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Abstract. Given a set X of sequences over a finite alphabet, we inves-

tigate the following three quantities.

(i) The feasible predictability of X is the highest success ratio that a
polynomial-time randomized predictor can achieve on all sequences
in X.

(i1) The deterministic feasible predictability of X is the highest success
ratio that a polynomial-time deterministic predictor can achieve on
all sequences in X.

(iii) The feasible dimension of X is the polynomial-time effectivization
of the classical Hausdorff dimension (“fractal dimension”) of X.
Predictability is known to be stable in the sense that the feasible pre-
dictability of X UY is always the minimum of the feasible predictabilities
of X and Y. We show that deterministic predictability also has this prop-
erty if X and Y are computably presentable. We show that deterministic
predictability coincides with predictability on singleton sets. Our main
theorem states that the feasible dimension of X is bounded above by
the maximum entropy of the predictability of X and bounded below by
the segmented self-information of the predictability of X, and that these

bounds are tight.

1 Introduction

The relationship between prediction and gambling has been investigated for
decades. In the 1950s, Shannon [21] and Kelly [10] studied prediction and gam-
bling, respectively, as alternative means of characterizing information. In the
1960s, Kolmogorov [11] and Loveland [12] introduced a strong notion of un-
predictability of infinite binary sequences, now known as Kolmogorov-Loveland
stocasticity. In the early 1970s, Schnorr [19,20] proved that an infinite binary
sequence is random (in the sense of Martin-Lo6f[15]) if and only if no construc-
tive gambling strategy (martingale) can accrue unbounded winnings betting on
the successive bits of the sequence. It was immediately evident that every ran-
dom sequence is Kolmogorov-Loveland stochastic, but the converse question re-
mained open until the late 1980s, when Shen’[22] established the existence of
Kolmogorov-Loveland stochastic sequences that are not random, i.e., sequences
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Fig. 1. Prediction-dimension diagrams for k = 2,3, 4.

that are unpredictable but on which a constructive gambling strategy can ac-
crue unbounded winnings. This result gave a clear qualitative separation be-
tween unpredictability and randomness, and hence between prediction and gam-
bling. However, the precise quantitative relationship between these processes has
not been elucidated. Given the obvious significance of prediction and gambling
for computational learning [2,3,25] and information theory [7,8] this situation
should be remedied.

Recently, Lutz [13,14] has defined computation effectivizations of classical
Hausdorff dimension (“fractal dimension”) and used these to investigate ques-
tions in computational complexity and algorithmic information theory. These
effectivizations are based not on Hausdorff’s 1919 definition of dimension [9, 6],
but rather on an equivalent formulation in terms of gambling strategies called
gales [13]. These gales (defined precisely in section 4 below) give a convenient
way of quantifying the discount rate against which a gambling strategy can suc-
ceed. (Ryabko [16-18] and Staiger [23,24]) have conducted related investigations
of classical Hausdorff dimension in equivalent terms of the rate at which a gam-
bling strategy can succeed in the absence of discounting.) The feasible dimension
dim, (X)) of a set X of sequences is then defined in terms of the maximum dis-
count rate against which a feasible gambling strategy can succeed.

In this paper we use feasible dimension as a model of feasible gambling, and
we compare dimy,(X) quantitatively with the feasible predictability pred,(X)
of X, which is the highest success ratio that a polynomial-time randomized
predictor (defined precisely in section 3 below) can achieve on all sequences
in X. Our main theorem, described after this paragraph, gives precise bounds
on the relationship between pred,(X) and dim,(X). We also investigate the
deterministic feasible predictability dpred,(X), in which the predictor is required
to commit to a single outcome. We use the probabilistic method to prove that
dpred,(X) = pred,,(X) whenever X consists of a single sequence, and we show
that deterministic feasible predictability is stable on computably presentable
sets, i.e., that dpred, (X UY’) = min{dpred,(X), dpred,(Y")} whenever the sets
X and Y are computably presentable. (Feasible predictability is known to be
stable on arbitrary sets [2].)



Prediction and Dimension 3

To describe our main theorem precisely, we need to define two information-
theoretic functions, namely, the k-adic segmented self-information function Zj
and the k-adic mazimum entropy function Hy.

The k-adic self-information of a real number a € (0,1] is Zp(a) = log, L.
This is the number of symbols from a k-element alphabet that would be required
to represent each of é equally probable outcomes (ignoring the fact that é may
not be an integer). The k-adic segmented self-information function 7y, : [%, 1] —
[0,1] is defined by setting Z_k(%) = Zk(%) for 1 < j < k and interpolating linearly
between these points.

Recall [4] that the k-adic entropy of a probability measure p on a discrete
sample space X is .

H = z)log —
k(p) ;E;(p( log 7
This is the expected value of Z.(p(z)), i.e., the average number of symbols from
a k-element alphabet that is required to represent outcomes of the experiment
(X,p) reliably. The k-adic mazimum entropy function Hy : [0,1] — [0,1] is
defined by
Ha(a) = max Hy(p),

where the maximum is taken over all probability measures p on a k-element
alphabet X such that p(a) = a for some a € X'. This maximum is achieved when
the other £ — 1 elements of X are equally probable, so

1 k-1
Hi (o) = alogy, o + (1 — a)log,, 1

Our main theorem says that for every set X C X>°,
Ty (pred,, (X)) < dimp(X) < Hi(pred, (X)).

That is, the feasible dimension of any set of sequences is bounded below by the k-
adic segmented self-information of its feasible predictability and bounded above
by the k-adic maximum entropy of its feasible predictability. Graphically, this
says that for every set X of sequences, the ordered pair (pred, (X), dim; (X)) lies
in the region Ry bounded by the graphs of Z;, and Hy,. The regions R, R3, and
R4 are depicted in Figure 1. In fact, these bounds are tight in the strong sense
that for every k > 2 and every point («, 8) € Ry, there is a set X of sequences
over a k element alphabet such that pred,(X) = « and dim(X) = #. Our main
theorem is thus a precise statement of the quantitative relationship between
feasible predictability and feasible dimension. Since dimension is defined in terms
of the achievable success rates of gambling strategies, this can also be regarded
as a precise statement of the quantitative relationship between prediction and
gambling.

For brevity and clarity in this conference paper, our results are stated in
terms of feasible (i.e., polynomial-time) prediction and dimension. However, our
results generalize to other levels of complexity, ranging from finite-state compu-
tation through polynomial-space and unrestricted algorithmic computation and
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beyond to prediction by arbitrary mathematical functions and classical Haus-
dorff dimension. At the finite-state level, Feder, Merhav, and Guttman [8] have
derived a graph comparing predictability to compressibility for binary sequences.
This graph (Figure 3 in [8]) is equivalent to the finite-state version of our k = 2
graph in Figure 1. (This equivalence follows from the recent proof by Dai, Lath-
rop, Lutz, and Mayordomo [5] of the equivalence of finite-state dimension and
finite-state compressibility.)

2 Preliminaries

We work in an arbitrary finite alphabet X with cardinality |¥| > 2. When
convenient, we assume that X has the form ¥ = {0,1,... ,k —1}. A sequence is
an element of X°°, i.e., an infinite sequence of elements of X'. Given a sequence
S € X and natural numbers ¢,j € N with ¢ < j, we write S[i..j] for the string
consisting of the i*!through j*"symbols of S and SJi] for the i*!symbol in S.
(The leftmost symbols of S is S[0].) We say that a string w € X* is a prefiz of
S and we write w C S, if w = S[0..|w| — 1].

Given a time bound ¢ : N — N, we define the complexity class DTIMEx; (¢(n))
to consist of all sequences S € X such that the n*!symbol in S can be computed
in O(t(logn)) steps. We are especially interested in the classes DTIME; (2°™) for
fixed ¢ € N and the class Ey, = U.enDTIMEjy; (2°™). Note that if S € Ey, then
the time required to compute the n*'symbol of S is exponential in the length of
the binary representation of n and polynomial in the number n itself.

If D is a discrete domain, then a real-valued function f : D — R is polynomial-
time computable if there is a polynomial-time computable, rational-valued func-
tion f: D x N — Q such that for all z € D and r € N, |f(z,r) — f(z)] <27".

3 Prediction

Our models of deterministic and randomized prediction are very simple. In both
cases, there is a given alphabet Y containing two or more symbols. Having seen
a string w € X* of symbols, a predictor’s task is to predict the next symbol.

Definition. A deterministic predictor on an alphabet X is a function
T X=X

Intuitively, 7(w) is the symbol that 7 predicts will follow the string w. This
prediction is well-defined and unambiguous, and it is either correct or incorrect.
In contrast, a randomized predictor is allowed to simply state the probabilities
with which it will predict the various symbols in X.

Notation. We write M (X)) for the set of all probability measures on X, i.e., all
functions p : ¥ — [0, 1] satisfying ) . p(a) = 1.
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Definition. A (randomized) predictor on an alphabet X is a function
T X = M(X).

Intuitively, having seen the string w € X*, a randomized predictor 7 per-
forms a random experiment in which each symbol a € X occurs with probability
7m(w)(a). The outcome of this experiment is the symbol that 7 predicts will fol-
low w. It is evident that 7 will be correct with probability 7(w)(a), where a is
the symbol that does in fact follow w.

It is natural to identify each deterministic predictor 7 on X with the ran-
domized predictor

X M(X)
defined by
1 if a =n(w)

m(w)(a) = {0 if a # 7(w).

Using this identification, a deterministic predictor is merely a special type of
randomized predictor. Thus, in our terminology, a predictor is a randomized
predictor, and a predictor 7 is deterministic if 7(w)(a) € {0,1} for all w € X*
and a € X.

Definition. Let 7 be a predictor on Y.

1. The success rate of T on a nonempty stringw € Xt is7 T (w) = ﬁ ELZ‘OA m(w[0..i—

1]) (w[i])-

2. The success rate of m on a sequence S € ¥ is 7+ (S) = limsup,,_,, 7 (S[0..n—

1]).

3. The (worst-case) success rateof m onaset X C Y>®is 7T (X) = infgex 7+ (9).

Note that 77 (w) is the expected fraction of symbols in w that 7 predicts
correctly. In particular, if 7 is deterministic, then 7% (w) is the fraction of symbols
in w that = predicts correctly.

We say that a predictor 7 : X* — M(X) is feasible provided that the associ-
ated function 7' : ¥*x X' — [0, 1] defined by 7'(w, a) = m(w)(a) is computable in
polynomial time. We say that 7 is exactly feasible if the values of 7’ are rational
and can be computed exactly in polynomial time.

Definition. Let ¥ be an alphabet, and let X C X'*°.
1. The (randomized feasible) predictability of X is

pred, (X) = sup{r* (X)|x is a feasible predictor on '}.
2. The deterministic (feasible) predictability of X is

dpred,,(X) = sup{n " (X)|r is a deterministic feasible predictor on '}.
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It is clear that
0 < dpred, (X) < pred,(X)

and

for all X C Y*°. As the following example shows, all these inequalities can be
proper.

Example 3.1. If
X ={5€{0,1}>|(Vn)[S[2n] =1 or S[2n +1] =1] },

then the reader may verify that

1 5
dpred,,(X) = 3 < 3= pred, (X).

It is clear that predictability is monotone in the sense that
X CY = pred, (X) > pred, (V)

and
X CY = dpred,(X) > dpred, (V)

for all X|Y C X°°. Very roughly speaking, the smaller a set of sequences is, the
more predictable it is. The following theorem shows that, for fixed ¢ € N, the
set DTIMEy (2°") is “completely predictable,” while the set Ey is “completely
unpredictable.” From now on, X' is an alphabet with |X| > 2.

Theorem 3.2. 1. For eachc € N, dpred,(DTIMEx(2°")) = pred,(DTIME;(2°")) =
1.
2. dpred,(Ex) = 0, and pred,(Ex) = -

Proof. (Sketch.)

1. For fixed c, there is an n°*!-time-computable function g : Nx £* — X such
that DTIMEy(2°") = {So, S1, ...}, where g(k, S;[0..n — 1]) = Sk[n] for all
k,n € N. The deterministic predictor 7 : X* — X defined by

m(w) = g(kw, w),

where
ky = min{k € N|(Vn < |w|)g(k,w[0..n — 1]) = wn]},

is then computable in polynomial time and satisfies 77 (DTIME 5 (2°")) = 1.
2. For any feasible predictor 7 there is an adversary sequence S € Ey that
minimizes the value of 71 (S[0..n]) at every step n. If 7 is deterministic,

then 77 (S) = 0. In any case, 71 (S) < ﬁ

O
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Definition. If 7y and 7 are predictors on X, then the distance between m; and
Up) is

d(m,m) = sup mag | (w)(a) - mo(w)(a)].

Observation 3.3. If m; and 7w are predictors on X, then for all S € X,
|7 (S) — w3 ()| < d(my,m2).

Definition. Let © be a predictor on X', and let [ € N. Then 7 is [-coarse if
2l (w)(a) € Nfor all w € ¥* and a € X.

That is, a predictor 7 is I-coarse if every probability m(w)(a) is of the form
gr for some m € N. Note that every [-coarse predictor is (I 4 1)-coarse and that
a predictor is deterministic if and only if it is O-coarse.

Lemma 3.4. (Coarse Approximation Lemma) For every feasible predictor m on
Y and every | € N, there is an exactly feasible l-coarse predictor ©' such that
d(m,m) <3270

We now use the probabilistic method to show that deterministic predictabil-
ity coincides with predictability on singleton sets.

Theorem 3.5. For all S € X*°, dpred,({S}) = pred, ({S}).

Proof. Let S € ¥, and let a < pred,({S}). It suffices to show that dpred,({S}) >
a.

Let € = , and choose [ € N such that 3-27! < €. Since a + € <
pred,({S}), there is a feasible predictor 7' such that % (8) > a + €. By the
Coarse Approximation Lemma, there is an exactly feasible [-coarse predictor m
such that d(m,7') < 3-27! < e. It follows by Observation 3.3 that 71 (S) > a.

For each w € ¥* and a € X, define an interval I(w,a) = [24,Zq11) C [0,1)
by the recursion

predp({S})—a
2

To =0, Zoy1 =4+ ’/T(w)(a)‘

Given p € [0,1), define a deterministic predictor 7, on X by

1 ifpel(w,a
m(w)(@) = b AP € )

0 if péI(w,a).
Since 7 is [-coarse, we have

d|2'p) = 20| = 7, = 7 1

for all p € [0,1). If we choose p probabilistically according to the uniform prob-
ability measure on [0,1) and E, denotes the expectation with respect to this
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experiment, then Fatou’s lemma tells us that (writing w; = S[0..i — 1])

E,n}(S) = E,limsup 7} (w,)

n—o0

> lim sup E, 7} (w,)

n— 00
1 n—1
:1 S — E 1 S )
im sup - ; pmo(w;)(S[i])
1 n—1
i 3 Frin () ) = 1
1 n—1
=lims — length (I i,S )
17rf1_>olipn§ ngth (I (w;, S[i]))

= lim sup % i 7(w;)(S[7])

n—o0

= limsup 7t (w,)
n—o0

=7t (S).

It follows that there exists p € [0,1) such that 7f(S) > 7+ (S) > a. Hence by
(1) there is a rational p' € [0,1) for which w; (S) > a. Since 7, is a feasible
deterministic predictor, this implies that dpred,({S}) > a. O

An important property of predictability is its stability, which is the fact
that the predictability of a union of two sets is always the minimum of the
predictabilities of the sets. (The term “stability” here is taken from the analogous
property of dimension [6].) The stability of predictability follows from the (much
stronger) main theorem of Cesa-Bianchi, Freund, Helmhold, Haussler, Schapire,
and Warmuth [2]. For deterministic predictability, we have the following partial
result.

Recall [1] that a set X C X is computably presentable if X = () or there
is a computable function f : N — N such that X = {L(My;)|i € N}, where
My, My, ... is a standard enumeration of all Turing machines over the alphabet
3 and My; halts on all inputs for all 7 € N. Deterministic predictability is
stable on sets that are recursively presentable.

Theorem 3.6. For all computably presentable sets X, Y C X,
dpred,,(X UY’) = min{dpred,(X), dpred, (Y)}.

At the time of this writing we do not know whether deterministic predictabil-
ity is stable on arbitrary sets. We conjecture that it is not.
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4 Dimension

In this section we sketch the elements of feasible dimension in X*° where X' is
a finite alphabet. Without loss of generality, we let ¥ = {0,1,... ,k — 1}, where
k> 2.

Definition. Let s € [0, 00).

1. An s-gale over X is a function d : ¥* — [0, 00) that satisfies the condition

dlw) =k=° Z d(wa) (2)
acX

for all w € X*.
2. An s-gale d succeeds on a sequence S € ¥*°, and we write S € S*®°[d], if

lim sup d(S[0..n — 1]) = oo.
n—o00
3. An s-gale is feasible if it is computable in polynomial time.
4. An s-gale is ezxactly feasible if its values are rational and can be computed

exactly in polynomial time.
5. For X C ¥*° we let

6x) = {

there is an s-gale d
such that X C S*°[d] [’

there is a feasible s-gale d }

Gp(X) = {S such that X C S°°[d]

The gale characterization of classical Hausdorff dimension [13] shows that
the classical Hausdorff dimension dimyg(X) of a set X C X is given by the
equation

dimy (X) = inf G(X).
This motivates the following.

Definition. The feasible dimension of a set X C X*° is
dimp(X) = inf G,(X).

It is easy to see that 0 < dimp(X) < dimp(X) <1 for all X C ¥ and that
feasible dimension is monotone in the sense that X C Y implies dim,(X) C
dim,(Y) for all X, Y C X, It is shown in [13] that feasible dimension is stable
in the sense that

dimp (X UY) = max{dim,(X),dim,(Y")}

for all X,V C X°°. The following result is the dimension-theoretic analog of
Theorem 3.2.
Theorem 4.1. ([13])

1. For each ¢ € N, dim,(DTIMEx(2°")) = 0.
2. dimy(Ex) = 1
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5 Prediction versus Dimension

This section develops our main theorem, which gives precise quantitative bounds
on the relationship between predictability and dimension. As before, let X~ =
{0,1,...,k — 1} be an alphabet with k£ > 2. Recall the k-adic segmented self-
information function Z; and the k-adic maximum entropy function Hj, defined
in section 1.

Theorem 5.1. (Main Theorem) For all X C X°°,

Ty (pred,, (X)) < dim, (X) < Hy(pred, (X)),
The rest of this section is devoted to proving Theorem 5.1.

Construction 5.2. Given an alphabet X with |¥| = k > 2, a predictor = on
Y, and rational numbers 3,s € (0,1), we define an s-gale

d=d(mp,s) : X* —[0,00)
by the recursion
d(\) =1,
d(wa) = k*bet,, (a)d(w),

where bet,,(a), the amount that d bets on a having seen w, is defined as follows.
If = were to deterministically predict b (i.e., 7(w)(b) = 1), then the amount that

d would bet on a is
B ifa=10
’7(047 b) = { 1—3

However, 7 is a randomized predictor that predicts various b according to the
probability distribution w(w), so d instead uses the quantity

yw(a) = T[ +(a,b)")®
bex

_ grw@ (128 ot
- E—1 ’

which is the geometric mean of the bets v(a, b), weighted according to the prob-
ability distribution 7(w). The amount that d bets on a is then the normalization

bet,,(a) = Yu(@) ,

Ow

Ow = Z Yw(@).

acX

where

Observation 5.3. In Construction 5.2, 0 < gy <1 for all w € X*.
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Proof. The fact that o, > 0 follows immediately from the fact that 5 € (0, 1).
To see that o, < 1, write p, = 7(w)(a) and define the function

f:[51)—R
=3+ (i:f)l_p“_
Then
ﬂng;y(ﬁiﬁﬁkm—u—mmﬁéfﬁmm

Forallxe[%,l) we have (k 1)<land ( )>1
Z[pa_ 1_pa]_2_230-
acX

It follows that
ou=FB) < f(3) =1
a

Observation 5.4. In Construction 5.2, d is an s-gale, and d is p-computable if
m is feasible.

Lemma 5.5. In Construction 5.2,

B
1

+ 7t (w) logy,

log;, d(w) > |w| (s + logy, ; Bk —1) )

1-5
for all w € X*.

Proof. Let w € X*, and let n = |w|. For each 0 < i < n, write m; = m(w[0..i —
1])(w[é]). By the construction of d and Observation 5.3,

n—1

d(w) = k°" H betyo..i—1)(wli])

1=0
— sn nlzf Ywl0..i—1] (w[z])

i—0 Ow[0..i—1]

n—1
> k" H Ywlo..i—1](W[i])
1=0

n—1
:kanBm< :f)

=0
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It follows that

n—1
logy, d(w) > sn+z [ﬂ'zlogkﬁ+(l—7rz)10gk k_B]

i=0
1-8 Blk—1)
= (s—Hogkk >+l =5 Zojm

= (s—Hogkz B+7r (w )logkﬁ(lkf_ﬁl)>.

O

We can now prove an upper bound on dimension in terms of predictability.
Theorem 5.6. If X is an alphabet with |X| =k > 2, then for all X C ¥,
dimy, (X) < Hy(pred, (X)).

Proof. Let X C X*°, and let a = pred,,(X). If Hy(a) = 1 then the result holds
trivially, so assume that Hp(a) < 1, i.e., a € ( ] Choose a rational number
s € (H(«),1]. Tt suffices to show that dlmp( ) S s.

By our choice of s, there is a rational number § € (%, a) such that Hy(5) €
(Hr(a),s). Since B < «, there is a feasible predictor 7 such that #+(X) > 3.
Let d = d(m, 3,s) be the s-gale of Construction 5.2. By Observation 5.4, it
suffices to show that X C S°°[d]. To this end, let S € X. For each n € N, let
wy, = S[0..n — 1]. Then the set

J={n€Z"xt(w,) > Bn}

is infinite, and Lemma 5.5 tells us that for each n € J,

log, d(w,) >n <s + log;, ; b + 7t (w,,) logy, B(ka—ﬁl)>
>n<s+logk2 B+ﬂ1 ,6’5%—;))
— (s — Ha(B))-
Since s > H (), this implies that S € S*°[d]. O

The lower bound on dimension is a function of predictability whose graph is
not a smooth curve. It is thus instructive to derive this bound rather than to
simply assert and prove it. As before, let X' be an alphabet with |X| > 2.

It is easiest to first derive a lower bound on predictability in terms of dimen-
sion, since this can be achieved by using an s-gale to construct a predictor. So let
s be a positive rational, and let d be a p-computable s-gale over X with d(\) > 0.
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The most natural predictor to construct from d is the function mo : X* — M(X)
defined by

mo(w)(a) = bety(wa) (3)

for all w € X* and a € X. This is indeed a predictor, and it is clearly feasible.
For all w € X*, we have

Jw|—1
d(w) = d(\)k*1! H betq(wa)
i=0
< d(\)kelv! Z betq(wa)

—d(\) (k%o*(w))‘”‘

(because the geometric mean is at most the arithmetic mean), so if S € S°°[d]
there must be infinitely many prefixes w C S for which 7§ (w) > k~%. Thus this
very simple predictor 7y testifies that

pred, (S*[d]) > k™. (4)
This establishes the following preliminary bound.
Lemma 5.7. For all X C X,
dim;, (X) > Zy (pred,,(X)).
Proof. The above argument shows that
pred,,(X) > k=4me(X),

whence the lemma follows immediately. O

If we suspect that Lemma 5.7 can be improved, how might we proceed?
One approach is as follows. The predictor 7y achieved (4) via the prediction
probability (3), which is equivalent to

mo(w)(a) = k~Tr(betalva), ()
To improve on (4), let f(s) = u — vs be a function whose graph is a line inter-

secting k~° at two points given by sg,s; € [0,1]. We would like to improve (4)
to

pred,, (S[d]) > f(s)- (6)

For what values of sy and sy can we establish (6)?
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Guided by (5), we set

m1(w)(a) = max{0, f(Zr(betq(wa)))}

for all w € X¥* and a € X¥'. The function m; may not be a predictor because the
function o : ¥* — [0, 00) defined by

o(w) = Y m(w)(a)

aceX

may not be identically 1. However, it is clear that o(w) > 0 for all w € X*, so if
we set

™ (w) > ﬁ ig( — vTi (betq(w]0..1])))
. T lljzl; log;, (betg(w]0..1]))
—u+t ﬁ logy l:ﬁ)l betq(w[0..1])
sut ﬁ log, <k8|w(ldz>\)>
=u—vs+ — lo Sk d((w)),

so if o(w) <1 and d(w) > d(X), then
7t (w) >u—vs = f(s).

Thus if sp and s; are chosen so that o(w) < 1 for all w € X*, then for all
S € S°°[d] there exist infinitely many prefixes w C S for which 7% (w) > f(s).
This implies that (6) holds (provided that 7 is feasible). Thus the question is
how to choose sp and s; so that o(w) < 1 for all w € X*.

If we let

By = {alf(Zk(beta(wa))) > 0},
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then for all w € X*,

S (T (bety(wa))

a€ By,

=u|By| +v Z log;, bety(wa)
aEBy

= u|By| + vlog, H betq(wa)
aEBy

|Bu|
1
< u|By| + vlog, (m Z betd(wa)>

a€EBy

o(w)

< |By|(u —vlogy, |Bwl)
= g(|Bw|),

where
9(x) = x f(logy,(x))-
Since |By| < k for all w € X*, it thus suffices to choose sg and s so that

g(j) <1 (7)

for all 1 < j < k. Of course we want our lower bound f, and hence the function
g, to be as large as possible while satisfying (7). Since

) = [
g(x)=u U<lnk+logkm

u
v

k

is positive to the left of some point (namely, = %*) and negative to the right
of this point, (7) can be achieved by arranging things so that

g(i) =g(i+1) =1 (8)

for some (any!) 1 < i < k. Now (8) is equivalent to the conditions

1 1
1 i) = — 1 i+ 1)) =
f(logy, @) o f(logy(i + 1)) 1
which simply say that
so = logg i, s1 =1log,(i+1). 9)

For 1 < i < k, the predictor 7 determined by the choice of (9) is feasible and

thus establishes (6). This argument yields the following improvement of Lemma
5.7.

Theorem 5.8. For all X C X*°,

dimp, (X) > T (pred, (X)).
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Proof. For each 1 <1 <k, if we let f;(s) = u; — v;s be the function that agrees
with k=° at logy ¢ and log, (i + 1), then the above argument shows that

pred,(X) > fi(dim, (X)),

whence
dimp (X) > fi_l(predp (X)).
Since pred,(X) > % in any case and f;l agrees with 7 on [H%l, %], this estab-

lishes the theorem. O

For each k > 2, let Ry, be the set of all a, 8 € [0, 1] satisfying a > % and

Tr(a) < B < Hp(a). Thus Ry, R3, and R, are the shaded regions depicted in
Figure 1, and Theorem 5.1 says that (pred,(X),dim,(X)) € Ry for all k > 2
and X C ¥Y*°. It can in fact be shown that Theorem 5.1 is tight in the strong
sense that for each (a,3) € Ry there is a set X C Eyx such that pred, (X) =
a and dimp(X) = B. Thus Ry is precisely the set of all points of the form
(pred,, (X),dim, (X)) for X C ¥ (or, equivalently, for X C Ey).

Let R, be the limit of the regions Ry, in the sense that R, consists of all
(a, B) € [0,1]% such that for every € > 0, for every sufficiently large k, there exists
(a',B") € Ry such that (a —a')? + (8 — 8')? < €. Then it is interesting to note
that R is the triangular region given by the inequalities « > 0,8 > 0,a+5 < 1.
Thus if the alphabet X is very large, then the primary constraint is simply that
a set’s predictability cannot be significantly greater than 1 minus its dimension.
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