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Abstract

It is shown that P(A) N P(B) = BPP holds for every algorithmically random oracle
A @ B. This result extends the corresponding “probability one” characterization of
Ambos-Spies (1986) and Kurtz (1987).

1 Introduction

Most polynomial time complexity classes are now known to admit probability one oracle
characterizations [2, 1, 7, 14, 20, 19]. The canonical such characterization, due to Bennett
and Gill [2] and Ambos-Spies [1], is the fact that

BPP = {A | Prp[A € P(B)] = 1}, (1.1)

where BPP is the class of all decision problems solvable in polynomial time by randomized
algorithms with bounded error. (See section 2 for notation and terminology used in this
introduction.) In this paper, Prg[€] denotes the probability that event £ occurs when the
language B C {0,1}" is chosen probabilistically according to the uniform distribution, i.e.,
according to the random experiment in which an independent toss of a fair coin is used to
decide whether each string is in B. Thus (1.1) asserts that a language is in BPP if and only
if it is <P-reducible to almost every oracle B. (In this paper, the terms oracle, language,
and decision problem are used synonymously, denoting subsets of {0,1}".)

Since BPP is countable, (1.1) implies that almost every oracle is <Y-hard for BPP.
Nevertheless, (1.1) does not say which oracles are <V-hard for BPP. To remedy this, Lutz
[12] gave a pseudorandom oracle characterization of BPP, stating that

BPP = {A | (VB € RAND(pspace)) A € P(B)}. (1.2)

Here, RAND (pspace) is the class of pspace-random oracles, defined by Lutz [10]. (Languages
in RAND(pspace) are called pseudorandom because (i) they exhibit all pspace-specifiable
randomness properties, even though (ii) RAND(pspace) contains many decidable languages,
including almost every language in E;SPACE = DSPACE (2rebnomial) [10].) In passing from
(1.1) to (1.2), the probability condition has been replaced by universal quantification over the
set RAND(pspace). In particular, (1.2) implies that every pspace-random oracle is <F-hard
for BPP. Since Prg[B € RAND(pspace)] = 1 [10], this implies and explains the above-noted
fact that almost every oracle is <t -hard for BPP.

Let RAND be the set of all languages which are (algorithmically) random in the equivalent
senses of Martin-Lof [13], Levin [8], Schnorr [16], Chaitin [3, 4], Solovay [18], and Shen’ [17].
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Then RAND C RAND(pspace), so (1.1) and (1.2) together immediately give the random
oracle characterization

BPP = {A | (VB € RAND) A € P(B)}. (1.3)

Since Prp[B € RAND = 1 [13] and RAND 3 RAND(pspace) [10], (1.3) is in a sense more
informative than (1.1) but less informative than (1.2).

Following (1.1), Ambos-Spies [1] and Kurtz [7] gave the probability one independent oracle
characterization

Pr, 5[P(A) NP(B) = BPP] = 1, (1.4)

where Pr 4 p[£] denotes the probability that event £ occurs when the languages A, B C {0,1}"
are chosen independently according to the uniform distribution. This is an intriguing charac-
terization. It is immediate from (1.1) and the countability of BPP that Prp[BPP 3 P(B)] =
1. However, (1.4) tells us that, if we choose A and B independently, then intersecting P(A)
with P(B) will almost always give precisely the class BPP.

In this paper we extend (1.4) in a manner analogous to the extension of (1.1) to (1.3).
We say that languages A and B are independent random if their disjoint union A & B is a
random language. (This can easily be proven equivalent to the condition that (A, B) is not
an element of any constructive null set in the product space €2 x €2, where €Q is the set of all
languages with the uniform probability distribution.) Intuitively, this requires A and B to
be individually random and completely uncorrelated. We then prove an independent random
oracle characterization of BPP, stating that

(VA ® B € RAND) P(4) N P(B) = BPP. (1.5)

Since Pry p[A @ B € RAND| = 1, (1.5) immediately implies (1.4). Moreover, (1.5) ex-
plains (1.4) by identifying a specific probability one event which implies that P(4) NP(B) =
BPP.

A constructive version of Fubini’s theorem (see [15], for example) can be used to show
that (1.5) implies (1.3). In fact, the comparison here is striking. The random oracle charac-
terization (1.3) says that

BPP = () P(B). (1.3")

BERAND

The independent random oracle characterization (1.5) says that (1.3") holds even if we only
intersect over two of the languages B € RAND, provided that the languages we choose are
uncorrelated.

2 Preliminaries

All languages, oracles, and decision problems here are sets A C {0,1}". We write A_,, =
AN{0,1}" and A, = AN{0,1}=". The disjoint union of languages A and B is A® B =
{20 |z € A}y U{zl |z € B}.

The characteristic sequence of a language A is the infinite binary sequence x4, =
[so € A][s1 € A]---, where s, 51, So, ... is the standard enumeration of {0,1}" and [p] is



the truth value of ¢ (i.e., [¢] = if ¢ then 1 else 0). The characteristic string of A<, is the
(271 — 1)-bit prefix of x4. A prefiz of a language A is a string x € {0,1}" which is a prefix
of x4; in this case we write x C x4 or x C A.

We write €2 for the set of all languages and consider €2 as a probability space with the
uniform distribution. Thus, for an event £ C Q, Pr(€) = Pry[A € £] is the probability that
A € £ when A is chosen by a random experiment in which an independent toss of a fair coin
is used to decide whether each string x € {0,1}" is in A. The cylinder generated by a string
z € {0,1}" is the set

C,={AcQ|xzC A}

For convenience, we use the special symbol T to specify the empty set, C+ = (). Note that
Pr(Ct) = 0 and Pr(C,) = 271! for each x € {0, 1}".
We say that almost every language has a property 6 if Pry[A has property 0] = 1.

Definition (Martin-Lof [13]). A constructive null cover of a set X of languages is a total
recursive function

G:NxN—={0,1}7U{T}
such that, for each k € N,

(i) X C ij Cakyy (the covering condition), and
1=0

(ii) § Pr(Ca,) < 27F (the measure condition).
I=0

A constructive null set is a set of languages which has a constructive null cover.

Definition (Martin-Lof [13]). A language A is (algorithmically) random, and we write
A € RAND, if A is not an element of any constructive null set.

It is easy to see that each constructive null set X has probability Pr(X) = 0. However,
Martin-Lo6f [13] proved that Pra[A € RAND] = 1, so the converse is not true: For each
A € RAND, Pr({A}) = 0 but {A} is not a constructive null set.

Choosing languages A and B independently from €2 is equivalent to choosing the pair
(A, B) from the product space 2 x  with the probability distribution given by Pr(X X
Y) = Pr(X)Pr(Y) for all events X,Y C €. Formally, one can then define cylinders and
constructive null sets in 2 x Q as we did for 2 above. A pair of independent random oracles
is then a pair (A4, B) which is not an element of any constructive null set in Q2 x 2. However,
it is easily shown that this is exactly equivalent to the following.

Definition. A and B are independent random languages if A@® B € RAND.

If A and B are independent random languages, it is easy to see that A, B € RAND.
However, the converse does not hold. For example, A & A is not random, even if A is
random.

The class BPP, first defined by Gill [5], consists of those decision problems A for which
there exist a polynomial time-bounded probabilistic Turing machine M and a constant o > %
such that Pr[M accepts x| > « for all z € A and Pr[M rejects z] > « for all © ¢ A. This
definition is not used in this paper, so it may be best to regard (1.1) as a definition of BPP.



With the exception of the above definition, all machines in this paper are deterministic
oracle Turing machines. Such a machine is polynomial time-bounded if there is a polynomial ¢
such that, for every input x € {0,1}" and every oracle B, MZ(x) accepts or rejects x in
< q(|z]) steps. We write L(MP) = {x | MP(x) accepts z}. A language A is polynomial time
Turing reducible to a language B, and we write A <} B, if A = L(M?) for some polynomial
time-bounded machine M. We write P(A) = {B | A<} B}.

The class RAND(pspace) is discussed only in sections 1 and 4 and will not be defined
here. Details may be found in [9, 10, 11, 12].

3 Result

We now prove the independent random oracle characterization of BPP.

Theorem. For every pair A, B of independent random oracles,
P(A) N P(B) = BPP.

Proof. The right-to-left inclusion follows immediately from (1.3). For the left-to-right
inclusion, assume that

D € P(A)NP(B) \ BPP.

It suffices to prove that A & B is not random.

Fix machines M,, M, testifying that D € P(A), D € P(B), respectively, and fix a strictly
increasing polynomial ¢ such that |y| < ¢(]z|) for all x and all queries y of M, or M, on
input #. For each n € N, let K(n) = 2¢™ — 1 and N(n) = 2K(n) +1 = 20+ — 1,
Throughout this proof, let u,v € {0, l}K(n) denote the characteristic strings of sets U,V C
{0, 1}<q(n), respectively, and let u@ v € {0, 1}N(") denote the characteristic string of U & V.

For each n € N and u € {0, 1}*", let

V(u) = {v € {0, 1} ™ | L(MY)<n = L(M) )<n}.

For each k,n € N, then, let U, be the set of all strings u € {0, I}K(n) with the following
two properties.

(i) 0 < [V(u)| < 2Kk,
(ii) No prefix of u is in Uy, for any 0 < n’ < n. (This condition holds vacuously if n = 0.)

o0
For each k € N, let U, = U Ui,. Note that condition (ii) ensures that each U, is an
n=0

instantaneous code (i.e., no element of U, is a prefix of any other) and hence satisfies the
Kraft inequality,
Soo<,

uEU,
For each k € N and u € {0,1}", define a nonempty list T'x(u) of elements of {0,1} " U{T}
as follows. If u € Uy, then I'y(u) = (u ® vy,...,u & v;), where vy,...,v; enumerate V(u)

lexicographically. If u & Uy, then T'y(u) = {T}. Then, for each k£ € N, let [, be the infinite
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list obtained by concatenating the lists Iy (u) for all u € {0,1}". (The concatenation is
lexicographic in u, i.e., Iy = Tx(A) - Tx(0) - T (1) - T',(00) - ---.) Finally, define a function

G:NxN-= {01} U{T}

by letting G(k, 1) be the [*™ item in the list I';. Since M, and M, are time-bounded machines,
and since the lists I'y(u) are all nonempty, it is clear by inspection that G is a total recursive
function. We will show that G is a constructive null cover of the singleton set {A & B}.

To see that G satisfies the covering condition, fix £ € N. Since D ¢ BPP, (1.1) and the
Kolmogorov [6] zero-one law tell us that Prg[L(MF) = D] = 0. It follows that there exists
some n. € N such that the event

En ={E | L(M)<n = D<y}

has probability Pr(&,) < 27%. Let u be the characteristic string of Ay, and let v be the
characteristic string of Bys). Note that v € V(u). Also, by our choice of ¢ and n, we have
27F > Pr(&,) = 27 KM Y(u)|. Thus 0 < |V(u)| < 2KM™=%_ This implies that v’ € Uy for
some prefix u' of u; say u' € Uy, where n' < n. Let ' be the characteristic string of Bg.
Then v' € V(u') and u' € Uy, so v’ @ v’ appears in the list Ty, i.e., G(k,l) = v’ @ v for some
[ € N. We now have A® B € Cygy C Cygw = Cayy, 50 {A® B} € U Cgyy, affirming
1=0
the covering condition.
To see that G satisfies the measure condition, fix £ € N once again. Then

iPY(CG(k,l)) = > Y 9—|udv|

=0 u€UL veV (u)

S IR

n=0 ueuk,n ’UEV(U)

i Z 2K(n)fk:fN(n)

n=0 uGuk,n

— 27]6712 Z 27K(n)

n=0ucly

— 2—]4)—12 Z 2—|u\

n=0uecly,

— 27]671 Z 27\u|

uEU,
—k—1
27,

IN

IN

by the Kraft inequality. We have now shown that G is a constructive null cover of {A & B},
whence A @ B is not random. O

4 Open Question

Our independent random oracle characterization extends the probability one oracle char-
acterization (1.4) of Ambos-Spies [1] and Kurtz [7]. This extension is analogous to that
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from (1.1) to (1.3). However, our proof is not strong enough to give a result analogous
to (1.2). We thus ask the following question: Does the independent pseudorandom oracle

characterization
(VA @® B € RAND(pspace)) P(A) N P(B) = BPP
hold?
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