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Abstract

The existence of cryptographically secure one-way functions is re-
lated to the measure of a subclass of NP. This subclass, called NP
(“balanced NP”), contains 3SAT and other standard NP problems.
The hypothesis that NP is not a subset of P 1s equivalent to the
P # NP conjecture. A stronger hypothesis, that NP is not a measure
0 subset of Eo = DTIME(?pOlynomlal) is shown to have the following
two consequences.

1. For every k, there is a polynomial time computable, honest func-
tion f that is (Q”k/nk)—one—way with exponential security. (That
18, no 27" _time-bounded algorithm with n* bits of nonuniform
advice inverts f on more than an exponentially small set of in-
puts.)

2. If DTIME(2") “separates all BPP pairs,” then there is a (polyno-
mial time computable) pseudorandom generator that passes all
probabilistic polynomial-time statistical tests. (This result is a
partial converse of Yao, Boppana, and Hirschfeld’s theorem, that
the existence of pseudorandom generators passing all polynomial-
size circuit statistical tests implies that BPP C DTIME(2"") for
all e > 0.)

Such consequences are not known to follow from the weaker hy-
pothesis that P # NP.

*This research was supported in part by National Science Foundation Grant CCR-
9157382, with matching funds from Rockwell International, Microware Corporation, and
Amoco Foundation.



1 Introduction

In computational complexity, the existence of cryptographically secure one-
way functions is currently a strong hypothesis, in that the existence of such
functions is known to imply P # NP, but not known to be a consequence
of P # NP. The question has thus arisen whether the structure of NP is
relevant to the investigation of secure one-way functions.

In this paper, we introduce a strong hypothesis concerning the quantita-
tive structure of NP, and prove that this hypothesis implies the existence of
cryptographically secure one-way functions. We also prove that this hypoth-
esis implies a partial converse of Yao, Boppana, and Hirschfeld’s theorem
that BPP C .50 DTIME(2™) if nonuniformly secure pseudorandom gen-
erators exist.

As we use the term here, a cryptographically secure one-way function
is a polynomial time computable, honest function f : {0,1}* — {0,1}*
that is hard to invert in the following sense: For every feasible algorithm
g, for all sufficiently large n, if we choose 2 € {0,1}" according to the
uniform distribution, then the probability that f(g(f(x))) = f(z) (i.e., the
probability that ¢ finds a preimage of f(x)) is very small. (The reciprocal
of this probability can be regarded as the security of f against inversion
by g.) One-way functions of this type have been extensively investigated
and can be used to construct secure user authentication schemes [8], secure
pseudorandom generators [16, 15], subexponential time simulations of BPP
[33, 5], secure private key encryption protocols [13, 21, 10], bit commitment
protocols [28], and zero-knowledge proofs of NP languages [12].

It should be noted that one-way functions with essentially minimum se-
curity requirements have also been defined and investigated. (See [31] for
a survey of such work.) That is, a polynomial time computable, honest
function f is sometimes considered to be one-way if every feasible algorithm
g sometimes fails to invert f. In this paper, we shall refer to such func-
tions as weakly one-way, reserving the term “one-way” for functions that
are cryptographically secure in the above sense. (See section 5 for precise
definitions.)

We also emphasize that one-way functions are not required to be one-
to-one in this paper.

It is well-known that a nonempty language is in NP if and only if it is the
range of a polynomial time computable, honest function. In section 4 below,
we define the class GNP (“balanced NP”), consisting of those NP languages
that are ranges of polynomial time computable balanced functions. Roughly



speaking, a balanced function is an honest function with the additional
property that no element of the range has too much more than its “fair
share” of preimages. We show that NP is a subclass of NP that contains
all efficiently rankable languages in P [9], as well as 3SAT and many other
NP languages. The hypotheses P # NP and SNP ¢ P are thus equivalent.

In sections 5 and 6, we investigate the consequences of the stronger hy-
pothesis that SNP is not a measure 0 subset of Ey = DTIME(QPOlynomlal).
The meaning of this hypothesis requires some explanation.

It is well-known that P € NP C E,. In fact, E5 is the smallest deter-
ministic time complexity class known to contain NP. The key question is,
how large are P, NP, and SNP as subsets of FEy? Resource-bounded measure
[24, 22] is a generalization of classical Lebesgue measure that was developed
in order to address questions of this sort in a variety of complexity classes.
Here we restrict attention to measure in E,.

Resource-bounded measure defines the class of measurable subsets of Eq
and assigns to each measurable subset X of E5 a value u(X | Eg), called the
measure of X in Ez, satisfying 0 < u(X | Ez) < 1. Intuitively, the condition
u(X | E2) = 0 means that X is a negligibly small subset of Eg, while the
condition (X | E2) = 1 means that X contains almost every language in
E. (A set has measure 1 in E; if and only if its complement has measure
0 in Eg.) For a set X that is closed under finite variations (i.e., A € X
and |[A A B| < co imply that B € X), a resource-bounded extension of the
classical Kolmogorov zero-one law [23, 22] tells us that there are only three
possibilities: (X | E9) = 0, u(X | E3) = 1, or X is not measurable in E,.
Moreover, Regan, Sivakumar, and Cai [29] have recently shown that, if X
is closed under finite unions and intersections (or closed under symmetric
difference) and p(X | Ez) = 1, then E; C X. It follows that nearly every
subset X of Fg that is of interest in complexity theory, including each of P,
NP, and NP, is subject to the following trichotomy: X has measure 0 in
Es, X contains all of E5, or X is not measurable in E,.

It is easy to see [24] that pu(P | Ez) = 0, i.e., that P is a negligibly
small subset of Ep. It is conceivable that P # NP, and yet that pu(NP |
Ez) = 0, but we conjecture that this is not the case, i.e., that u(NP |
Ey) # 0. (Note that “u(NP | Eg) # 0”7 means that “NP = E; or NP
is not a measurable subset of E5.”) In fact, we conjecture that NP is a
nonmeasurable subset of E5. In any case, the hypothesis that (NP | E3) # 0
has recently been shown to have a number of plausible consequences: If
(NP | Ey) # 0, then NP contains E-bi-immune langauges [27]; every <Fa_,,-



hard language for NP (o < 1) is exponentially dense [26]; and every <! -hard
language for NP has an exponentially dense, exponentially hard complexity
core [17]; there is an NP search problem that is not efficiently reducible to
the corresponding decision problem [4, 25]; there are problems that are <k-
complete, but not <F -complete, for NP[25]; and every <li-hard language
for NP is p-superterse[3, 32].

Since GNP C NP, the hypothesis (GNP | E3) # 0implies the hypothesis
w(NP | Eg) # 0. There does not appear to be any a priori reason for
disbelieving the hypothesis p(SNP | E3) # 0, but further investigation of
the class GNP should precede a conjecture. (It is interesting to note that,
if A is an algorithmically random oracle, then u(NP# | E4) # 0 [20], while
u(BNPA | B4 = 0)[19].) In this paper we merely introduce the hypothesis,
note that it is not implausible, and prove that it has plausible, interesting
consequences.

In section 5, assuming the hypothesis u(SNP | E3) # 0, we prove that
for every k there is a polynomial time computable, honest function f that
is “(Q”k/nk)—one—way with exponential security,” i.e., no 27" time-bounded
algorithm with n* bits of nonuniform advice inverts f on more than an
exponentially small set of inputs.

Yao [33] and Boppana and Hirschfeld [5] proved that, if nonuniformly
secure pseudorandom generators exist, then BPP C (1,5, DTIME(2"). In
section 6 below, we show that their argument actually yields an (appar-
ently) stronger conclusion, namely that (), DTIME(2"") “separates all
BPP-pairs.” Assuming the hypothesis u(SNP | E3) # 0, we then prove
a partial converse to this result, namely, that if DTIME(2") separates all
BPP-pairs, then uniformly secure pseudorandom generators exist. Our proof
uses the theorem of Hastad [15] (building on work of Impagliazzo, Levin,
and Luby [16]), that uniformly secure pseudorandom generators exist if uni-
formly one-way functions exist.

Both our main results are proven using the Weak Stochasticity Theorem,
which says that, for every fixed k, almost every language in E; is statisti-
cally unpredictable by 27" _time-bounded algorithms, even with n* bits of
nonuniform advice. This result, a small improvement of a result due to Lutz
and Mayordomo [26], is presented in section 3.



2 Preliminaries

In this paper, [¢'] denotes the Boolean value of the condition ¥, i.e.,

I R
[v]= { 0 if not ¢
All languages here are sets of binary strings, i.e., sets A C {0,1}*. The

complement of a language A is A° = {0,1}*— A. We identify each language
A with its characteristic sequence x4 € {0,1}°°, defined by

x4 = [s0 € A][s1 € A][s2 € A]...,

where sg = A, 51 = 0, s9 = 1, s3 = 00,... is the standard enumeration
of {0,1}*. Relying on this identification, the set {0, 1}, consisting of all
infinite binary sequences, will be regarded as the set of all languages.

If we {0,1}* and = € {0,1}* U {0,1}*, we say that w is a prefiz of z,
and write w C z, if 2 = wy for some y € {0,1}*U {0,1}*°. The cylinder
generated by a string w € {0,1}" is

Cp={2€{0,1}* | wC z}.

Note that ), is a set of languages. Note also that Cy = {0,1}*°, where A
denotes the empty string.

As noted in the introduction, we work with the exponential time com-
plexity class Ey = DTIME(2Poynemial)  The subscript ‘2 here distinguishes
Ey from the class E = DTIME(2!nar), It is well-known that P S ESGE,,
that P C NP C E; and that NP # E.

We write Partial-PF for the set of all polynomial time computable partial
functions f: {0,1}* — {0, 1}*. We write PF for the set of all f € Partial-PF
such that dom (f) ={0,1}".

A property O(n) of natural numbers n holds almost everywhere (a.e.) if
O(n) is true for all but finitely many n. A property O(n) holds infinitely
often (i.o.) if O(n) is true for infinitely many n.

We let D = {m2™" | m € Z,n € N} be the set of dyadic rationals. We
also fix a one-to-one pairing function (,) from {0,1}* x {0, 1}* onto {0,1}*
such that the pairing function and its associated projections, (z,y) — « and
(z,y) — y, are computable in polynomial time.

Several functions in this paper are of the form d : N* x {0,1}* — Y,
where Y is D or [0,00), the set of nonnegative real numbers. Formally,



in order to have uniform criteria for their computational complexities, we
regard all such functions as having domain {0,1}*, and codomain {0, 1}* if
Y = D. For example, a function d : N?x {0,1}* — D is formally interpreted
as a function d : {0,1}* — {0,1}*. Under this interpretation, d(i,j,w)=r
means that d({0%, (07, w))) = u, where u is a suitable binary encoding of the
dyadic rational r. Similarly, a function m : N* — N is formally interpreted
as a function m : {0,1}* — {0, 1}*, with inputs and outputs represented in
unary. Thus m(i,j) = n means that m({0,07)) = 0".

For a function d : N X X — Y and k£ € N, we define the function
dr: X — Y by dp(z) = d(k,z) = d({0%,2)). We then regard d as a “uniform
enumeration” of the functions dy, dy, ds, .... For a function d : N" x X — Y
(n > 2), we write dy; = (dg )i, ete.

For a function 6 : {0,1}* — {0,1}* and n € N, we write §" for the n-fold
composition of 6 with itself.

Our proof of the Weak Stochasticity Theorem uses the following form of
the Chernoff bound.

Lemma 2.1.[7, 14]. If Xy,..., X are independent 0-1-valued random vari-
ables with the uniform distribution, ' = Xy + .... + X, and ¢ > 0, then

|

Proof. See [14]. 0
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3 Measure and Weak Stochasticity

In this section we review some fundamentals of measure in E5 and prove the
Weak Stochasticity Theorem. This theorem will be useful in the proof of
our main results in sections 5 and 6. We also expect it to be useful in future
investigations of the measure structure of E,.

Resource-bounded measure [24, 22] is a very general theory whose special
cases include classical Lebesgue measure, the measure structure of the class
REC of all recursive languages, and measure in various complexity classes.
In this paper we are interested only in measure in E,, so our discussion of
measure is specific to this class.

Throughout this section, we identify every language A C {0, 1}* with its
characteristic sequence x4 € {0,1}, defined as in section 2.

A constructoris a function ¢ : {0,1}* — {0, 1}* such that ;':& 6(z) for all
x € {0,1}*. The result of a constructor é (i.e., the language constructed by



6) is the unique language R(¢) such that 6"(A) C R(6) for all n € N. Intu-
itively, 6 constructs R(6) by starting with A and then iteratively generating
successively longer prefixes of R(¢).

We first note that E5 can be characterized in terms of constructors.

Notation. The class pg, consisting of functions f : {0,1}* — {0,1}*, is
defined as follows.
)O

logn

pe = {f|f is computable is n! o time}

Lemma 3.1.[23]
E; ={R(6)| 6 € pz and § is a constructor }.

Using Lemma 3.1, the measure structure of E; is now developed in terms
of the class ps.

Definition A density function is a function d : {0,1}" — [0, 00) satisfying

d(w0) + d(wl)

d(w) > 5

(3.1)
for all w € {0,1}*. The global value of a density function d is d(A). The set
covered by a density function d is

S[d= |J Cu. (3.2)
welo,1}*
d(w)>1
(Recall that €, = {# € {0,1}*° | w C 2} is the cylinder generated by w.)
A density function d covers a set X C {0,1}™ if X C S[d].

For all density functions in this paper, equality actually holds in (3.1)
above, but this is not required.

Consider the random experiment in which a sequence = € {0,1} is cho-
sen by using an independent toss of a fair coin to decide each bit of x. Taken
together, (3.1) and (3.2) imply that Pr[z € S[d]] < d(A) in this experiment.
Intuitively, we regard a density function d as a “detailed verification” that
Prlz € X] < d(X) for all sets X C S[d].

More generally, we will be interested in “uniform systems” of density
functions that are computable within some resource bound.



Definition An n-dimensional density system (n-DS) is a function
d:N"x{0,1}" — [0,00)

such that dy is a density function for every k € N™. It is sometimes conve-
nient to regard a density function as a 0-DS.

Definition A computation of an n-DS d is a function d : N"t'x{0,1}* — D
such that

dy (w) = dp(w)| < 277

for all k € N" re N, and w EA{O, 1}*. A py-computation of an n-DS d is a
computation d of d such that d € py. An n-DS d is py-computable if there
exists a pg-computation d of d.

If d is an n-DS such that d : N” x {0,1}" — D and d € pa, then d is
trivially pa-computable. This fortunate circumstance, in which there is no
need to compute approximations, occurs frequently in practice. In any case,
we will sometimes abuse notation by writing d for (j, relying on context and
subscripts to distinguish an n-DS d from a computation d of d.

We now come to the key idea of resource-bounded measure theory.

Definition A null cover of a set X C {0,1}” is a 1-DS d such that, for all
k € N, dj, covers X with global value di(\) < 275 A po-null cover of X is
a null cover of X that is py-computable.

In other words, a null cover of X is a uniform system of density functions
that cover X with rapidly vanishing global value. It is easy to show that a
set X C {0,1} has classical Lebesgue measure 0 (i.e., probability 0 in the
above coin-tossing experiment) if and only if there exists a null cover of X.

Definition A set X has py-measure 0, and we write pp,(X) = 0, if there
exists a pg-null cover of X'. A set X has py-measure 1, and we write i, (X) =
L, if pip, (X€) = 0.

Thus a set X has py-measure 0 if py provides sufficient computational
resources to compute uniformly good approximations to a system of density
functions that cover X with rapidly vanishing global value.

We now turn to the internal measure structure of E,.



Definition A set X has measure 0 in Ey, and we write p(X | E3) = 0, if
Up, (X NE2) = 0. A set X has measure 1 in Ey, and we write p(X | Eq) =1,
if (X Eg) =0. If p(X | E2) = 1, we say that almost every language in
Eyisin X.

The following lemma is obvious but useful.

Lemma 3.2. For every set X C {0, 1},

pp,(X)=0 = Prlze X]=0

4
p(X [ Eg) =0

and
pp,(X)=1 = Przec X]=1

:u(X | EQ) =1,

where the probability Pr[z € X]is computed according to the random ex-
periment in which a sequence x € {0, 1} is chosen probabilistically, using
an independent toss of a fair coin to decide each bit of z.

Thus a proof that a set X has py-measure 0 gives information about the
size of X in Eg and in {0,1}°°.

It is shown in [24] that these definitions endow E with internal measure
structure. Specifically, if 7 is either the collection 7, of all py-measure
0 sets or the collection Zp, of all sets of measure 0 in E,, then 7 is a “pg-
ideal”, i.e., is closed under subsets, finite unions, and “pz-unions” (countable
unions that can be generated within the resources of py). More importantly,
it is shown that the ideal Zg, is a proper ideal, i.e., that E, does not have
measure 0 in Fy. Taken together, these facts justify the intuition that, if
w(X | E2) =0, then X N Ey is a negligibly small subset of Es.

Our proof of the Weak Stochasticity Theorem does not directly use the
above definitions. Instead we use a sufficient condition, proved in [24], for
a set to have measure 0. To state this condition we need a py notion of
convergence for infinite series. All our series here consist of nonnegative

o0
terms. A modulus for a series Y a, is a function m : N — N such that
n=0

Z a, < 277



for all j € N. A series is py-convergent if it has a modulus m € py. A
sequence

> ajp (j=0,1,2,...)
k=0

of series is uniformly p-convergent if there exists a function m : N? — N such

o0

that m € p, and, for each j € N, m; is a modulus for the series " a;;. We
k=0

will use the following sufficient condition for uniform p,-convergence. (This

lemma is verified by routine calculus.)

Lemma 3.3. Let a;; € [0,00) for all j,k € N. If there exist a real ¢ > 0

and a function » : N — N such that & € p, and a;; < et w° for all
J,k € N with k£ > h(j), then the series

o0
> ik (j=0,1,2,..)
k=0

are uniformly p,-convergent.

The proof of the Weak Stochasticity Theorem is greatly simplified by
using the following special case (for p,) of a uniform, resource-bounded
generalization of the classical first Borel-Cantelli lemma.

Lemma 3.4.[24]. If d is a py-computable 2-DS such that the series

Y dik(N) (j=0,1,2,...)
k=0

are uniformly p,-convergent, then

o, (f] aly S[dj,k]) ~ 0.

7=0t=0 k=t

If we write §; = ﬁ ﬁ S[d; ) and S = ﬁ S;, then Lemma 3.5 gives
t=0 k=t =0
a sufficient condition for concluding that ilas py-measure 0. Note that
each 9; consists of those languages A that are in infinitely many of the sets
S[d]7k].
We now formulate our notion of weak stochasticity. For this we need
a few definitions. Our notion of advice classes is standard [18]. An advice



function is a function h : N — {0,1}*. Given a function ¢ : N — N, we
write ADV(q) for the set of all advice functions h such that |h(n)| < ¢(n)
for all n € N. Given a language A C {0,1}* and an advice function h, we
define the language A/h (“A with advice h”) by

Afh ={z € {0,1}" | (2, h(|z])) € A}.
Given functions t,¢ : N — N, we define the advice class
DTIME(t)/ADV(q) = {A/h | A € DTIME(¢),h € ADV(q)}.

We now define our notion of weak stochasticity. Let t,q,v : N — N
and let A C {0,1}*. Then A is weakly (t,q,v)-stochastic if, for all B,C €
DTIME(t)/ADV(g) such that |C=,| > v(n) for all sufficiently large n,

(AAB)NC-,| 1

li —.
i 1O, 5

Intuitively, B and ' together form a “prediction scheme” in which B tries
to guess the behavior of A on the set C. A is weakly (¢, ¢, v)-stochastic if
no such scheme is better in the limit than guessing by random tosses of a
fair coin. (This definition is slightly stronger than the weak stochasticity
defined in [26], in that the language C is allowed advice here.)

Let WS(t, ¢, v) denote the set of all languages that are weakly (¢,q,v)-
stochastic. The following theorem is a minor variation of a result of [26] on
the weak stochasticity of almost every language in E. We include a proof for
completeness of exposition.

Theorem 3.5. (Weak Stochasticity Theorem [26]). For every fixed polyno-
mial p and every fixed real number v > 0,

p(WS(2°™) p(n),2"") | By) = 1.

Proof. Let WS = WS(QP(”),p(n),Qm), where p is a polynomial and ¥ is
a positive real. It suffices to prove that up, (WS?) = 0, where WS® is the
complement of W§.

Let U € DTIME(27?(")) be a language that is universal for DTIME(2°("))x
DTIME(2”(") in the following sense: for each i € N, let

Ci={2€{0,1}*|(0°,02) e U },

Di={ze€{0,1}*| (0", 12) e U }.
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Then DTIME(2°(")) x DTIME(2¢(")) = {(C;, D;) | i € N }.
For all ¢, j,k € N, define the set Y; ; ;. of languages as follows. If £ is not
a power of 2, then Y; ; ; = 0. Otherwise, if &k = 2", where n € N, then

Kmﬁk = U K7j7k7y7z ?
y,2€{0,1}<p(m)

where each

)/i,j,k,y,z = {A Q {0, 1}* (Cz/y):n| Z 2717

EENCIE TN PR
[(Ci/y)=n] 207 j+1)°
It is immediate from the definition of weak stochasticity that

oo 00 00

wseclJU N UYJ,

1=05=0m=0 k=m

Thus, by Lemma 3.4, it suffices to exhibit a py-computable 3-DS d with the
following two properties.

(I) The series X324d; ; k(A), for ¢, j € N, are uniformly p,-convergent.
(II) For all ¢,5,k € N, Y, ;» C S[d; ;1]

Define the function d : N? x {0,1}* — [0,00) as follows. If k is not a
power of 2, then d; ; x(w) = 0. Otherwise, if k = 2", where n € N, then

dijr(w) =X, cro1yzetm Pr(Yijky,21Cuw),
where the conditional probabilities
Pr(Yijkyz1Cuw) = PrlA € Yijry-|A € Cul

are computed according to the random experiment in which a language
A C {0,1}* is chosen probabilistically, using an independent toss of a fair
coin to decide membership of each string in A.

It follows immediately from the definition of conditional probability that
d is a 3-DS. Since U € DTIME(27?(")) and 7 is fixed, we can use binomial
coefficients to (exactly) compute d; ; 1(w) in time that is py in ¢4 j+k 4+ |w|.
(Note that if & = 2", then on-p(n) — k(logk)o(l).) Thus d is p,-computable.

11



To see that d has property (I), note first that Lemma 2.1, the Chernoff
bound, tells us that, for all ¢, j,n € N and y, z € {0, 1}5p(”) (writing k = 2",

N =27 = Q(Ing)v, and € = j—|2-1)7

EN

Pr(Y; ky.) <278 < 26_ﬁ,
whence
dijr(A) = I, cqoayseon Pr(Yijnrg,:)
< (2p<”>+1)2 L9 T
< eZp(n)-l_S_ﬁ.
Let 6 = %, a = [1], and fix ng € N such that
n¥ > 0¥ 4 pd and 2770 > (2’ 4 2p(n)+3
for all n > ng. Define h : N — N by
h(j) = 2" + 9(1+2log(j+1))*

It is clear that h € p,. For all 7,7,k,n € N with & = 2" (still writing
N =277 = 27"") we have

k> 2m0 = 27" > ) | opn) +3
and

> 2042180+ — 50 > 1 4 2l0g(j + 1)
— 2" >2(j+ 1),
SO
k> h(j) = N=27">2"2" > 90+ 1)? [N 4 9p(n) + 3]
N s
= 2p(n)+3 G IE S e

_e(ln k)Y

—— di,j,k(/\) <e

Since ¢ > 0, it follows by Lemma 3.3 that (I) holds.

12



Finally, to see that (II) holds, fix ¢,j,k € N. If k£ is not a power of 2,
then (II) is trivially affirmed, so assume that k& = 2", where n € N. Let
AeY k. Fixy,ze€ {0,1}5P(") such that A € Yi;ky- and let w be the
(2"+! — 1)-bit characteristic string of A<,. Then

di jr(w) > Pr(Y; jpy-|Cu) = 1,

so A€y, C S[d;;x]. This completes the proof. O

4 The Class NP

In this section we introduce the class GNP (“balanced NP”). In order to
motivate our definition, we first discuss a characterization of NP.

Definition A function f € PF is honest, and we write f € PFpqy, if there
is a polynomial ¢ such that, for all y € range(f), f~'({y})<q(up # 9-

It is well-known that nonempty NP languages can be characterized as
ranges of honest functions. In fact, the honest functions can be required to
have a very special normal form.

Definition Let ¢ be a strictly increasing polynomial. A function f €
Partial-PF is g-honest, and we write f € PFY | if there is a fixed string

hon»

zg € {0,1}* such that the following conditions hold.
(i) dom (f) = U {0, 13907,
n=0

(ii) For all n € N, f({0,1}20")) C {0,1}" U {z0}.

A function f € Partial-PF is normal form honest, and we write f €

PFY | if f € PFLY)

hons on for some strictly increasing polynomial g.

It is easy to see that NP admits the following characterization.

Theorem 4.1. For every nonempty language A C {0,1}*, the following
conditions are equivalent.

(1) AeNP.

(2) A = range(f) for some f € PFpop.

13



(3) A = range(f) for some f € PFR .

Proof.
(3)=(2). Assume (3). Fix a strictly increasing polynomial ¢ and string 2o
testifying that f € PFRL . Define ¢ : {0,1}* — {0,1}* by

_ [ f(z) if |z| € range(q)
9(w) = {ZO if || & range(q).
Then g € PFyon and range(g) = range(f) = A, so (2) holds.

(2)==(1). Assume that A = range(f), where f € P} and the polynomial
q testifies that f is honest. Let B = {(y,2) | f(#) =y }. Then B € P and
A—=139B,s0 A e NP.

(1)==(3). Assume that A = 3B € NP, where B € P and p is a strictly
increasing polynomial. Since A is nonempty, we can fix a string zo € A. Let
qg(n) = 2n + p(n) + 3. (This polynomial has the property that, if |u| = n
and |v| 4+ i = p(n), then |[(u,v10%)| = ¢(n).) Let D = [J22,{0,1}9") and
define f : D — {0,1}* as follows. Let z € {0,1}9("). If z is of the form
x = <u lep(”)_|”|> where |u| = n and (u,v) € B, then f(z) = u; otherwise,

f(z) = zp. It is clear that f € PF? and range( f) = A, so (3) holds.

hon

O
With this characterization in mind, we define the class GNP.

Definition Let ¢ be a strictly increasing polynomial. A function f €

Partial-PF is ¢-balanced, and we write f € PFl(oa)lv if the following condi-
tions hold.

(i) fepFl?

hon-

(ii) For every real number a < 1, there exists ng € N such that, for all
n > ng and z € {0,1}9(")

Hye{o 1390 | £y H<2q
where [ = log | f({0, 1}2(")].

A function f € Partial-PF is balanced, and we write f € PFyy, if f €
PF{)?I for some strictly increasing polynomial ¢.
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Condition (ii), the balancing condition, says that no element of range( f)
has much more than its “fair share” (= 29()=!) of preimages.

Definition The class GNP (“balanced NP”) is defined by
GNP = {range(f)| f € PFpa }.

It is clear that PFy, C PFﬁgn, s0 Theorem 4.1 immediately gives us the
following.

Observation 4.2. NP C NP

It is not clear that P C GNP. However, it is easy to see that GNP
contains all languages that have efficient ranking functions (see [9]). That
is, if we let pP be the set of all languages of the form range(g), where ¢ € PF
is strictly increasing (with respect to the standard ordering of {0, 1}*), then
it is clear that pP C P, and it is easy to see the following.

Observation 4.3. pP C NP

In fact, SNP is a much richer subclass of NP than Observation 4.3 alone
indicates. For example, SNP contains NP-complete languages:

Proposition 4.4. 3SAT € GNP

Proof. Fix a sequence v, v, - of Boolean variables. For each positive
integer m, let V,,, = {vy,---, v}, let A, be the set of all truth assignments
a:V, — {0,1}, and let 3CNF,, be the set of all m-fold conjunctions of
3-clauses over V,,, encoded as strings in {0, 1}p(m), where p is a suitable,
strictly increasing polynomial. (There are 8(?) such 3-clauses over V,,, so
|3CNF,,,| = 8™(%)™.) Extend each a € A, to a function « : 3CNF,, —
{0,1} in the obvious way and let

3SAT,, = {4 € 3CNF,, | (3a € Ap)a(y) =11

For simplicity, we consider 3SAT as having the form

3SAT = [ J 3SAT,,.

m=1

For each positive integer m and each a € A,,, define the set

To(a) = { ¥ € 3CNF,, | a() = 1},
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consisting of all 3CNF,,, formulas that are true under the assignment a.
Then define the sets

T = U ({a} X Tm(a))v
a€Am
T = T

where each pair (a,1) € T, is encoded as a string in {0, 1}2(() for some
suitable, strictly increasing polynomial g. Note that T is the set of all
ordered pairs (a, 1) such that a is a truth assignment, 7 is a 3CNF formula,
and 1 is true under a. Note also that, for each m and a, we have

T(a)] = 7M(3) ,

$0 . .
m m
Tul=7" A | = 14™ .
=7 () A= ()
For each positive integer m, let wgm), - -,wgm) be the lexicographic enu-
meration of {0, 1}q(p(m)) and let y§m), - -,yc(lm) be the lexicographic enumer-

ation of T,,,. (The elements (a, ) of T}, are enumerated first in order of a,
then in order of 1. Note that t = 21(°0") and d = 14™(%5)™ < t.) Then

define the finite function g,, : {0,1}2((™) 22 7y

for all 1 < k <t, where r is the remainder obtained when % is divided by d.
Define the function A : T 223 3SAT by

h(av ¢) = 1.

Finally, let D = U%,{0,1}9"), fix a string v € 3SAT, and define the
function f: D — 3SAT by

flz) = {h(gm(w)) if || = q(p(m))

o if || € range(q) — range(q o p).

Since the elements (a,1) of T}, can easily be counted and enumerated
(first in order of a, then in order of ), it is clear that f is computable in
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polynomial time. In fact, it is clear that f € PFl(m)n and range( f) = 3SAT.
To finish the proof that 3SAT € NP, then, it suffices to show that f satisfies
the balancing condition, so that f € PF{)?I.

To see that f satisfies the balancing condition, fix a real number a < 1.
Given n > iy, let [ = log|f({0,1}9(")]. We have two cases.

Case I. n = p(m) for some positive integer m. Let € {0,1}9"), 4 =

f(z),and s = [Qq(n)] If n is sufficiently large, then

[1om |
{ve 0,1y f@) Y| 277000 < s ()2
< s An| - [BCNF,, |- 27900
2
< | Al - |3CNF,, |*
|Ton|
. g m a—1
7T\3
Since & - (?)a_l — 0 as m — oo, it follows that

Hye{o 1390 | £y H<2q

for all 2 € {0, 1}‘1(”), for all sufficiently large n, affirming the balancing
condition.
Case II. n ¢ range(p). Then

F({0,137) = {vo},
sol=logl=0,so for all z € {0,1}("
{ye {0,130 | fy) = fla) Y| < 200 = 2007,

again affirming the balancing condition.

We have now shown that f € PF{D?I, whence 3SAT = range(f) € GNP.
O

Corollary 4.5. The following conditions are equivalent.

(1) P # NP.
(2) BNP ¢ P.
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In the next two sections, we will investigate the consequences of the
hypothesis u(GNP | E3) # 0. This is clearly a strong hypothesis in the
following sense.

Observation 4.6. u(GNP | E3) # 0 = pu(NP | E3) # 0 = P # NP.

5 One-Way Functions With Exponential Security

In this section we define several types of one-way function and prove that,
if f(BNP | Ez) # 0, then there exist polynomial time computable functions
that are exponentially one-way with exponential security.

One-way functions are functions that are hard to invert. We first define
inversion precisely.

Definition For f,g: {0,1}* — {0,1}*, » : N — N, and n € N, we define
the following inversion events.

(1) Z[f,91(n) = {z € {0, 13" | f(g(f(2))) = f(=)}.

(2) Irand[fvgar](n) = {($,Z) € Qfﬂ«(n) | f(g(<f(x)72>)) — f($) }7 where
Qyr(n) = {(9072) | 2 € {0,1}" and z € {0, 1}T(|f(l’)|) }

We interpret Z[f, g](n) and Zyand[f, g, 7](n) as events in the sample spaces
{0,1}" and Qy,, respectively, where {0,1}" has the uniform distribution
and each element (z,z) € €y, has probability 2-lel=l=l Thus

Pr(Z[f, gl(n)) = 27" - |Z[f, g](n)]

and

Pr (Irand[fv g, T](n)) =27 Z 2_T(|f($)|) ) |If(95)|’

ref0,1}m

where each
Tyoy = {2 € 0,1y WOD | fg({f(2), 2)) = fla) }.

To clarify the parameters involved, we define the following nine types of
one-way function. Note that, in all cases, we require one-way functions to
be total, polynomial time computable, and honest.

Definition Let f € PFy,, and let ¢,7: N — N.
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(1) f is weakly t(n)-one-way if for every ¢ € DTIMEF(t) there exists
n € N such that

Pr(Z[f, gl(n)) < 1.

(2) fis weakly (t(n),r(n)¢)-one-way if for every g € DTIMEF(¢) there
exists n € N such that

Pr(Zranalf, g, 7](n)) < 1.

(3) fis weakly (t(n)/r(n))-one-way if for every ¢ € DTIMEF(¢)/ADV(r)
there exists n € N such that

Pr(Z[f, gl(n)) < 1.

(4) fis t(n)-one-way with polynomial security if for all polynomials ¢ and
all g € DTIMEF (%),
1
q(n)

(5) fis (t(n),r(n)¢)-one-way with polynomial security if for all polynomi-
als ¢ and all g € DTIMEF (%),

Pr(Z1f, g](n)) <

a.e.

Pr(Irand[fa g, T](n)) < a.e.

1
q(n)

(6) fis (t(n)/r(n))-one-way with polynomial security if for all polynomials
g and all g € DTIMEF(¢)/ADV(r),

a.e.

PHILf. g)(m) < s

(7) fist(n)-one-way with exponential security if for every ¢ € DTIMEF(¢)
there exists a real number € > 0 such that

Pr(Z[f,g](n)) < 27" a.e.

(8) fis (t(n),r(n)¢)-one-way with exponential security if for every g €
DTIMEF(t) there exists a real number ¢ > 0 such that

Pr(Zianal f> 9, 7](n)) < 27" ae.

19



(9) fis (t(n)/r(n))-one-way with exponential security if for every ¢ €
DTIMEF(t)/ADV(r) there exists a real number ¢ > 0 such that

Pr(Z[f,g](n)) < 27" a.e.

We briefly discuss these nine definitions. Intuitively, the function g is an
adversary that we want to be unsuccessful in inverting f. In (1), (4), and
(7), the adversaries are t(n)-time-bounded deterministic algorithms. In (2),
(5), and (8), the adversaries are t(n)-time-bounded randomized algorithms
that can use at most r(n) coin tosses. In (3), (6), and (9), the adver-
saries are t(n)-time-bounded algorithms, augmented by at most r(n) bits of
nonuniform advice. Thus the adversary may be deterministic, randomized,
or nonuniform, with computational power quantified by the functions ¢ and
T

Whatever the power of the adversary, the nine definitions provide three
levels of security against inversion. Definitions (1), (2), and (3) provide
essentially no security, stipulating only that the adversary sometimes fails
to find a preimage. Definitions (4), (5), and (6) provide polynomial security,
a level of security that has been extensively investigated in the past 10 years.
Definitions (7), (8), and (9) provide exponential security, a very high level
of security that may be preferable to polynomial security in some contexts.

Note that our terminology requires every one-way function to be in
PFron, but does not require one-way functions to be one-to-one.

Only the following very weak type of one-way function is known to exist
under the hypothesis that P # NP.

Definition A weak one-way function is a function that is, for every poly-
nomial ¢, weakly ¢(n)-one-way.

Theorem 5.1.(Allender [1]). P # NP if and only if there exists a weak
one-way function.

Using work of Karp and Lipton [18], one can show that the stronger
hypothesis ¥ # II5 implies the existence of functions that are, for all poly-
nomials ¢ and r, weakly (¢(n)/r(n))-one-way (see also [6]), but such functions
still do not provide a useful amount of security.

In Theorem 5.3 below, we will show that the hypothesis p(SNP | Eg) # 0
implies the existence of one-way functions with exponential security. The
following lemma will simplify our proof.
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Lemma 5.2. Assume that there exist a stricly increasing polynomial ¢ and
a function f € PFY with the following property.

hon

(*) For every ¢ € DTIMEF(¢)/ADV(r) satisfying |¢(y)| = ¢(|y|) for all
y € {0,1}*, there is a real number € > 0 such that

Pr(Z[f, gl(q(n))) < 271" a.e.

Then there exists a function that is (¢(n)/r(n))-one-way with exponential
security.

Proof. Assume the hypothesis and define f : {0,1}* — {0,1}* as follows.
Let z € {0,1}* If 2| < ¢(0), let f(z) = A. If [z] > ¢(0), let n, be the
greatest integer such that ¢(n,) < |z, and let f(z) = f(2[0..q(n,)—1]). Tt is
clear that f € PFpon. To see that f is (#(n)/r(n))-one-way with exponential
security, let g € DTIMEF(¢)/ADV(r). Define g : {0,1}* — {0,1}* by

L aw0a(lah — 1] i 3] > ()
o) = { il if |30 < aJy).

Then ¢ € DTIMEF(¢)/ADV(r) and |¢(y)| = q(|y|) for all y € {0,1}*. It

follows by assumption (*) that there is a real number € > 0 such that

Pr(Z[f, gl(q(n))) < 271" a.e.

Now assume for a moment that z € Z[f, gl(m), where m > ¢(0). Define
n; as above and write @ = wv, where |u| = ¢(n,). Then f(g(f(z))) =
f@@), so [g(f(x)] = q([f(2)]), so g(f(x)) = g(f(«)[0.q(lf(2)]) = 1] =

§(f(2))[0..q(nz) — 1], so

F(f(w) = flg(f(2)))
= f(§(f(2))[0..q(ns) — 1])
J(3(F (@)
f(x)
= f(u),

sou € I[f, g](¢(nz)). This argument shows that

Pr(Z[f, g)(m)) < Pr(Z[f, g)(a(nm)))
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for all m > ¢(0), where n,, is the greatest integer such that ¢(n,) < m.
Now ¢ is a polynomial, so for all sufficiently large m,

() <m < q(ng +1) < g(nm)?

For all sufficiently large m, we now have

Thus f is (t(n)/r(n))-one-way with exponential security.

We now come to the main result of this section.

Theorem 5.3. If u(SNP | E3) # 0, then for every polynomial p there is a
function that is (2°(")/p(n))-one-way with exponential security.

Proof. Let p be a polynomial and assume that there is no function that
s (2007 /p(n))-one-way with exponential security. It suffices to prove that
u(BNP | Eq) = 0.

Let A € gNP. Fix a strictly increasing polynomial ¢ and a function
/€ PF{)?I such that A = range(f). Let ¢ = #g(q).

function that is (2p(”)/p(n))—one—way with exponential security, Lemma 5.2
tells us that there is a function g € DTIMEF(2°("))/ADV(p(n)) such that
the set

Since there is no

1= {neN|PIlf gl(a(n)) > 27900}

is infinite and |g(y)| = q(|y|) for all y € {0,1}*.

We now have two cases.

Case I. 27"|A_,| — % as n — o0o. Then fix ng € N such that the
following conditions hold for all n > nyg.

(i) [Acn] > 202,
(il) g(n)* < n¥/s.

(iil) (n —2)3/4 > n®/® 4 p1/2,

22



(iv) For all z € {0,1}907),
{ye (0,109 | fy) = fla) }| < 200",
where I = log | f({0,1}2(")].
(Note that we are using the fact that f € PF\%) here.) Let
J={nel|n>ngy}

and note that J is infinite. Define a language C' C {0,1}* as follows: For

n e N, if [f(Z[f,9)(¢(n))| > 2V7, then C—, = f(Z[f,g](¢(n))). Oth-
erwise, C—, = {0,1}". Note that |C—,| > 2V" for all n € N. Also,

since f € PF{)?I and g € DTIMEF(2°0")/ADV(p(n)), it is clear that C' €
DTIME(2°()+27) JADV(p(n)). (To decide membership in C—,, we check
the condition f(g(y)) =y for each y € {0,1}".) For all n € J, letting

[ = log | f({0,1}7")] = log |A—,|,

we have

11/, gl(q(n))]
JIaX ] 1({y})]
9a(n)—q(n)*
SEIOEE
2[3/4_q(n)e
2(n_2)3/4_n5/8
oV,

| F(Z1f; 9)(a(n)))]

v

(AVARLY/

Thus, for all n € J,
(o = F(Z1, g)(g(n))) € range(f) = A,

80
(AN{0,1})YNnC=, =0,
i.e., {0,1}* does a good job of predicting A on C—,, for all n € J. Since J
is infinite, it follows that
[(AA{0,1}7) N Oy
[e=

1
2

7L>
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as n — oo. Thus {0, 1}* and C testify that A ¢ WS(QP(”)+2”,p(n),2ﬁ).
Case IL. 27"[A—,| / 1 as n — oco. Then
[(AAD) {0, 1}

0.7

so 0 and {0,1}* testify that A g WS(2P()+27 (), 2v7),
Since A € NP is arbitrary, Cases I and II together show that

1
7L>§7

NP N WS(200+27 (), 2V7) = ¢,

It follows by the Weak Stochasticity Theorem that u(GNP | E2) = 0, com-
pleting the proof of Theorem 5.3.
O

Immediately from Theorem 5.3, we have:

Corollary 5.4. If u(SNP | E2) # 0, then for every polynomial p, there is a

function that is 2°(")-one-way with exponential security.

Using standard techniques, we can also derive the following from Theo-
rem 5.3.

Corollary 5.5. If u(SNP | E2) # 0, then for every polynomial p, there is a

function that is (2°("), p(n)¢)-one-way with exponential security.

It should be noted that the polynomial p is fixed in Theorem 5.3 and
in Corollary 5.5. Thus, for example, Corollary 5.5 tells us that, if u(SNP |
Ey) # 0 and k is a large integer, then there is a function f that is (27", nk¢)-
one-way with exponential security, but f depends upon k here. 1t is con-
ceivable that a polynomial-time adversary, using more than n* random bits,
might invert f with significant probability of success. Note, however, that
such an adversary must use more than n* “truly random” bits. In partic-
ular, if the adversary uses a pseudorandom generator, then the seed length
must exceed n*.

6 DBPP-Pairs and Pseudorandom Generators

Yao [33] proved that, if nonuniformly secure pseudorandom generators ex-
ist, then R C ),5o DTIME(2""). Boppana and Hirschfeld [5] subsequently
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refined Yao’s argument to get the (apparently) stronger conclusion that
BPP C Neso DTIME(2"). In this section we prove that the hypothesis
w(BNP | Eq) # 0 implies a partial converse of this result.

In order to state this converse, we will use Yao, Boppana, and Hirschfeld’s
argument to obtain the (apparently) stronger conclusion that the class
Neso DTIME(2"") “separates all BPP-pairs.” We first define the relevant
notions.

Definition A BPP-configuration is an ordered 4-tuple B = (B,q,a,3),
where B € P, ¢ is a polynomial, and 0 < a < g < 1. Given such a
configuration B, the critical event for a string « € {0, 1}* is the set

B ={ye{0.130 [ (2,9) e B},

interpreted as an event in the sample space {0,1}‘1('9”') with the uniform
distribution. (That is, the probability of B, is Pr(B,) = 2790=D|B,|.) The
positive and negative languages of a BPP-configuration B = (B, q, a, §) are
the languages

Bt = {ae{0,1}"|Pr(B,) >},

B~ = {2€{0,1}7|Pr(B,) <a},
respectively. A BPP-pair is a pair (A%, A7) of languages for which there
exists a BPP-configuration B such that AT = Bt and A~ = B~. The

complexity class BPP (“bounded-error probabilistic polynomial time”) is

defined by
BPP={AC{0,1}"| (A, A%)is a BPP-pair }.

Note: if (AT, A7) is a BPP-pair, then AT N A~ = (. If, in addition, AT U
A~ = {0,1}*, then AT, A~ € BPP. Using standard techniques [2, 30], it
is easy to see that the above definition of BPP is equivalent to standard
definitions of BPP.

The class R can be defined similarly.
Definition An R-pair is a pair (B%, 87) of languages, where B = (B, q, a, 3)

is a BPP-configuration in which a = 0. The complexity class R (“random-
ized polynomial time with one-sided error”) is defined by

R={ACH{0,1}*| (A, A°) is an R-pair }.
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Definition A language C' separates an ordered pair (AT, A7) of languages
if At C Cand A~NC = . A class C of languages separates a pair (AT, A7)
of languages if there exists C' € C such that C separates (A1, A7).

If C is a class of languages that separates every BPP-pair (respectively,
every R-pair), then it is clear that BPP C C (respectively, R C C).
We now turn to pseudorandom generators.

Definition Let p be a polynomial. A p(n)-generator is a function g € PF
such that |g(z)| = p(|z]) for all z € {0,1}*.

Typically, the polynomial p(n) is much larger than n, so that the gener-
ator g, given a short seed x, outputs a long, hopefully pseudorandom, string
g(z). The desired notion of pseudorandomness is given by the following
definitions, due to Yao [33].

Definition A nonuniform test is a language 1" € P/Poly. A p(n)-generator
g passes a nonuniform test T if, for every polynomial ¢,

a.e.,

1
Pr(g HUT)=p) = Pr(T—pi)| < —
Pr(y™ (T)=n) = Pr(Topon)]| < s
where the two probabilities are computed according to the uniform distri-
butions on {0,1}" and {0,1}7(") respectively.

Definition A uniform test is an ordered pair 7 = (T, r), where T' € P and
7 is a polynomial. A p(n)-generator g passes a uniform test 7 = (7', r) if,
for every polynomial ¢,

[Pr[{g(2), 2) € T] = Pr(y,2) € T]| <

1
a.e.
q(n)
The first probability here is computed according to the uniform distribu-
tion on (z,2) € {0,1}" x {0,1}"P("). The second probability is computed
according to the uniform distribution on (y, z) € {0, 1}7(") x {0,1}7 (%),

Definition A p(n)-generator ¢ is nonuniformly secure if it passes all nonuni-
form tests. A p(n)-generator ¢ is uniformly secure if it passes all uniform
tests.

The following fact is quite useful. A proof appears in [5].

Theorem 6.1. (Goldreich and Micali [11]). Let p and ¢ be polynomials
such that p(n) > n+ 1 and ¢(n) > n+ 1 for all n € N.

26



(1) Nonuniformly secure p(n)-generators exist if and only if nonuniformly
secure ¢(n)-generators exist.

(2) Uniformly secure p(n)-generators exist if and only if uniformly secure
q(n)-generators exist.

In light of Theorem 6.1, the following definition is sufficient.

Definition A nonuniformly secure pseudorandom generator is a function
that is a nonuniformly secure p(n)-generator for some polynomial p(n) >
n+ 1. A uniformly secure pseudorandom generator is a function that is a
nonuniformly secure p(n)-generator for some polynomial p(n) > n + 1.

The following well-known result relates pseudorandom generators to the
deterministic time complexity of BPP.

Theorem 6.2. (Yao[33], Boppana and Hirschfeld[5]). If nonuniformly se-
cure pseudorandom generators exist, then BPP C (), DTIME(2""). O

In fact, Yao, Boppana, and Hirschfeld essentially proved the following,
perhaps stronger, result. We include the proof for completeness, but em-
phasize that it is a minor modification of the proof of Theorem 6.2.

Theorem 6.3. If nonuniformly secure pseudorandom generators exist, then
for all € > 0, DTIME(2"") separates all BPP-pairs.

Proof. Assume the hypothesis, let ¢ > 0, and let (AT, A™) be a BPP-pair.
It suffices to prove that DTIME(2"") separates (A*, A7).

Fix a BPP-configuration B = (B, ¢, «, 3) such that AT = BT and A~ =
B~. Without loss of generality, assume that ¢ is strictly increasing. Let
p(m) = q(m?¢). By our assumption, nonuniformly secure pseudorandom
generators exist, so by Theorem 6.1 there exists a nonuniformly secure p(m)-
generator g. For each y € {0,1}*, letting n = |y| and m = n/2, define the
“pseudo-critical event”

B, ={xe{0,1}7 [ (y,9(x)) € B}.

Then define the language

a+ﬂ}7

C:{yE{O,l}* 5

Pr(B,) >
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where Pr(B;)) is computed according to the uniform distribution on {0, 1}™.

It is clear that C' € DTIME(2™).
Let

Tt o= {an) [ (AT =)= #0},

J= = {a(n) | q(n) ¢ J* and (A= N C)ey £},

J = JtuJ ={qgn) | (AT -C),U(A " NC)=, £07}.
Define an advice function h : N — {0,1}* as follows. For j = ¢(n) € J*,

fix h(j) € (AY = C)=y,. For j = ¢(n) € J~, fix h(j) € (A~ N C)=,. For all
other j, let h(j) = A. Let

D= {(zw)] |s| = q(w]) and (w,z) € B}

and let T'= D/h. Then T' € P/Poly, i.e., T'is a nonuniform test, so g passes
T.
Now for all j = ¢(n) = p(m) € J*, we have

Pr(g~ (T)=r) = Prlg(z)e T

and

VAR T

w g g

RS- = -
oy
o>~
=

$0
a+f [f-«

Pr(T_pn) = Pr(g™ (T)=m) > B = —— = =

Similarly, for all 7 = ¢(n) = p(m) € J~, we have

Pr(g ™ (T)=m) = Pr(Bj,;) >
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and

Pr(T_p(my) = Pr(By;)) < o

S50

a+ 0 — «

Pr(g™H(T)=m) = Pr(T=p(my) 2
We thus have

Pr(g™!(T)=m) = Pr(Tym)| 2

for all 7 = p(m) € J. Since g passes the test T B—ch is a positive constant,
and p is strictly increasing, it follows that J is a finite set. We thus have

(AT = C)U (A~ N O)| < o,

whence there is a language C” such that |[C" A C| < oo and C’ separates
(At A7), Since C € DTIME(2™) and |C' A C| < oo, C' € DTIME(2").
Thus DTIME(2") separates (AT, A™). O

The main result of this section, Theorem 6.6 below, is a partial converse
of Theorem 6.3. In order to prove this result, we recall the well-known
relationship between pseudorandom generators and one-way functions. For
this purpose, we focus on one-way functions with polynomial security.

Definition A nonuniformly one-way function is a function that is, for all
polynomials ¢ and r, (¢{(n)/r(n))-one-way with polynomial security. A uni-
formly one-way function is a function that is, for all polynomials ¢ and r,
(t(n), r(n)¢)-one-way with polynomial security.

It is easy to see that nonuniformly one-way functions exist if nonuni-
formly secure pseudorandom generators exist, and that uniformly one-way
functions exist if uniformly secure pseudorandom generators exist. The con-
verse implications, though much deeper, are also known to hold:

Theorem 6.4. (Impagliazzo, Levin, and Luby [16]). If nonuniformly one-
way functions exist, then nonuniformly secure pseudorandom generators ex-
ist. |

Theorem 6.5. (Hastad [15]). If uniformly one-way functions exist, then
uniformly secure pseudorandom generators exist. |

We now show that the hypothesis p(SNP | Ez2) # 0 implies a partial
converse of Theorem 6.3.
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Theorem 6.6. If (GNP | E3) # 0 and DTIME(2") separates all BPP-pairs,
then uniformly secure pseudorandom generators exist.

Proof. Assume that DTIME(2") separates all BPP-pairs and that uni-
formly secure pseudorandom generators do not exist. It suffices to prove
that p(SNP | Eg) = 0.

Let A € BNP. Fix a strictly increasing polynomial p and a functon
f e PF](;;)I such that A = range(f). By Theorem 6.5, uniformly one-way
functions do not exist, so an argument analagous to the proof of Lemma 5.2
shows that there exist polynomials ¢, 7, and ¢ and a function ¢ € DTIMEF(¢)
such that the set

1
I= {n € N PriZranal 9. l(pin)) 2 Zomss }

is infinite and [g((y, 2))| = p(|y|) for all y € {0,1}* and = € {0, 1}7(14D.
For each y € {0, 1}*, let

7, = {ze {0,130 f(g(ty,2)) =y},

and let

v:{@/E{OalWPT(Iy)Zm}’

U= f_l(v)v

where Pr(Z,) is computed according to the uniform distribution on {0, 1}7(1¥D.
Note that, for all n € I, we have

oy = Prranalf g i(p(n))

= 2_p(n) Z PI’(If(l,))

ze{0,1}p(n)

9—p(n) [ Z PI’(If(l,)) + Z PI’(If(x))

7€U=p(n) v€{0,1}P(M-U

IN

277" U U=p(n)

pny___ L
2 2q<p<n>>] '

Thus,
9p(n)

= 24(p(n))
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forall n € 1.
We now have two cases.

CaseI. 27"[A=,| — 1 as n — oo. Then fix ng € N such that the

following conditions hold for all n > nyg.

(i) [Aca| > 202,

(i) (1 - m)q(p(n)) <2

(iii) For all y € A—,,,
_3/4

)| < 2r=
where [ = log |A—,|.

(iv) 2072 > 9V 2g(p(n)).

(In (ii) we are using the fact that the left-hand side converges to 1//e, which
is less than 2/3, as n — oo. In (iii) we are using the fact that f € PF{)Z;)I.)
Let

J={nel|n>ng}

and note that J is infinite. Note that, for all n € J (setting [ = log |A=,|),

‘U=p(n)
|V=n| Z 2p(n)—l3/4
2[3/4

> -

~ 2q¢(p(n))

N 2(n—2)3/4

~ 2¢(p(n))

> V7,

Now let B be the set of all {y, z) such that 2 = 2y - - - z,(5(1y|)), Where each
|zi| = r(ly|) and Z, N {21, x -,zq(p(|y|))} # (. Note that B € P. Define the

polynomial
s(n) = q(p(n)) - r(n)

and consider the BPP-configuration

B =(B,s,0,1/3).
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By our assumption, DTIME(2") separates all BPP-pairs, so there is a lan-
guage C' € DTIME(2") such that BT C ' and B~ nC = .
The language C satisfies

V., CBtCCCA

for all n > ng. The second of these three inclusions is clear. Since B~NC = (),
every element of C' has a preimage under f, whence C' C range(f) = A4, i.e.,
the third inclusion holds. To see that the first inclusion holds, fix n > ng and
let y € V—,. Then Pr(Z,) > m, so the complement By of the critical
event BB, has probability

. 1 g(n) 9
pr(s) < (1 2q<p<n>>) <3

so Pr(B,) > 1/3, so y € Bt and the first inclusion is affirmed.
Now define a language D € DTIME(22") by

D _)C= Oz 227
- {0,1}" if |Coy] < 2V

Recall that |[V_,| > 2V for all n € J. Since V_, C C' C A, it follows that
D_,=C-,CA
for all » € J. But then
(AN{0,1}YND—, =0

for all n € J. Because J is infinite, this implies that

[(AA{0,1}1*)N D=y, 1
D_] 73

as n — oo. Since {0,1}*, D € DTIME(2%") and |D—,| > 2V" for all n € N,
it follows that A ¢ WS(227,0,2V7).

CaseII. 27" |A—,| # % as n — oo. Then we immediately have A ¢
WS(2%7,0,2V7).

Since A € NP is arbitrary, Cases I and II together show that

BNP N WS(22",0,2V7) = 0.
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It follows by the Weak Stochasticity Theorem that u(GNP | E2) = 0, com-
pleting the proof of Theorem 6.6. O

Minor modification of the proof of Theorem 6.6 yields a somewhat stronger
result:

Theorem 6.7. If p(SNP | Eg) # 0 and there is a constant k& such that
DTIME(Q”k)/ADV(nk) separates every R-pair, then uniformly secure pseu-
dorandom generators exist.

7 Conclusion

We have addressed the following fundamental question.

(%) Is there a plausible hypothesis concerning the structure of NP that
implies the existence of cryptographically secure one-way functions?

We have shown that the hypothesis u(GNP | Ez) # 0 implies that crypto-
graphically secure one-way functions exist. We have also shown that this
hypothesis implies a partial converse to Yao, Boppana, and Hirschfeld’s the-
orem on BPP and pseudorandom generators.

These results constitute a prima facie case for investigation of the class
GNP. It is not clear whether the hypothesis u(SNP | Eq) # 0 is plausi-
ble. Only further investigation will determine this. Such investigation may
indicate that the consequences of u(SNP | Eq) # 0 form, en masse, a plau-
sible state of affairs, thereby suggesting an affirmative answer to (%). On
the other hand, such investigation may uncover implausible consequences of
w(BNP | Eq) # 0, or even yield a proof that (GNP | E3) = 0. This outcome
might suggest either an affirmative answer or a negative answer to (%), de-
pending upon the form it takes. In any case, (¥ ) is an important question
that may be illuminated, directly or indirectly, by studying the class GNP.
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