Query Order and NP-Completeness!

Jack J. Dai Jack H. Lutz
Department of Mathematics Department of Computer Science
Towa State University Towa State University
Ames, Towa 50011 Ames, Towa 50011
U.S.A. U.S.A.
Abstract

The effect of query order on NP-completeness is investigated. A sequence D=
(D1, ..., Dy) of decision problems is defined to be sequentially complete for NP if each
D; € NP and every problem in NP can be decided in polynomial time with one query
to each of Dy, ..., Dy in this order. It is shown that, if NP contains a language that is
p-generic in the sense of Ambos-Spies, Fleischhack, and Huwig [3], then for every integer

k > 2, there is a sequence D= (D1,...,Dy) such that Dis sequentially complete for
NP, but no nontrivial permutation (D;, ,...,D;,) of Dis sequentially complete for NP.
It follows that such a sequence D exists if there is any strongly positive, p-computable
probability measure v such that v,(NP) # 0.

1 Introduction

The success or efficiency of a computation sometimes depends—and sometimes does not
depend—upon the order in which it is allowed access to the various pieces of information that
it may require. Although this truism is an important reality in many areas of computing,
including information security, machine learning, game playing, and intelligent planning, it
has only very recently come under complexity-theoretic scrutiny.

The natural way to begin investigation of this phenomenon is to focus on the effect of
query order on the efficiency of oracle computations. Indeed, most of the work to date
has focused on situations in which a polynomial-time computation has oracle access to
complete problems for several different complexity classes. The typical sort of question is
then whether various constraints on the order in which these complete problems must be
queried confer differing amounts of power on the underlying computations. The results of
such investigations, some of which are at first surprising, have recently been surveyed by
Hemaspaandra, Hemaspaandra, and Hempel [9].

!This research was supported in part by National Science Foundation Grant CCR-9610461.

In this paper, we examine a related, but somewhat different aspect of query order,
namely its effect on NP-completeness. To be more precise, we say that a sequence D =
(D1, ..., Dy) of decision problems is sequentially complete for NP if each D; € NP and every

problem in NP can be decided in polynomial time with one query to each of D1,... , Dy in
this order. The question we ask is whether, for k > 2, there is a sequence D = (Dq, ... , Dy)
such that D is sequentially complete for NP, but no nontrivial permutation (D;,,...,D;,)

of D is sequentially complete for NP. In this case we say that D is strictly sequentially
complete for NP.

It is immediately clear that the existence of a sequence D that is strictly sequentially
complete for NP implies that P # NP. The converse may also be true, but appears to be
difficult to prove. We thus turn to a stronger hypothesis than P # NP.

A natural hypothesis to consider is the hypothesis that NP does not have p-measure 0
(briefly, pu,(NP) # 0). This hypothesis, which was proposed by the second author, implies
that P # NP and has been proven to have many plausible consequences not known to be
provable from P # NP. The recent surveys [5, 11, 8] discuss a number of such consequences.

As will be seen below, the existence of a sequence D that is strictly sequentially complete
for NP does indeed follow from the p,(NP) # 0 hypothesis. However, our main theorem
establishes more, namely, that if NP contains a language that is p-generic (in the sense of
Ambos-Spies, Fleischhack, and Huwig [3, 4]), then there is a sequence D that is strictly
sequentially complete for NP.

This notion of p-genericity (which is defined precisely in Section 2 below) has recently
been the subject of several investigations, most of which have been discussed in the paper
[1] and/or the survey [5]. The hypothesis that NP contains a p-generic language is known to
imply the P # NP conjecture, and to be implied by the p,(NP) # 0 hypothesis [6, 5], and
neither of the converse implications has been proven. Many (but not all) of the consequences
of p,(NP) # 0 have also shown to be consequences of NP containing a p-generic language.
One concrete advantage of using the latter hypothesis (when possible) is that it weakens
the p,(NP) # 0 hypothesis from the uniform probability measure p to a wide variety of
probability measures v. Specifically, Lorentz and Lutz [10] have shown that, if there is
any strongly positive, p-computable probability measure v such that v,(NP) # 0, then
NP contains a p-generic language. Thus, by our main theorem, the existence of such a
probability measure v implies the existence of a sequence D that is strictly sequentially
complete for NP. (Note: Breutzmann and Lutz [7] have recently shown that p,(NP) # 0
is equivalent to v,(NP) # 0 whenever v is a strongly positive, P-computable, coin-toss
probability measure, but this is a much stronger restriction on v than the result of [10].)

The proof of our main result uses some ideas of Lutz and Mayordomo [12] and Ambos-
Spies and Bentzien [2] but is somewhat more involved.

2 Preliminaries

In this paper, all languages are sets of binary strings, i.e., sets A C {0,1}*. We identify
each language A with its characteristic sequence x4 € {0,1}* defined by

where sp = A, s1 =0,s9 =1,... is the standard enumeration of {0,1}*, and

1 ifs, €A
Alsn) = { 0 otherwise.

When z = s, y = S, we say “z < y” if and only if n < m. If A = apa;--- € {0,1}* and
T = s, then we write A[x = agay -+ ap—1. For A, B C {0,1}* and n € N, we define

AeB={zl|zec A}U{y0 |y € B}
and

Ay = {z € {0,1}" | 210" € A}.

We briefly review the notion of p-genericity, introduced by Ambos-Spies, Fleischhack,
and Huwig [3, 4]. We refer the reader to [1] or [5] for more detailed discussions.

Definition.

1. An extension function is a partial function f such that dom f C {0,1}* and, for all
Alz € dom f, f(A]x) is of the form

f(A rfﬂ) = ((Zﬁo,ig), cee (:Em,’lm)),
where m € N, zg, ... ,x, € {0,1}*, 2 < z9 < 21+ < Ty, and i, ... ,im € {0,1}.
2. A t(n)-extension function is an extension function that is computable in O(¢(n)) time.

3. An extension function is simple if f(A[z) € {(z,0), (z,1)} for all A[z € dom f.

4. If f is an extension function and k£ is a positive integer, then f is k-bounded if, for all
Alz € dom f,

f(Alz) = ((z0,0), - , (z1,12),

for some [< k.

Definition. Let f be an extension function, and let A C {0,1}*.
1. fis dense along A if there are infinitely many z € {0, 1}* for which f(A[z) is defined.

2. A meets f at z € {0,1}* if f(A[z) is defined, say f(A[z) = ((z0,%0),. .- » (Zm,im))
and, for all 0 <1 <m, A(x;) = 1.

3. A meets f if A meets f at some string z. Otherwise, A avoids f.

Definition. Let A C {0,1}*.
1. Ais t(n)-generic if A meets every simple ¢(n)-extension function that is dense along
A.
2. A is p-generic if A is n®generic for every positive integer c.

The proof of our main result uses the following lemma.

Lemma 2.1 (Ambos-Spies [1]). If A is p-generic, then for all positive integers k£ and ¢, A
meets every k-bounded n‘-extension function that is dense along A.

3 Sequential Reductions

In this section we introduce the notion of strictly sequential completeness for NP. Our
development uses the following special type of polynomial-time reduction.

Definition. Let A, By,... , B, C {0,1}*, and write B = (By,... , By).

1. A sequential, polynomial-time reduction (briefly, a Sg—reduction) of Ato Bisa poly-
nomial time-bounded k-oracle Turing machine M with the following two properties.

(a) A= L(MB).

(b) For all z € {0,1}*, the computation of Mg(m) makes exactly one query to each
of the oracles By, ... , By, with the queries occurring in this order.

2. A is sequentially polynomial-time reducible (briefly, Sg—reducible) to E, and we write
A gg’ E, if there exists a glsj—reduction of A to B.

We now use sequential reductions to define sequential completeness and strictly sequen-
tial completeness.

Definition. Let C be a class of languages, and let B = (Bi,...,By) be a sequence of
languages.

1. Bis sequentially hard (briefly, <{-hard) for C if, for all A € C, A <{ B.

2. B is sequentially complete (briefly, <E-complete) for C if By,...,By € C and B is
Sg—hard for C.

3. B is strictly sequentially hard (briefly, <bs-hard) for C if k > 2, Bis <L-hard for C,
and no nontrivial permutation (B;,, ... ,B;,) of B is <£-hard for C.

4. B is strictly sequentially complete (briefly, Sgs—complete) for Cif By,... ,B; € C and
B is Sgs—hard for C.

We now make two observations regarding these definitions. The first is obvious.

Observation 3.1. If B is glsjs—complete for C, then C P.

In particular, Observation 3.1 implies that the existence of glsjs—complete languages for
NP implies that P # NP.

Our second observation is also easily verified.

Our second observation is an obvious characterization of glsj—reducibility that is used in
the proof of our main result.

Observation 3.2. Let A C {0,1}*, and let B = (Bi,... B;,) be a sequence of languages.
Then A <Y B if and only if there exist a family F = {f, | @ € {0,1}=¥1} of polynomial
time-computable functions f, : {0,1}* — {0,1}* and a polynomial time-computable func-
tion A : {0,1}* x {0,1}¥ — {0,1} such that, for all z € {0,1}*, if we define by,... b €
{0,1} by the recursion b; = B;(fp,...;,_, (z)), then

A(IL‘) = h((II, bl s bk).

(Intuitively, if M is the <f-reduction of A to B, then foyb;_, () is the i*® query of Mé(ac)
when the first i —1 query answers are by, ... ,b;_1; and h(z, by - - - by) is the final accept/reject
decision of MP?(z).) In this case, we say that A <§ B via (F,h).

4 Main Result

In this section, we prove our main result, which says that if NP contains a p-generic language,
then for every k > 2 there is a sequence D = (Dy, ..., Dy) that is <{-complete for NP.
The following construction will be used.

Construction 4.1. Given A,S C {0,1}* and an integer k£ > 2, define the sequence
D(A,S,k) = (Dy,...,Dy) as follows.

(i) D1 = Ayg—s)-
(ii) For 1 <14 < k,

D; = [Agap—sita) N Aar—1i)] © [Aan—sita) U Agar—ai)]-

(iii) Dy = [A(4) N S] @ [A(4) U S]
Most of our work is done by the following lemma.

Lemma 4.2 (Main Lemma). Let A C {0,1}*, S € DTIME(2"), and let D = D(A, S, k) =
(D1,...,Dy). If Ais p-generic and D' = (D;,,...,D;,) is a nontrivial permutation of D,
then A £E D',

Proof. Let A, S, D, and D’ be as given, and assume that A <£ D'. Tt suffices to show that
A is not p-generic.

Since A <{ D', there exist F and h as in Observation 3.2 such that A <f D' via (F, h).
Our argument proceeds as follows. When we use (F, h) to answer the question “x € A?”, if
at some stage we encounter a question “y € A(y)?”, then when y10* > . we make a guess
about the answer of this question. Using these guesses, we can obtain the value of A(x).
Then the opposite value of A(x) is impossible, provided that all the guesses are correct.
This will induce a (k + 1)-bounded n?-extension function F' that is dense along A while A
avoids F'. It will follow by Lemma 2.1 that A is not p-generic.

Let
T = {z | z is not of the form y10* for y € {0,1}*, 1 € Z*}.

Clearly T € P and T is an infinite set. Given a string apa; - - apm—1 € {0,1}*, let z = sp,.
If z ¢ T, the extension function F' is undefined at x. If z € T, before we can define F(z),
there are k stages.

At stage j (j = 1,2,... ,k), suppose the assigned values of the answers for the first j — 1
questions are by, by, ... ,bj_1, respectively, where b; € {0,1}, for i = 1,2,... ,57 — 1. Then
we assign the 7' question to be “fa;(x) € Dy; 7", where aj = biba - -+ bj_1. At this stage,
we shall assign a value to D;,(fa,; (7)). If we make a guess at this stage, we shall record it
as A(g;) = ¢;, where g; € {0,1}*, ¢; € {0,1}.

Let fo,(z) = ujol if fo,(z) is of the form y1 for y € {0,1}"; let fo,(z) = u;10 if fo,(z)
is of the form y0. We may write fq, (7) = ujl, where [€ {0,1} and I =1 — 1.

There are three cases.
Case 1. fq,(z) is small. There are three subcases.
Subcase 1.1. ij =1 (so Dj; = A(y_s)) and fa; (z)10*—* = 5,, | where m; < m. Then

= A(faj (x)104k_4)
= A(4k—4) (fa]‘ (37))

We assign bj = a,. (Note that b; = D, (fo,;(2)).)

Am,

Subcase 1.2. 2 <1; <k —1,s0

Di; = [Ak—ai;44) N Agar—1i,)) © [Aar—ai;14) Y Ak

and uﬂl()‘““_“j 4 < s,,. In this case, let

ujl104k—4ij = Sy,
Ak—4ij+4
w107 Sms
Then m; < mo < m, so
A(4k—4ij)(ujl) = O0m
and Aqg—ai;1a)(ut) = am,.

Using these values, we obtain the value of D;;(fa,(7)). Assign b; the value of D;, (fa; (7))
we obtained.

Subcase 1.3. i =k (so Dy = [A@gy N S] @ [Agy U S]) and uj10* < z. In this case, let
uj1104 = Sm,; then Ay (uji) = am,. Since S € DTIME(2") and uj; < s;,,, We can compute
S(uj;) within (m + 1) steps. Then we use a,,, and the value of S(u;;) to obtain the value
of Di(fa;(z)). We assign b; this value.

In Case 2 and Case 3, fq; (x) is not small. In Case 2, no guess is made, while in most of
the setups in Case 3, a guess is made.

Case 2. There are two subcases.

Subcase 2.1. ij =1, fo,(z)10% % > 2, and the value of A(fq;(2)10%*) has been assigned
in the previous stages. In this case, assign b; the assigned value of A(fq, (z)10%—%) .

Subcase 2.2. 2 < i; < k—1, uyl0%* =4+ > 5 and the values of both A(u;,10% 44 +1)
and A(u;;10** 1) have been assigned. (We assign A(y) a value only when y > =, so in
Subcase 2.2, u;;10*%%~% > z.) In this case, use the assigned values of A(u;;10%*~45+4) and
A(uj10%745) to compute Dj;(fo,(2)) and assign b; the value of Dy, (fa; (x)) we obtained.

Case 3. There are three subcases.

Subcase 3.1. ij = 1, fa; (z)10*~* > 2 and the value of A(fao, (2)10*~%) has not been
assigned. We define ¢; = fa; ()10 % and ¢; = 0. We assign A(g;) = 0 and b; = 0.

Subcase 3.2. 2 <1i; < k-1, uj1104k_4i1+4 > z, and either A(uﬂ104k—4ij+4) or A(uﬂlo‘“@—‘lij)
has not been assigned a value. There are three Subsubcases.

Subsubcase 3.2.1 A(uj1104k*4ii+4) has not been assigned. We define ¢; = uj1104k*4i1+4 and
c; = 1. We assign A(q]') =/ If A(qj) =1, then Dij (faj (z)) =1, so we assign by =1

Subsubcase 3.2.2. The value of A(u;;10*%%~4%%4) has been assigned, and u;10*%~% < z.
In this case, let uj1104k*4ii = Sm,, where m; < m. Then A(4k—4ij)(ujl) = Qy,. Using this
and the assigned value of A(uj10**~4574) we obtain the value of D; (fa,(z)). We assign
b; this value.

Subsubcase 3.2.3. The value of A(u;;10**~4i*%) has been assigned, ;1044 > z, and
the value of A(uj1104k*4li) has not been assigned. In this case we do the same work as in
Subsubcase 3.2.1 but replace (4k — 4i; + 4) by (4k — 44).

Subcase 8.3. i; =k, and u;;10* > z. In this case, we assign A(u;;10*) =1 and b; = 1. We
define ¢; = uleO4 and ¢; = [.

After k stages, we have assigned the values for by, bs,... ,br. Now we define b =
h(x, b1b2 e bk)

Claim 1. If j; # j2, ¢, and gj, are defined, then ¢;, # g;,.

Proof. Since ¢; is defined only when A(g;) has not yet been assigned a value (with the only
possible exception in Subcase 3.3), we have i;, = k or i;, = k. Without loss of generality,
we assume that i;, = k. If jo > j; in Subcase 3.2, the value of A(uj,10*) is not assigned,
and gj, is not defined, so j» < ji. In stage j» of Subcase 3.2, when we assign the value
of A(u;,110%), the value of A(uj,;10%) must have been assigned in some previous stage, say
stage j3, where 73 < jo.

By induction, we can show that there exist j; > j2 > --- > j; such that the value
of A(u;,;10~*) is assigned at stage j, (2 < r < k — 1), Dj, = Dgy1—r, the value of
A(fa, (2)10%~1) is assigned at stage ji of Subcase 3.1, and D;, = Dy. Since ji,...,jk €
{1,2,... ,k}, it follows that j; = k —t+ 1, for t = 1,2,... ,k, whence D;; = D; for
j=1,2,...,k, contradicting the nontriviality of the permutation. This proves the Claim.
O

Let
{(gj,ci)} Uiz, b} = {(yo,do),--- , (y1,dr) },

where
Yo, Y1, Yt € {07 1}*7

Yo <Y1 < -0 < Y,
do, . .. ,th{O,l}.

Clearly ¢ > 0 since (yo,do) = (z,b).
Now we define the extension (partial) function
F 0,1} — ({0,1}" x {0,1})*

as follows. For w = apa; -+ apm—1 € {0,1}*, if s, € T, then F(w) is undefined. If s, € T,
then F(w) = ((yo,do), ... ,(ys,di)). It is easy to verify that F is a (k + 1)-bounded n?-
extension function. Since for every z € T, F(A[x) is defined, and T is an infinite set, F is
dense along A. From the fact that b = h(xz,bibs---bg), for every x € T, it follows that A
does not meet F' at any = € {0,1}*, whence A avoids F'. It follows by Lemma 2.1 that A
is not p-generic. O

Theorem 4.3 (Maig Theorem). If NP contains a p-generic language, then for every k > 2
there is a sequence D = (D, ..., Dy) that is strictly sequentially complete for NP.
Proof. Let A € NP be p-generic, let k£ > 2, and let
D = D(A,SAT, k) = (Dy,...,Dy).

It is clear by inspection that, for all z € {0,1}*, the following three things are true.

(i) SAT(z) = Dy (5400 (2)).

(ii) For 1 <i <k, Agp—4i)(7) = Di(TA(ah—sit4)(T))-

(iil) Agag—a)(z) = D1 (z).

It is easy to convert (i), (i), and (iii) into a <f-reduction of SAT to D. (For example,
when k = 3, we have SAT(z) = D3(zAw)(z)) = Ds(xD2(zA(g)(7))) = D3(zD2(zD1(x))).)
Thus SAT gg’ D. Since SAT is <P _complete for NP, it follows immediately that D is gg’-
hard for NP. Also, since A € NP and NP is closed under finite unions, finite intersections,
®, and projections A — A(,), we have Dy,... , Dy € NP whence D is <f-complete for NP.

To complete the proof, let D' = (Diy, ... ,D;,) be a nontrivial permutation of D. Since

A is p-generic, the Main Lemma tells us that A ££ D'. Since A € NP, it follows that D' is
not Sg—complete for NP. We have now shown that D is ggs—complete for NP. O

A similar—and simpler—argument establishes the following absolute result.

10

Theorem 4.4. For every k > 2 there is a sequence D = (D1,...,Dy) that is strictly
sequentially complete for E (hence also for Eg).

We conclude with a brief discussion of strict sequential completeness in NP under strong
measure-theoretic hypotheses. Ambos-Spies, Neis, and Terwijn [6] have shown that, if NP
does not have p-measure 0 (briefly, 1,(NP) # 0), then NP contains a p-generic language.
Lorentz and Lutz [10] have recently extended this argument to show that, if there is any
strongly positive, p-computable probability v such that v,(NP) # 0, then NP contains a
p-generic language. Theorem 4.3 thus has the following immediate consequence.

Corollary 4.5. If there exists a strongly positive, p-computable measure v such that

vp(NP) # 0, then for every £ > 2 there is a sequence D = (D1, ...,Dy) that is strictly
sequentially complete for NP.

Acknowledgments. We thank Giora Slutzki, Cliff Bergmann, Elvira Mayordomo, and
Steve Kautz for useful discussions.

References

[1] K. Ambos-Spies. Resource-bounded genericity. In S. B. Cooper, et al., editor, Com-
putability, Enumerability, Unsolvability, volume 224 of London Mathematical Society
Lecture Notes, pages 1-59. Cambridge University Press, 1996.

[2] K. Ambos-Spies and L. Bentzien. Separating NP-completeness notions under strong
hypotheses. In Proceedings of the 12th IEEE Conference on Computational Complexity,
pages 121-127, 1997.

[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial time
computable sets. Theoretical Computer Science, 51:177-204, 1987.

[4] K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizing over deterministic poly-
nomial time. In Proceedings of Computer Science Logic ’87, pages 1-16. Springer-
Verlag, 1988.

[5] K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In
A. Sorbi, editor, Complezity, Logic and Recursion Theory, Lecture Notes in Pure and
Applied Mathematics, pages 1-47. Marcel Dekker, New York, N.Y., 1997.

11

[6]

7]

K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential
time. Theoretical Computer Science, 168:3-19, 1996.

J. M. Breutzmann and J. H. Lutz. Equivalence of measures of complexity classes.
SIAM Journal on Computing. To appear. See also Proceedings of the 14th Symposium
on Theoretical Aspects of Computer Science, Springer-Verlag, 1997, pp. 535-545.

H. Buhrman and L. Torenvliet. Complete sets and structure in subrecursive classes.
In Proceedings of Logic Colloquium ’96, pages 45—78. Springer-Verlag, 1998.

E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. An introduction to query order.
Bulletin of the EATCS, 63:93-107, 1997.

A. K. Lorentz and J. H. Lutz. Genericity and randomness over feasible probability
measures. Theoretical Computer Science, 207:245-259, 1998.

J. H. Lutz. The quantitative structure of exponential time. In L.A. Hemaspaandra and
A.L. Selman, editors, Complexity Theory Retrospective II, pages 225-254. Springer-
Verlag, 1997.

J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness
notions if NP is not small. Theoretical Computer Science, 164:141-163, 1996.

12

