition� Let A�B � f�� �g� and let t � N
 N� A �DTIME�t�
m �reduction

of A to B is a function f � DTIMEF	t
 such that A � f��	B
� i�e�� such

that� for all x � f�� �g�� x � A i� f	x
 � B� A �
DTIME�t�
m �reduction of A is

a function f that is a �DTIME�t�
m �reduction of A to f	A
�

It is easy to see that f is a �DTIME�t�
m �reduction of A if and only if there

exists a language B such that f is a �DTIME�t�
m �reduction of A to B�

De�nition� Let t � N 
 N� A language A � f�� �g� is incompressible

by �DTIME�t�
m �reductions if every �DTIME�t�

m �reduction of A is one�to�one
a�e� A language A � f�� �g� is incompressible by �P

m�reductions if it is

incompressible by �DTIME�q�
m �reductions for all polynomials q�

Intuitively� if f is a �DTIME�t�
m �reduction of A to B and Cf is large� then

f compresses many questions �x � A�� to fewer questions �f	x
 � B��
If A is incompressible by �P

m�reductions� then very little such compression
can occur�
Meyer 
Mey��� proved that E contains languages that are incompressible

by �P
m�reductions� The following result shows that almost every language

in E has this property�

Theorem ��� 	Juedes and Lutz 
JL��a�
� Let c � Z� and de�ne the sets

X � fA � f�� �g�jA is incompressible by �
DTIME��cn�
m �reductionsg�

Y � fA � f�� �g�jA is incompressible by �DTIME��n
c

�
m �reductionsg�

Then �p	X
 � �p�	Y 
 � �� Thus almost every language in E is incom�

pressible by �DTIME��cn�
m �reductions� and almost every language in EXP is

incompressible by �DTIME��n
c

�
m �reductions�

Sketch of proof that �p	X
 � �� It su�ces to exhibit a p�martingale d �

f�� �g� 
 
���
 that succeeds on every element of Xc�
Let f � DTIMEF	��c���n
 be universal for DTIMEF	�cn
� in the sense

that DTIMEF	�cn
 � ffiji � Ng� For each i � N� de�ne a set Zi of
languages as follows� If the collision set Cfi is �nite� then Zi � �� Otherwise�
if Cfi is in�nite� then Zi is the set of all languages A such that fi is a

�
DTIME��cn�
m �reduction of A� Note that Xc is the union of the sets Zi� The

martingale d is de�ned by

d	w
 �

�X
i��

��idi	w
�

where the functions di � f�� �g� 
 
���
 are de�ned as follows� Let i �
N� w � f�� �g�� and b � f�� �g� Recall that s�� s�� s�� � � � is a standard
enumeration of f�� �g��
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	i
 di	�
 � ��

	ii
 If sjwj 	� Cfi � then di	wb
 � di	w
�

	iii
 If sjwj � Cfi � then �x the least j � N such that fi	sj
 � fi	sjwj
 and
set

di	wb
 � � � di	w
 � 

b � w
j����

It is easy to check that each di is a martingale� whence d itself is a martin�
gale� Intuitively� di bets on membership of strings in a language A� Clause
	i
 says that di starts with � dollar� Clause 	ii
 says that di does not bet on
the status of strings x 	� Cfi � Clause 	iii
 says that� for strings x � Cfi � di
bets all its capital that x � A i� y � A� where y is the �rst string such that
fi	x
 � fi	y
� If A � Zi� then this bet will be correct� thereby doubling di�s
capital� in�nitely often� Thus di succeeds on every element of Zi� It follows
from this that d succeeds on every element of Xc�
Finally� to see that d is p�computable� de�ne bd � N� f�� �g� 
 Q by

bdr	w
 � r�jwjX
i��

��idi	w
�

Since f � DTIMEF	��c���n
 and the computation of di	w
 only uses values
fi	u
 for strings u with juj � O	log jwj
� it is clear that d � p� Since���� bdr	w
 � d	w


���� �
�X

i�r�jwj��
��idi	w
 �

�X
i�r�jwj��

�jwj�i � ��r

for all r � N and w � f�� �g�� it follows that d is p�computable� �

Corollary ��� 	Juedes and Lutz 
JL��a�
� Almost every language in E and

almost every language in EXP is incompressible by �P
m�reductions�

Corollary ��� 	Meyer 
Mey���
� There is a language A � E that is incom�

pressible by �P
m�reductions�

We conclude this section with a brief discussion of P�bi�immunity�

De�nition� A language A � f�� �g� is P�immune if� for all languages
B � A� B � P implies that B is �nite� A language A � f�� �g� is P�bi�
immune if A and Ac are both P�immune�

Intuitively� a language that is P�bi�immune �cannot be nontrivially ap�
proximated� from inside or outside�� by any language in P�

Proposition ��� 	Ko and Moore 
KM���
� Every language that is incom�

pressible by �P
m�reductions is P�bi�immune�
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In light of this proposition� languages that are incompressible by �P
m�

reductions are sometimes called �strongly P�bi�immune� 
BS��� BDG����
The following result shows that almost every language in E is P�bi�

immune�

Theorem ��� 	Mayordomo 
May��a�
� Almost every language in E� and
almost every language in EXP� is P�bi�immune�

Although Theorem ��� follows immediately from Corollary ��� and Propo�
sition ���� it should be noted that Mayordomo�s proof of this result pre�
ceded� and was independent of� the proofs of Theorem ��� and Corollary
����

� Complexity cores

Complexity cores� �rst introduced by Lynch 
Lyn���� have been studied ex�
tensively� 	See 
BDG��� for an overview of such work�
 Intuitively� a com�
plexity core of a language A is a �xed set K of inputs such that every
machine whose decisions are consistent with A fails to decide e�ciently
on all but �nitely many elements of K� The meaning of �e�ciently� is a
parameter of the de�nition that varies according to the context� In this sec�
tion we make this de�nition precise and note that almost every language
in E and EXP has very large complexity cores�
Given a machine M and an input x � f�� �g�� we write M	x
 � � if

M accepts x� M	x
 � � if M rejects x� and M	x
 � � in any other case
	i�e�� if M fails to halt or M halts without deciding x
� If M	x
 � f�� �g�
we write timeM 	x
 for the number of steps used in the computation of
M	x
� If M	x
 � �� we de�ne timeM 	x
 � �� We partially order the set
f�� ���g by � 
 � and � 
 �� with � and � incomparable� A machine
M is consistent with a language A � f�� �g� if M	x
 � 

x � A�� for all
x � f�� �g��

De�nition� Let t � N
 N be a time bound and let A�K � f�� �g�� Then
K is a DTIME	t	n

�complexity core of A if� for every c � N and every
machine M that is consistent with A� the �fast set�

F � fx jtimeM 	x
 � c � t	jxj
 � cg

satis�es jF �Kj 
 �� 	By our de�nition of timeM 	x
� M	x
 � f�� �g for
all x � F � Thus F is the set of all strings that M �decides e�ciently��


Note that every subset of a DTIME	t	n

�complexity core of A is a
DTIME	t	n

�complexity core of A� Note also that� if s	n
 � O	t	n

� then
every DTIME	t	n

�complexity core of A is a DTIME	s	n

�complexity
core of A�
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De�nition� Let A�K � f�� �g��
�� K is a polynomial complexity core 	or� brie�y� a P�complexity core
 of

A if K is a DTIME	nk
�complexity core of A for all k � N�
�� K is an exponential complexity core of A if there is a real number � � �

such that K is a DTIME	�n
�


�complexity core of A�

Intuitively� a P�complexity core of A is a set of infeasible instances of
A� while an exponential complexity core of A is a set of extremely hard
instances of A�
The following observation� an obvious generalization of a result of Balc�azar

and Sch oning 
BS��� 	see Corollary ��� below
� relates incompressibility to
complexity cores�

Lemma ��� 	Juedes and Lutz 
JL��a�
� If t � N
 N is time constructible

then every language that is incompressible by �DTIME�t�
m �reductions has

f�� �g� as a DTIME	t
�complexity core�

Corollary ���� Let c � N�
�� 	Balc�azar and Sch oning 
BS���
 Every language that is incompressible

by �P
m�reductions has f�� �g

� as a P�complexity core�

�� Every language that is incompressible by �DTIME��cn�
m �reductions has

f�� �g� as a DTIME	�cn
�complexity core�

�� Every language that is incompressible by �DTIME��n
c

�
m �reductions has

f�� �g� as a DTIME	�n
c


�complexity core�

Theorem ��� and Corollary ��� now tell us that almost every language
decidable in exponential time has complexity cores of the largest possible
size�

Corollary ��� 	Juedes and Lutz 
JL��a�
� Let c � Z��
�� Almost every language in E has f�� �g� as a DTIME	�cn
�complexity

core�
�� Almost every language in EXP has f�� �g� as a DTIME	�n

c


�complexity
core�

� Small span theorems

In this section we describe research on small span theorems� which illumi�
nate key aspects of the structure of E and EXP under polynomial reduc�
tions� We begin with the Small Span Theorem for �P

m�reductions�
De�ne the lower �P

m�span of a language A � f�� �g� to be

Pm	A
 � fB � f�� �g� j B �P
m Ag�
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Similarly� de�ne the upper �P
m�span of A to be

P��m 	A
 � fB � f�� �g� j A �P
m Bg�

Intuitively� in the �P
m�reducibility structure of the set of all languages�

we think of Pm	A
 as lying �below� A� while P��m 	A
 lies �above� A� 	See
Figure ��
 We will be especially concerned with the size� i�e�� the resource�
bounded measure� of the upper and lower spans of various languages� If
neither of these spans is small 	i�e�� neither has resource�bounded measure
�
� then we have the con�guration depicted schematically in Figure �� On
the other hand� if one or both of these spans is small� then we have one
of the �small�span� con�gurations depicted schematically in Figure �� The
Small �P

m�Span Theorem says that� if A is in E or EXP� then at least one
of the sets Pm	A
� P��m 	A
 is small� That is� only small�span con�gurations
can occur in E or EXP�

P  (A)m

-1

P (A)m

deg  (A) = m
P P (A)m P  (A)m

-1
∩

• A

FIGURE �� The upper span� lower span �shaded�� and degree of A�

Theorem ��� 	Small �P
m�Span Theorem!Juedes and Lutz 
JL��a�
�

�� For every A � E�
�	Pm	A
 j E
 � �

or
�p	P

��
m 	A

 � �	P��m 	A
 j E
 � ��

�� For every A � EXP�

�	Pm	A
 j EXP
 � �

or
�p�	P

��
m 	A

 � �	P��m 	A
 j EXP
 � ��
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Ambos�Spies 
Amb��� has shown that Pm
��	A
 has Lebesgue measure

� whenever A �� P� The following lemma obtains a stronger conclusion
	resource�bounded measure �
 from a stronger hypothesis on A�

Lemma ��� 	Juedes and Lutz 
JL��a�
� Let A be a language that is
incompressible by �P

m�reductions�
�� If A � E� then �p	P

��
m 	A

 � �� and hence �	P��m 	A
 j E
 � ��

�� If A � EXP� then �p�	P
��
m 	A

 � �� and hence �	P��m 	A
 j EXP
 � ��

We do not prove this lemma here� but we use it to prove the Small Span
Theorem�
Proof of Theorem ���� To prove �� let A � E and let X be the set of all
languages that are incompressible by �P

m�reductions� We have two cases�
Case I� If Pm	A
 � E � X � �� then Corollary ��� tells us that

�	Pm	A
 j E
 � ��
Case II� If Pm	A
 �E�X �� �� then �x a language B � Pm	A
�E�X �

Since B � E �X � Lemma ��� tells us that

�p	P
��
m 	B

 � �	P��m 	B
 j E
 � ��

Since P��m 	A
 � P��m 	B
� it follows that

�p	P
��
m 	A

 � �	P��m 	A
 j E
 � ��

This proves �� The proof of � is identical� �

Using the Small Span Theorem� we note that �P
m�hard languages for E

are extremely rare�

Theorem ��� 	Juedes and Lutz 
JL��a�
� Let Hm	E
 be the set of all
languages that are �P

m�hard for E� Then �p	Hm	E

 � ��

Proof� Let A be as in Corollary ���� Then Hm	E
 � P��m 	A
� so Lemma
��� tells us that

�p	Hm	E

 � �p	P
��
m 	A

 � ��

�

Recently� Ambos�Spies� Neis� and Terwijn 
ANT� have used resource�
bounded genericity to prove the extension of Lemma ��� obtained by sub�
stituting �P

k�tt�reductions and P��k�tt	A
 for �P
m�reductions and P��m 	A
�

respectively� where k is a �xed positive integer� From this they have ob�
tained the following extension of Theorem ����

Theorem ��� 	Small �P
k�tt�Span Theorem � Ambos�Spies� Neis� and Ter�

wijn 
ANT�
� Let k be a positive integer�
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P (A)mP (A)m

P (A)m

P  (A)m

-1

P  (A)m

-1 P  (A)m

-1

(a) (b)

(c)

FIGURE �� Small�span con�gurations� �Narrow regions depict measure � spans��

�� For every A � E�
�	Pk�tt	A
jE
 � �

or
�p	P

��
k�tt	A

 � �	P��k�tt	A
jE
 � �

�� For every A � EXP�

�	Pk�tt	A
jEXP
 � �

or
�p�	P

��
k�tt	A

 � �	P��k�tt	A
jEXP
 � �

This immediately yields the following extension of Theorem ����

Theorem ��� 	Ambos�Spies� Neis� and Terwijn 
ANT�
� Let k be a posi�
tive integer� If Hk�tt	E
 is the set of all languages that are �P

k�tt�hard for
E� then �p	Hk�tt	E

 � ��
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At the time of this writing� it is not known whether Theorems ��� and
��� remain true when Pbtt	A
� P

��
btt	A
� and Hbtt	E
 are substituted for

Pk�tt	A
� P��k�tt	A
� and Hk�tt	E
� respectively� Buhrman and Mayordomo

BM��b� and� independently� Ambos�Spies� Neis� and Terwijn 
ANT�� have
shown that the class Hbtt	E
 has p��measure ��
The Small �P

m�Span Theorem has immediate consequences for the �P
m�

degree structure of E and EXP�
The �P

m�degree of a language A � f�� �g� is the set

degPm	A
 � Pm	A
 � Pm
��	A
�

Theorem ��� 	Juedes and Lutz 
JL��a�
� For all A � f�� �g��

�	degPm	A
 j E
 � �	degPm	A
 j EXP
 � ��

Proof� This follows immediately from Theorem ���� �

Theorem ��� 	Mayordomo 
May��a�
� Let Cm	E
� Cm	EXP
 be the sets of
languages that are �P

m�complete for E� EXP� respectively� Then �	Cm	E
 j
E
 � �	Cm	EXP
 j EXP
 � ��

Mayordomo�s original proof of this result used Theorem ��� and Berman�s
result 
Ber��� that no �P

m�complete language for E or EXP is P�immune�
We now see that Mayordomo�s result also follows from Theorem ��� and
from Theorem ����
Using Theorem ��� in place of Theorem ��� gives the following extension

of Theorem ����

Theorem ��	 	Ambos�Spies� Neis� and Terwijn 
ANT�
� For all A �
f�� �g� and all positive integers k�

�	degPk�tt	A
jE
 � �	degPk�tt	A
jEXP
 � �

It is not currently known whether all �P
btt�degrees have measure � in E

or EXP� but this at least holds for the complete �P
btt�degree�

Theorem ��
 	Ambos�Spies� Neis� and Terwijn 
ANT�
� Let Cbtt	E
� Cbtt	EXP

be the sets of languages that are �P

btt�complete for E� EXP� respectively�
Then �	Cbtt	E
jE
 � �	Cbtt	EXP
jEXP
 � ��

� Weakly hard problems

To date� our principal means of establishing the intractability of a speci�c
computational problem has been to prove that the problem is hard for
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some complexity class with respect to some class of e�cient reductions�
For example� a problem that is �P

m�hard for NP� PSPACE� or some class in
between is presumably intractable because we are inclined to believe that
P �� NP� A problem that is �P

m�hard for E is provably intractable by the
time hierarchy theorem of Hartmanis and Stearns 
HS���� In fact� problems
that are �P

m�hard for E are now known to have very strong intractability
properties 
BS��� Huy��� KOSW��� OS��� Sch��a��
In order to extend the class of provably intractable problems� Lutz 
Lut���

proposed investigation of the following measure�theoretic generalization of
�P
m�hardness�

De�nition� A language A � f�� �g� is weakly �P
m�hard for E 	respectively�

for EXP
 if �	Pm	A
jE
 �� � 	respectively� �	Pm	A
jEXP
 �� �
�

Thus a language A is weakly �P
m�hard for E if a nonnegligible subset of

the languages in E are �P
m�reducible to A� Clearly� every language that is

�P
m�hard for E is also weakly �P

m�hard for E�
Weak hardness under other classes of reductions 	e�g� weak �P

T�hardness

is de�ned analogously�
The �rst thing to note about weakly hard problems is that they are�

indeed� intractable� Speci�cally� it is easy to see that �	PjE
 � �	PjEXP
 �
� 
Lut���� so we have the following�

Observation ���� If A is weakly �P
T�hard for E� then A �� P�

In fact� languages that are weakly �P
m�hard for E are intractable in a

much stronger sense� For example� consider the following strong intractabil�
ity result�

Theorem ��� 	Orponen and Sch oning 
OS���
� Every language that is
�P
m�hard for E has a dense P�complexity core�

The following theorem extends Theorem ��� 	in somewhat stronger form

to all weakly �P

m�hard languages for E�

Theorem ��� 	Juedes and Lutz 
JL��a�
� Every language that is weakly
�P
m�hard for E or EXP has a dense exponential complexity core�

Thus the weakly �P
m�hard problems for E and EXP are� like the �P

m�hard
problems� provably strongly intractable� It is then natural to ask whether
there are problems that are weakly �P

m�hard� but not �P
m�hard� for these

classes� We now discuss this question and� more generally� the distribution
of the weakly hard languages�

De�nition� A language A � f�� �g� is weakly �P
m�complete for E 	respec�

tively� for EXP
 if A is weakly �P
m�hard for E 	respectively� for EXP
 and

A � E 	respectively� A � EXP
�
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As in section �� we use the notations Hm	E
�Hm	EXP
� Cm	E
� and
Cm	EXP
 to denote the classes of languages that are �P

m�hard for E� �P
m�

hard for EXP� �P
m�complete for E� and �P

m�complete for EXP� respec�
tively� We also use the notations WHm	E
�WHm	EXP
�WCm	E
� and
WCm	EXP
 to denote the classes of languages that are weakly �P

m�hard
for E� weakly �P

m�hard for EXP� weakly �P
m�complete for E� and weakly

�P
m�complete for EXP� respectively�
We �rst discuss the known inclusions among the above�de�ned hardness

classes� We then discuss the non�inclusions� 	This was not the chronologi�
cal order of discovery�
 It is well known that Hm	E
 � Hm	EXP
� whence
Cm	E
 � E � Cm	EXP
� 	This is clear because EXP � Pm	E
�
 Also� The�
orem ��� implies that Hm	E
 � WHm	E
 and H	EXP
 � WHm	EXP
�
Using the martingale dilation technique developed by Ambos�Spies� Ter�
wijn� and Zheng 
ATZ�� Juedes and Lutz proved the following�

Lemma ��� 	Juedes and Lutz 
JL��b�
� Let X be a set of languages�

�� If �p�	Pm	X

 � �� then �p	X
 � ��

�� If �	Pm	X
jEXP
 � �� then �	X jE
 � ��

This yields the following�

Theorem ��� 	Juedes and Lutz 
JL��b�
� WHm	E
 � WHm	EXP
�

Proof� Let H � WHm	E
� Then �	Pm	H
jE
 �� �� so Lemma ���	�
 with
X � Pm	H
 tells us that �	Pm	H
jEXP
 � �	Pm	Pm	H

jEXP
 �� �� Thus
H � WHm	EXP
� �

The foregoing discussion� in combination with obvious facts� yields the
inclusion structure depicted in Figure ��

FIGURE 
� Inclusion structure of hardness classes�
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We now turn to the non�inclusions� Lutz 
Lut��� developed the martin�
gale diagonalization technique and used it to prove the following�

Theorem ��� 	Lutz 
Lut���
� Cm	E
 ���WCm	E
�

Corollary ���� Cm	EXP
 ��� WCm	EXP
�

Proof� By Theorems ���� ���� and elementary facts�

E � Cm	EXP
 � Cm	E
 ���WCm	E
 � E �WCm	EXP
�

�

Theorem ��� is signi�cant because� in combination with Observation ���
and Theorem ���� it implies that the class of weakly �P

m�hard problems for
E is� indeed� a strictly larger class of provably strongly intractable problems
than the class of�P

m�hard problems for E� In fact� much more is true� Juedes

Jue��� re�ned the martingale diagonalization of 
Lut��� to prove that the
class WCm	E
 does not have measure � in E� 	By Theorem ���� this result
implies Theorem ����
 More signi�cantly� Ambos�Spies� Terwijn� and Zheng
developed martingale dilation 	a padding technique
 and used it to prove
the following�

Theorem ��	 	Ambos�Spies� Terwijn� and Zheng 
ATZ�
�

�p	WHm	E

 � ��

Corollary ��
 	Ambos�Spies� Terwijn� and Zheng 
ATZ�
�

�p�	WHm	EXP

 � ��

Proof� This follows immediately from Theorems ��� and ���� �

By Theorems ��� and ���� then� almost every language in E is weakly
�P
m�complete� but not �P

m�complete� for E�
Finally� we note that the converse of Theorem ��� does not hold� even if

we restrict attention to languages in E�

Theorem ���� 	Juedes and Lutz 
JL��b�
� E�WCm	EXP
 �� WCm	E
�

By Theorems ���� ����� and elementary observations� Figure � is com�
plete� in the sense that it depicts 	either directly or via transitivity
 all the
inclusions that hold among these eight hardness classes�
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	 Upper bounds for hard problems

We saw in Theorem ��� that �P
m�hard languages for E are very rare� As we

see in this section� this is because there is a nontrivial upper bound on the
sizes of complexity cores of such languages�
Recall that a language D � f�� �g� is dense if there is a real number

� � � such that jD�nj � �n
�

a�e�
The following result states that every �P

m�hard language for E can be
decided in time ��n on a dense set of instances that can itself be decided
in time ��n�

Theorem 	�� 	Juedes and Lutz 
JL��a�
� For every �P
m�hard language H

for E� there exist B�D � DTIME	��n
 such that D is dense and B � H�D�

It is straightforward to use Theorem ��� to prove that �P
m�hard languages

for E obey the following upper bound on the sizes of complexity cores�

Theorem 	�� 	Juedes and Lutz 
JL��a�
� Every DTIME	��n
�complexity
core of every �P

m�hard language for E has a dense complement�

By Corollary ���� almost every language in E has f�� �g� as a DTIME	��n
�
complexity core� Thus� Theorem ��� says that �P

m�hard languages for E are
unusually simple� in the sense that they have unusually small complexity
cores� for languages in E� This immediately implies� and also explains� The�
orems ��� and ����
Lutz 
Lut��� constructed a weakly �P

m�hard language H for E that has
f�� �g� as a DTIME	��n
�complexity core� so Theorem ��� is a property
of �P

m�hard languages that does not extend to weakly �P
m�hard languages�

In fact� by Corollary ��� and Theorem ���� almost every language in E
is a weakly �P

m�complete language that does not satisfy the conclusion of
Theorem ����


 Nonuniform complexity� natural proofs� and
pseudorandom generators

Much remains to be discovered about the nonuniform complexities of lan�
guages in E and EXP� For example� it is a long�standing conjecture that
E �� P"Poly� i�e�� that E does not have polynomial�size circuits� but it has
not been proven that E does not have linear �size circuits� or that EXP does
not have polynomial�size circuits� It is known� however� that the highest
levels of circuit�size and time�bounded Kolmogorov complexity known 	or
provable by relativizable methods
 to be exceeded in�nitely often by any
problem in EXP are in fact exceeded almost everywhere by almost every
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problem in the class� Moreover� recent work of Regan� Sivakumar� and Cai

RSC���� exploiting the �natural proofs� idea of Razborov and Rudich

RR���� has shown that� if su�ciently secure pseudorandom generators
exist� then these results are optimal for circuit�size complexity� We now
describe these developments more fully�
Some terminology and notation will be useful� For a �xed machine M

and �program� � � f�� �g� for M � we say that �M	�� n
 � w in � t time�
if M � on input 	�� n
� outputs the string w � f�� �g� and halts in at most t
execution steps� We are especially interested in situations where the output
string is of the form w � �A�n � i�e�� the �

n�bit characteristic string of A�n�
for some language A � f�� �g��
Given a machine M � a time�bound t � N 
 N� a language A � f�� �g��

and a natural number n� the t	n
�time�bounded Kolmogorov complexity of
A�n relative to M is

K
t�n�
M 	A�n
 � min

�
j�j

����M	�� n
 � �A�n in � t	n
 time

�
�

Well�known simulation techniques show that there is a machine U that is
optimal in the sense that for each machine M there is a constant c such
that� for all t� A� and n�

K
ct�n� log t�n��c
U 	A�n
 � K

t�n�
M 	A�n
 � c�

As is standard in this subject� we �x an optimal machine and omit it
from the notation� 	See 
LV��� for a thorough treatment of Kolmogorov
complexity�


Theorem 
�� 	Lutz 
Lut���
� If t and q are �xed polynomials� then the
set of all languages A satisfying

Kt�n�	A�n
 � q	n
 a�e�

has measure � in EXP�

We now consider circuit�size complexity� Following standard usage 	see

BDG���� for example
� we de�ne a 	Boolean
 circuit to be a directed acyclic
graph 
 with vertex set I �G� where I � fw�� � � � � wng is the set of inputs
	n � �
 and G � fg�� � � � � gsg is the set of gates 	s � �
� Each input has
indegree � and each gate has indegree �� �� or �� Each gate of indegree
� is labeled either by the constant � or by the constant �� Each gate of
indegree � is labeled either by the identity function ID� f�� �g 
 f�� �g
or by the negation function NOT� f�� �g 
 f�� �g� Each gate of indegree
� is labeled either by the conjunction AND� f�� �g� 
 f�� �g or by the
disjunction OR� f�� �g� 
 f�� �g� The output gate gs has outdegree �� The
other gates and the inputs have unrestricted outdegree� The size of such a
circuit 
 is size	

 � jGj � s� the number of gates�
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An n�input circuit 
 computes a Boolean function 
 � f�� �gn 
 f�� �g in
the usual way� For w � f�� �gn� 
	w
 is the value computed at the output
gate gs when the inputs are assigned the bits w�� � � � � wn of w� The set
computed by an n�input circuit 
 is then the set of all w � f�� �gn such that

	w
 � ��
The circuit�size complexity of a language A � f�� �g� is the function

CSA � N
 N de�ned by

CSA	n
 � min f size	

 j 
 computes A�n g �

For each function f � N
 N� we de�ne the circuit�size complexity classes

SIZE	f
 � fA jCSA	n
 � f	n
 a�e�g �

SIZEi	o		f
 � fA jCSA	n
 � f	n
 i�o�g �

The class P"Poly is then de�ned by

P"Poly �

��
k��

SIZE	nk
�

and we write

P"Poly
i�o�

�

��
k��

SIZEi	o		nk
�

Using a known quantitative relationship between circuit size and time�
bounded Kolmogorov complexity� the following result can be derived from
Theorem ����

Theorem 
�� 	Lutz 
Lut���
� For each �xed k � N� the set SIZEi	o		nk

has measure � in EXP�

A similar argument proves the following�

Theorem 
�� 	Lutz 
Lut���
� The set P"Poly
i�o�

has measure � in the

class E� � DTIME	�n
polylogn


�

As noted earlier� it is a long�standing conjecture that E �� P"Poly� Intu�
itively� this conjecture says that E contains problems that are combinatori�
ally� as well as computationally� intractable� In light of the various strong
intractability results of sections �� �� and �� the stronger conjecture that
P"Poly has measure � in E and in EXP seems to suggest itself� However�
as we now explain� there is reason to be cautious about such a conjecture�
We �rst note that Wilson 
Wil��� has exhibited oracles relative to which

E � SIZE	�n
 and EXP � P"Poly� so nonrelativizable techniques will be
required to prove EXP �� P"Poly� let alone the stronger conjecture that
�	P"PolyjEXP
 � ��
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In recent years� many nonrelativizable combinatorial techniques for prov�
ing lower bounds on nonuniform complexity have been developed 	see

RR��� for references to such developments
� so Wilson�s oracle construc�
tions are not as daunting today as they were when he discovered them�
However� all such techniques developed to date are for proving lower bounds
with respect to restricted nonuniformmodels 	bounded�depth circuits� mono�
tone circuits� etc�
� and do not seem to yield to lower bound techniques for
general circuit�size complexity�
Razborov and Rudich 
RR��� developed the notion of natural proofs

in order to better understand these limitations on known techniques� The
central idea in their work is that of a �natural combinatoral property��
which we now describe� not in full generality� but in terms of the present
discussion�

De�nition 
�� 	Razborov and Rudich 
RR���
�

�� A combinatorial property is a sequence P � 	P��P��P�� � � �
� where
each Pn is a set of subsets of f�� �gn�

�� A language A � f�� �g� is drawn from a combinatorial property P if�
for all n � N� A�n � Pn�

As part � of the above de�nition suggests� we regard each component Pn
of a combinatorial property P as a �set of candidate n�slices� A�n for lan�
guagesA that are drawn from P � We identify each set S � Pn with its �n�bit
characteristic string �S � and we regard the �complexity� of P as the com�
plexity of deciding membership of �n�bit strings in Pn� As with martingales
and measure� we will use the lower�case notations p� p�� etc� for complexity
classes of functions whose inputs are characteristic sequences� At present�
we are interested in nonuniform p��complexity� where the nonuniformity is
provided by an advice function�

De�nition� A nonuniform p��advice function is a function h � N
 f�� �g�

for which there is a constant k � N such that� for all n � �� jh	n
j � k �

��logn�
k

� 	Note that h need not be computable� this is the nonuniformity�


De�nition� A combinatorial property P is nonuniformly p��decidable if
there exist a nonuniform p��advice function h and a function f � p� such
that� for all n � N and S � f�� �gn�

f	�S� h	�
n

 � 

�S � Pn���

In a lower bound argument� the typical role of a combinatorial property
is to reliably diagonalize against some complexity class�

De�nition 
�� 	Razborov and Rudich 
RR���
� Let P be acombinatorial
property� and let C be a class of languages�
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�� P is useful in�nitely often �useful i�o�� against C if� for every A � C�
there exist in�nitely many n � N such that A�n �� Pn�

�� P is useful almost everywhere �useful a�e�� against C if� for every
A � C� for all su�ciently large n � N� A�n �� Pn�

The crucial thing that Razborov and Rudich observed is that the com�
binatorial properties used in lower bound proofs are typically large� in the
following sense�

De�nition 
�� 	Razborov and Rudich 
RR���
� A combinatorial property
P is large if there is a constant k � N such that� for all su�ciently large
n � N�

j Pn j� ��
n�kn�

To rephrase the de�nition probabilistically� let Pr	Pn
 denote the prob�
ability that S � Pn when S � f�� �gn is chosen according to a random
experiment in which all subsets of f�� �gn are equally probable� Then P is
large if there exists k such that� for all su�ciently large n� Pr	Pn
 � ��kn�
We now have all the elements of the notion of a �natural combinatorial

property��

De�nition 
�� 	Razborov and Rudich 
RR���
� A combinatorial property
P is nonuniformly p��natural i�o� against a class C of languages if P is
nonuniformly p��decidable� P is useful i�o� against C� and P is large�

Here we are speci�cally interested in the EXP versus P"Poly question�
so we have specialized the above de�nition to nonuniform p��decidability
and i�o� diagonalization� The interested reader is referred to 
RR��� Raz�
for more general aspects of Razborov and Rudich�s work�
Regan� Sivakumar� and Cai�s work on natural combinatorial properties

involves the existence of a certain kind of secure pseudorandom generator�
We now develop the required de�nitions�

De�nition� Let p be a polynomial such that p	n
 � n��� A p	n
�generator
is a function g � PF such that� for all x � f�� �g�� j g	x
 j� p	jxj
�

Intuitively a generator g� given a short� random seed x� outputs a long�
hopefully pseudorandom� string g	x
� The desired notion of pseudorandom�
ness� also called �security�� is given by the following de�nition� due to Yao

Yao����

De�nition� Let s � N 
 N� A p	n
�generator g is nonuniformly s	n
�
secure if� for every su�ciently large n � N� for every p	n
�input� ��output
circuit 
 with size	

 � s	n
�

j Pr

	g	x

 � ��� Pr

	y
 � ��j 

�

s	n

�
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where the probabilities are computed according to the uniform distributions
on x � f�� �gn and y � f�� �gp�n�� respectively�

Intuitively� a generator g is s	n
�secure if no s	n
�gate circuit can statisti�
cally distinguish the uniform distribution on f�� �gp�n� from the distribution
induced on f�� �gp�n� by the generator g with the uniform distribution on
the seed space f�� �gn�

De�nition�

�� A p	n
�generator g is nonuniformly polynomially secure if g is s	n
�
secure for every polynomial s�

�� A p	n
�generator g is nonuniformly exponentially secure if there is a

real constant � � � such that g is �n
�

�secure�

It is easy to show that� if there exists a nonuniformly polynomially secure
p	n
�generator g� then NP �� P"Poly 	whence P �� NP
� In fact� such gener�
ators are widely conjectured to exist� The existence of p	n
�generators that
are nonuniformly exponentially secure is an even stronger conjecture� but
not entirely implausible� For example� Regan� Sivakumar� and Cai 
RSC���
have pointed out that the smallest circuits known to break pseudorandom
generators that are based on the discrete logarithm problem have nearly
�
p
n gates�
In any case� the following result shows that the existence of nonuni�

formly exponentially secure generators is not consistent with the existence
of nonuniformly p��natural properties against P"Poly�

Theorem 
�	 	Razborov 
Raz�� see also 
RSC���
� If there is a nonuni�
formly exponentially secure �n�generator� then there is no combinatorial
property that is nonuniformly p��natural i�o� against P"Poly�

The following result relates these issues to the measure of P"Poly in
EXP�

Theorem 
�
 	Regan� Sivakumar� and Cai 
RSC���
� If �	P"PolyjEXP
 �
�� then there is a combinatorial property that is nonuniformly p��natural
i�o� against P"Poly�

By Theorems ��� and ���� we have the following�

Theorem 
��� 	Regan� Sivakumar� and Cai 
RSC���
� If there is a
nonuniformly exponentially secure �n�generator� then �	P"PolyjEXP
 �� ��

By Lemma ���� �	P"PolyjEXP
 � � implies that �	P"PolyjE
 � �� At
the time of this writing� the converse is not known to hold� nor is an ana�
logue of Theorem ��� known to hold for E� It is thus conceivable that
P"Poly has measure � in E and 	by Theorem ���
 in E�� but not in E� �
EXP�
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�� Weak stochasticity

It is now known that almost every language in E� and almost every language
in E�� is statistically unpredictable by feasible deterministic algorithms�
even with some nonuniform advice� This result� which appears to be very
useful� is explained in this section�
Properties de�ned in terms of limiting frequencies of failure of predic�

tion schemes are called stochasticity properties in the terminology of Kol�
mogorov 
KU��� USS���� 	Such properties were originally proposed by von
Mises 
vM��� and Church 
Chu��� in their e�orts to de�ne randomness�

Because the prediction schemes allowed in this section are of a restricted
sort� the property discussed here is a weak stochasticity property�
We now make our terminology precise� Our notion of advice classes is

standard 
KL���� An advice function is a function h � N
 f�� �g�� Given
a function q � N
 N� we write ADV	q
 for the set of all advice functions
h such that jh	n
j � q	n
 for all n � N� Given a language A � f�� �g� and
an advice function h� we de�ne the language A	h 	�A with advice h�
 by

A	h � fx � f�� �g� j hx� h	jxj
i � Ag�

Given functions t� q � N
 N� we de�ne the advice class

DTIME	t
	ADV	q
 � fA	h j A � DTIME	t
� h � ADV	q
g�

De�nition� Let t� q� � � N 
 N and let A � f�� �g�� Then A is weakly
	t� q� �
�stochastic if� for all B�C � DTIME	t
	ADV	q
 such that jC�nj �
�	n
 for all su�ciently large n�

lim
n��

j	A�B
 � C�nj

jC�nj
�

�

�
�

Intuitively� B and C together form a �prediction scheme� in which B tries
to guess the behavior of A on the set C� A is weakly 	t� q� �
�stochastic if
no such scheme is better in the limit than guessing by random tosses of a
fair coin� 	This de�nition is slightly stronger than the weak stochasticity
de�ned in 
LM���� in that the language C is allowed advice here�


Theorem ���� 	Weak Stochasticity Theorem!Lutz andMayordomo 
LM���
�
For every �xed k � N and every �xed real number � � ��

�	WS	�kn� kn� ��n
jE
 � �p	WS	�kn� kn� ��n

 � �

and

�p�	WS	�n
k

� nk� �n
�



 � �	WS	�n
k

� nk� �n
�


jEXP
 � ��

That is� almost every language in E� and almost every language in EXP�
is weakly stochastic with the indicated parameters�
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Regan and Sivakumar 
RS��� have recently given a more precise analysis
of the Weak Stochasticity Theorem� especially with respect to the rate of
convergence�

�� Density of hard languages

As noted in section � above� it is a long�standing open conjecture that
E �� P"Poly� i�e�� that not every language in E has polynomial circuit�size
complexity� Many ongoing e�orts to prove this conjecture follow a program
that began with the following results of Meyer�
Recall that a languageA � f�� �g� is sparse if there is a polynomial q such

that jA�nj � q	n
 a�e�� and dense if there is a real number � � � such that
jA�nj � �n

�

a�e� We write SPARSE for the set of all sparse languages and
DENSE for the set of all dense languages� Note that SPARSE � DENSEc�
where DENSEc is the complement of DENSE� For each reducibility �P

r �
each language A� and each set S of languages� we write

Pr	A
 �
�
B
��B �P

r A
�

and
Pr	S
 �

�
A�S

Pr	S
�

Theorem ���� 	Meyer 
Mey���
� P"Poly � PT	SPARSE
�

Theorem ���� 	 Meyer 
Mey���
� Every �P
m�hard language for E 	or any

larger class
 is dense� That is� E �� Pm	DENSEc
�

Corollary ���� 	Meyer 
Mey���
� E �� Pm	SPARSE
�

Meyer�s results suggest proving theorems of the form

E �� Pr	SPARSE


for successively larger classes Pr	SPARSE
 in the range

Pm	SPARSE
 � Pr	SPARSE
 � PT	SPARSE
�

Along the way� we should try to make our results as strong as possible�
	For example� results of Nisan and Wigderson 
NW��� Nis��� indicate
that su�ciently strong lower bounds on the nonuniform complexity of E
could lead to the construction of useful pseudorandom generators�

The next big step in this program was taken by Watanabe� who proved

the following result concerning�P
q�n��tt�reducibility 	polynomial�time truth�

table reducibility with q	n
 queries on inputs of length n
�
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Theorem ���� 	Watanabe 
Wat��b�
� Every �P
O�logn��tt�hard language

for E is dense� That is� E �� PO�logn��tt	DENSE
c
�

Recently� a measure�theoretic attack on this problem has led to the fol�
lowing strengthening of Theorem �����

Theorem ���� 	Lutz and Mayordomo 
LM���
� For every real number
� 
 � 	e�g�� � � ����
� �	Pn��tt	DENSEc
 j E
 � �	Pn��tt	DENSEc
 j
EXP
 � ��

Corollary ���� 	Lutz and Mayordomo 
LM���
� For every real number

� 
 � 	e�g�� � � ����
� E �� Pn��tt	DENSEc
� i�e�� every �P
n��tt�hard

language for E is dense�

The proof of Theorem ���� uses a simple combinatorial technique!the
sequentially most frequent query selection!to show that every language
in Pn��tt	DENSEc
 is predictable� i�e�� fails to be weakly stochastic with
suitable parameters� The result then follows immediately from Theorem
����� the Weak Stochasticity Theorem�
Given the Weak Stochasticity Theorem� which is a very general princi�

ple� this proof of Corollary ���� 	via Theorem ����
 is much simpler than
the stage construction originally used to prove Theorem ����� This is not
surprising� once it is noted that our proof of Corollary ���� is an appli�
cation of 	a resource�bounded generalization of
 the probabilistic method

Erd��� Sha��� Sha��� ES��� Spe��� AS���� which exploits the fact that it
is often easier to establish the abundance of objects of a given type than
to construct a speci�c object of that type�
It should be emphasized here that Theorem ���� is more than a means of

proving Corollary ����� 	By analogy� the value of classical Lebesgue measure
and probability far surpasses their role as tools for existence proofs�
 The
quantitative content of Theorem ����!that the set Pn��tt	DENSEc
 � E
is a negligibly small subset of E!is much stronger than the qualitative
separation of Corollary �����
Recently� Fu has independently proven the following� related result�

Theorem ���� 	Fu 
Fu���
�

�� For every real � 
 �
� � E �� Pn��T	DENSEc
�

�� For every real � 
 �� EXP �� Pn��T	DENSEc
�

Note that the reducibilities here are Turing� i�e�� adaptive� as opposed to
the nonadaptive truth�table reducibilities of Corollary �����
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�	NP j EXP
 �� � �� �	NP j E
 �� �
m �

�p�	NP
 �� � �� �p	NP
 �� �
� �

	�k
NP �� DTIME	�n
k


 �� 	�c
NP �� DTIME	�cn

�

P �� NP

FIGURE 
� Non�smallness conditions for NP�

�� Strong hypotheses

At our present state of knowledge 	i�e�� lack thereof
� many results in com�
plexity theory contain strong� unproven hypotheses� Here are just three
examples�

Theorem ���� 	Karp and Lipton 
KL���
� If #P
� �� $P

� � then NP ��
PT	SPARSE
�

Theorem ���� 	Mahaney 
Mah���
� If P �� NP� then NP �� Pm	SPARSE
�

Theorem ���� 	Ogiwara and Watanabe 
OW���
� If P �� NP� then NP ��
Pbtt	SPARSE
�

	This last result refers to polynomial�time truth�table reducibility with
an arbitrary but �xed number of queries�

The proofs of the above three theorems have given complexity theory

some its most beautiful and useful techniques� However� the conclusions of

these theorems are far weaker than the observation that all known �PT �hard
languages for NP are dense� In this sense� relative to our current knowledge�
the hypotheses P �� NP and #P �� $P

� lack explanatory power�
In order to make progress on matters of this type� we have proposed

investigation of various strong measure�theoretic hypotheses� For example�
Figure � gives the implications among various conditions asserting the non�
smallness of NP� In this section we brie�y discuss the reasonableness and
known consequences of the weakest measure�theoretic hypothesis in Figure
�� namely� the hypothesis that NP does not have p�measure ��
This hypothesis is best understood by considering the meaning of its

negation� that NP has p�measure �� This latter condition occurs if and
only if there is a p�martingale that succeeds 	bets successfully
 on every
language A � NP� The fact that the strategy d is p�computable means
that� when betting on the condition �x � A�� d requires only �cjxj time for
some �xed constant c� 	This is because the running time of d for this bet is
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polynomial in the number of predecessors of x in the standard ordering of
f�� �g�
� On the other hand� for all k � N� there exist languages A � NP
with the property that the apparent search space 	space of witnesses
 for

each input x has �jxj
k

elements� Since c is �xed� we have xcn � xn
k

for
large values of k� Such a martingale d would thus be a very remarkable
algorithm% It would bet successfully on all NP languages� using far less
than enough time to examine the search spaces of most such languages�
It is reasonable to conjecture that no such martingale exists� i�e�� that NP
does not have p�measure ��
Kautz and Miltersen 
KM��� have shown that� if A is an algorithmically

random oracle� then �pA	NP
A
 �� �� This proof� though interesting for its

analysis of independence and randomness� gives no evidence for the truth
of the unrelativized �p	NP
 �� � conjecture�
Since �p	NP
 �� � implies P �� NP� and �p	NP
 � � implies NP �� EXP�

we are unable to prove or disprove the �p	NP
 �� � conjecture at this time�
Until such a mathematical resolution is available� the condition �p	NP
 �� �
is best investigated as a scienti�c hypothesis� to be evaluated in terms of
the extent and credibility of its consequences�
We now survey known consequences of the hypothesis that NP does not

have p�measure �� The �rst follows immediately from Theorem ����

Theorem ���� 	Mayordomo 
May��a�
� If NP does not have measure ��
then NP contains a P�bi�immune language�

Using standard techniques� the following result has been derived from
Theorem �����

Theorem ���� 	Lutz and Mayordomo 
LM�
� If NP does not have p�
measure �� then E �� NE and EE �� NEE�

Corollary ���� 	Lutz and Mayordomo 
LM�
� If NP does not have p�
measure �� then there is an NP search problem that does not reduce to the
corresponding decision problem�

Proof� Bellare and Goldwasser 
BG��� have shown that� if EE �� NEE�
then there is an NP search problem that does not reduce to the correspond�
ing decision problem� The present corollary follows immediately from this
and Theorem ����� �

We now consider complexity cores of languages that are �P
m�hard for

NP� The following result is well�known�

Theorem ���� 	Orponen and Sch oning 
OS���
� If P �� NP� then every
language that is �P

m�hard for NP has a nonsparse P�complexity core�
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Strengthening the hypothesis of Theorem ���� gives a stronger conclu�
sion� 	This essentially follows from Theorem ����


Theorem ���	 	Juedes and Lutz 
JL��a�
� If NP does not have p�measure
�� then every language that is �P

m�hard for NP has a dense exponential
complexity core�

Concerning the density of hard languages for NP� Theorem ���� gives
us the following result� Note that the hypothesis and conclusion are both
stronger than in Theorem �����

Theorem ���
 	Lutz and Mayordomo 
LM���
� If NP does not have p�
measure �� then for every real number � 
 �� NP �� Pn��tt	DENSEc
� i�e��
every �P

n��tt�hard language for NP is dense�

The next result concerns NP�completeness� The NP�completeness of de�
cision problems has two principal� well�known formulations� These are the
�P
T�completeness introduced by Cook 
Coo��� and the �P

m�completeness
introduced by Karp 
Kar��� and Levin 
Lev���� It is widely conjectured
	
LLS��� You��� LY��� Hom���
 that these two notions are distinct�

CvKL Conjecture� 	�Cook versus Karp�Levin�
� There exists a language

that is �P
T�complete� but not �P

m�complete� for NP�

The CvKL Conjecture is very ambitious� since it implies that P �� NP�
The question has thus been raised 
LLS��� Sel��� Hom��� BHT��� whether
the CvKL Conjecture can be derived from some reasonable complexity�
theoretic hypothesis� such as P �� NP or the separation of the polynomial�
time hierarchy into in�nitely many levels� To date� despite extensive work

Sel��� KM��� Wat��a� Wat��b� WT��� Wat��b� BHT��� LY��� LLS���
Sel��� Hom��� BHT��� � even this more modest objective has not been
achieved�
The following result shows that the CvKL Conjecture holds under our

strong measure�theoretic hypothesis�

Theorem ����� 	Lutz and Mayordomo 
LM�
� If NP does not have p�
measure �� then there is a language C that is �P

T�complete� but not �P
m�

complete for NP�

Of the measure�theoretic results mentioned thus far in this section� The�
orems ����� ����� and ���� hold with NP replaced by any class whatsoever�
Theorem ����� Corollary ����� and Theorem ����� are more speci�c to NP�
The hypothesis �p	NP
 �� � also has consequences involving the com�

plexity classes BPP and BPP	#P
k 
 for k � �� In fact� these consequences

all follow from the hypothesis that the class &P
� does not have p�measure
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�� Since NP � &P
� � the hypothesis �p	&

P
� 
 �� � follows from� and is thus at

least as plausible as� the hypothesis �p	NP
 �� ��
The �rst consequence of �p	&

P
� 
 �� � is a tightening of the result� due to

Lautemann 
Lau��� and Sipser and G�acs 
Sip���� that BPP � #P
� � $P

� �

Theorem ����� 	Allender and Strauss 
AS���
� If �p	&
P
� 
 �� �� then

BPP � &P
� �

A slight strengthening of the proof of Theorem ����� yields the following�

Theorem ����� 	Lutz 
Luta�
� If �p	&
P
� 
 �� �� then for all k � �� BPP	#P

k 
 �
&P
k���

Theorem ����� has consequences for lowness and polynomial advice� If
C and L are classes of languages� then L is low for C if C	L
 � C� The
following corollary follows easily from Theorem ����� and the fact� due to
K obler� Sch oning� and Tor�an 
KST���� that AM � co�AM is low for AM�
	See 
KST��� for the de�nition and basic properties of the �Arthur�Merlin�
class AM�


Corollary ����� 	Lutz 
Luta�
� If ��&
P
� 
 �� �� then AM � co�AM is low

for &P
� �

Corollary ����� 	Lutz 
Luta�
� If �p	&
P
� 
 �� �� then BPP is low for &P

� �

Corollary ����� 	Lutz 
Luta�
� Assume that �p	&
P
� 
 �� �� Then the graph

isomorphism problem is low for &P
� � Thus� if &

P
� �� PH� then the graph

isomorphism problem is not �P
m�complete� �P

T�complete� or even �SNP
T �

complete for NP�

	The strong nondeterministic polynomial�time reducibility �SNP
T is de�

�ned by A �SNP
T B if and only if A � NP	B
 � co�NP	B
�


By Theorem ����� Theorem ���� says that� if #P
� �� PH� then NP ��

P"Poly� A recent� signi�cant improvement of this result is the following�

Theorem ������
BCKT��� KW��� If ZPP	NP
 �� PH then NP �� P"Poly�

	See 
BDG��� for the de�nition and basic properties of the zero�error
probabilistic polynomial�time complexity class ZPP� It is well�known that
&P
� � ZPP � #P

� � $P
� �


The following result� which follows immediately from Theorems �����
and ������ derives the same conclusion as Theorems ���� and ����� from a
somewhat di�erent hypothesis�

Corollary ����� 	Lutz 
Luta�
� If �p	&
P
� 
 �� � and &P

� �� PH� then NP ��
P"Poly�
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�� Conclusion

Resource�bounded measure has been shown to interact in informative�
quantitative ways with polynomial�time reductions� bi�immunity� complex�
ity cores� completeness� circuit complexity� Kolmogorov complexity� the
density of hard languages� randomized complexity� lowness� and other much�
studied structural aspects of the exponential time complexity classes E and
EXP� This work has expanded the class of provably intractable problems
	section �
� and there are indications throughout that it may have profound
implications for the structure of NP and other classes that characterize im�
portant computational problems�
Ultimately� the objective of this work is a detailed account of the quan�

titative structure of E and EXP� with su�cient resolution to yield useful
bounds on the complexities of natural computational problems� The results
achieved to date are only a very small beginning� Here we mention just a
few directions for further work�

�� One of the most signi�cant challenges is to �nd natural examples of
languages that are weakly �P

m�complete� but not �P
m�complete� for

EXP� Theorem ��� suggests the existence of such natural examples�
and Theorem ��� underscores the importance of �nding them�

�� Most of the results mentioned in sections ��� concern the structure
of E and EXP under �P

m�reducibility� It will be worthwhile to inves�
tigate how far in the direction of �P

T�reducibility these results can
be extended� For example� a Small Span Theorem for �P

T�reductions
	or even for �P

tt�reductions
 in EXP would imply that EXP �� BPP

JL��a� ANT��

�� In light of Theorem ���� and Corollary ����� it may well be that
measure arguments can be used to simplify or replace other known
stage constructions� Such simpli�cation might clarify issues� leading
to further progress�

�� Many other structural aspects of E and EXP remain to be investi�
gated from the standpoint of resource�bounded measure� For exam�
ple� it seems likely that resource�bounded measure will shed light on
the theory of average�case complexity� Cai and Selman 
CS��� have
made one observation in this regard� but we hope that this is only a
beginning�

�� Work to date has focused on the measure�theoretic structure of classes
of languages� i�e�� decision problems� Classes of functions� search prob�
lems� optimization problems� approximation problems� etc�� should
also be investigated in this light�

�� The reasonableness and consequences of strong hypotheses such as
those mentioned in section �� require further investigation� Are the



�� The Quantitative Structure of Exponential Time 



hypotheses �p	NP
 �� � and �p	&
P
� 
 �� � equivalent� or is the latter

in some sense weaker� Does �p	NP
 �� � imply that there is a lan�
guage that is �P

T�complete� but not �P
tt�complete� for NP� Do these

hypotheses have unreasonable consequences� Many signi�cant ques�
tions remain�

�� Ambos�Spies� Neis� and Terwijn 
ANT� have recently shown that the
notion of resource�bounded genericity introduced by Ambos�Spies�
Fleischhack� and Huwig 
AFH��� AFH��� interacts very usefully
with resource�bounded measure� 	See 
Amb��� for a survey of this
and other types of resource�bounded genericity�
 Balc�azar and May�
ordomo 
BM��a� have characterized this genericity as a strong kind
of bi�immunity� and Ambos�Spies� Mayordomo� Wang� and Zheng

AMWZ��� have further investigated the relationships between gener�
icity and measure� but more investigation is needed to fully under�
stand the relative power of these two methods�

�� One of the most challenging tasks remaining is the development of
measure in subexponential complexity classes� Mayordomo 
May��c�
May��b� and Allender and Strauss 
AS��� have proposed 	inequiv�
alent
 de�nitions of measure in PSPACE� and Allender and Strauss

AS��� AS��� have investigated various formulations of measure in
P and other subexponential classes� but at the time of this writing�
many issues are unresolved�

Resource�bounded measure is a powerful generalization of Lebesgue mea�
sure� There is reason to hope that it will be as fruitful in complexity the�
ory as Lebesgue measure has been in analysis and mathematical physics�
Many investigators will have to ask and answer many questions in order
for resource�bounded measure to achieve its full potential�
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