# A Note on Independent Random Oracles* 

Jack H. Lutz<br>Department of Computer Science<br>Iowa State University<br>Ames, IA 50011


#### Abstract

It is shown that $\mathrm{P}(A) \cap \mathrm{P}(B)=\mathrm{BPP}$ holds for every algorithmically random oracle $A \oplus B$. This result extends the corresponding "probability one" characterization of Ambos-Spies (1986) and Kurtz (1987).


## 1 Introduction

Most polynomial time complexity classes are now known to admit probability one oracle characterizations $[2,1,7,14,20,19]$. The canonical such characterization, due to Bennett and Gill [2] and Ambos-Spies [1], is the fact that

$$
\begin{equation*}
\mathrm{BPP}=\left\{A \mid \operatorname{Pr}_{B}[A \in \mathrm{P}(B)]=1\right\} \tag{1.1}
\end{equation*}
$$

where BPP is the class of all decision problems solvable in polynomial time by randomized algorithms with bounded error. (See section 2 for notation and terminology used in this introduction.) In this paper, $\operatorname{Pr}_{B}[\mathcal{E}]$ denotes the probability that event $\mathcal{E}$ occurs when the language $B \subseteq\{0,1\}^{*}$ is chosen probabilistically according to the uniform distribution, i.e., according to the random experiment in which an independent toss of a fair coin is used to decide whether each string is in $B$. Thus (1.1) asserts that a language is in BPP if and only if it is $\leq_{T}^{\mathrm{P}}$-reducible to almost every oracle $B$. (In this paper, the terms oracle, language, and decision problem are used synonymously, denoting subsets of $\{0,1\}^{*}$.)

Since BPP is countable, (1.1) implies that almost every oracle is $\leq_{T}^{\mathrm{P}}$-hard for BPP. Nevertheless, (1.1) does not say which oracles are $\leq_{T}^{\mathrm{P}}$-hard for BPP. To remedy this, Lutz [12] gave a pseudorandom oracle characterization of BPP, stating that

$$
\begin{equation*}
\mathrm{BPP}=\{A \mid(\forall B \in \operatorname{RAND}(\text { pspace })) A \in \mathrm{P}(B)\} \tag{1.2}
\end{equation*}
$$

Here, RAND(pspace) is the class of pspace-random oracles, defined by Lutz [10]. (Languages in RAND(pspace) are called pseudorandom because (i) they exhibit all pspace-specifiable randomness properties, even though (ii) RAND(pspace) contains many decidable languages, including almost every language in $\mathrm{E}_{2} \mathrm{SPACE}=\operatorname{DSPACE}\left(2^{\text {polynomial }}\right)$ [10].) In passing from (1.1) to (1.2), the probability condition has been replaced by universal quantification over the set RAND(pspace). In particular, (1.2) implies that every pspace-random oracle is $\leq_{T}^{\mathrm{P}}$-hard for BPP. Since $\operatorname{Pr}_{B}[B \in \operatorname{RAND}$ (pspace) $]=1[10]$, this implies and explains the above-noted fact that almost every oracle is $\leq_{T}^{\mathrm{P}}$-hard for BPP.

Let RAND be the set of all languages which are (algorithmically) random in the equivalent senses of Martin-Löf [13], Levin [8], Schnorr [16], Chaitin [3, 4], Solovay [18], and Shen' [17].

[^0]Then RAND $\subseteq$ RAND(pspace), so (1.1) and (1.2) together immediately give the random oracle characterization

$$
\begin{equation*}
\mathrm{BPP}=\{A \mid(\forall B \in \mathrm{RAND}) A \in \mathrm{P}(B)\} \tag{1.3}
\end{equation*}
$$

Since $\operatorname{Pr}_{B}[B \in \operatorname{RAND}=1[13]$ and RAND $\varsubsetneqq$ RAND (pspace) $[10]$, (1.3) is in a sense more informative than (1.1) but less informative than (1.2).

Following (1.1), Ambos-Spies [1] and Kurtz [7] gave the probability one independent oracle characterization

$$
\begin{equation*}
\operatorname{Pr}_{A, B}[\mathrm{P}(A) \cap \mathrm{P}(B)=\mathrm{BPP}]=1 \tag{1.4}
\end{equation*}
$$

where $\operatorname{Pr}_{A, B}[\mathcal{E}]$ denotes the probability that event $\mathcal{E}$ occurs when the languages $A, B \subseteq\{0,1\}^{*}$ are chosen independently according to the uniform distribution. This is an intriguing characterization. It is immediate from (1.1) and the countability of BPP that $\operatorname{Pr}_{B}[\mathrm{BPP} \varsubsetneqq \mathrm{P}(B)]=$ 1. However, (1.4) tells us that, if we choose $A$ and $B$ independently, then intersecting $\mathrm{P}(A)$ with $\mathrm{P}(B)$ will almost always give precisely the class BPP.

In this paper we extend (1.4) in a manner analogous to the extension of (1.1) to (1.3). We say that languages $A$ and $B$ are independent random if their disjoint union $A \oplus B$ is a random language. (This can easily be proven equivalent to the condition that $(A, B)$ is not an element of any constructive null set in the product space $\Omega \times \Omega$, where $\Omega$ is the set of all languages with the uniform probability distribution.) Intuitively, this requires $A$ and $B$ to be individually random and completely uncorrelated. We then prove an independent random oracle characterization of BPP, stating that

$$
\begin{equation*}
(\forall A \oplus B \in \mathrm{RAND}) \mathrm{P}(A) \cap \mathrm{P}(B)=\mathrm{BPP} \tag{1.5}
\end{equation*}
$$

Since $\operatorname{Pr}_{A, B}[A \oplus B \in R A N D]=1$, (1.5) immediately implies (1.4). Moreover, (1.5) explains (1.4) by identifying a specific probability one event which implies that $\mathrm{P}(A) \cap \mathrm{P}(B)=$ BPP.

A constructive version of Fubini's theorem (see [15], for example) can be used to show that (1.5) implies (1.3). In fact, the comparison here is striking. The random oracle characterization (1.3) says that

$$
\mathrm{BPP}=\bigcap_{B \in \operatorname{RAND}} \mathrm{P}(B)
$$

The independent random oracle characterization (1.5) says that (1.3') holds even if we only intersect over two of the languages $B \in$ RAND, provided that the languages we choose are uncorrelated.

## 2 Preliminaries

All languages, oracles, and decision problems here are sets $A \subseteq\{0,1\}^{*}$. We write $A_{=n}=$ $A \cap\{0,1\}^{n}$ and $A_{\leq n}=A \cap\{0,1\}^{\leq n}$. The disjoint union of languages $A$ and $B$ is $A \oplus B=$ $\{x 0 \mid x \in A\} \cup\{x 1 \mid x \in B\}$.

The characteristic sequence of a language $A$ is the infinite binary sequence $\chi_{A}=$ $\llbracket s_{0} \in A \rrbracket \llbracket s_{1} \in A \rrbracket \cdots$, where $s_{0}, s_{1}, s_{2}, \ldots$ is the standard enumeration of $\{0,1\}^{*}$ and $\llbracket \varphi \rrbracket$ is
the truth value of $\varphi$ (i.e., $\llbracket \varphi \rrbracket=$ if $\varphi$ then 1 else 0 ). The characteristic string of $A_{\leq n}$ is the $\left(2^{n+1}-1\right)$-bit prefix of $\chi_{A}$. A prefix of a language $A$ is a string $x \in\{0,1\}^{*}$ which is a prefix of $\chi_{A}$; in this case we write $x \sqsubseteq \chi_{A}$ or $x \sqsubseteq A$.

We write $\Omega$ for the set of all languages and consider $\Omega$ as a probability space with the uniform distribution. Thus, for an event $\mathcal{E} \subseteq \Omega, \operatorname{Pr}(\mathcal{E})=\operatorname{Pr}_{A}[A \in \mathcal{E}]$ is the probability that $A \in \mathcal{E}$ when $A$ is chosen by a random experiment in which an independent toss of a fair coin is used to decide whether each string $x \in\{0,1\}^{*}$ is in $A$. The cylinder generated by a string $x \in\{0,1\}^{*}$ is the set

$$
C_{x}=\{A \in \Omega \mid x \sqsubseteq A\} .
$$

For convenience, we use the special symbol $\top$ to specify the empty set, $C_{\top}=\emptyset$. Note that $\operatorname{Pr}\left(C_{\mathrm{T}}\right)=0$ and $\operatorname{Pr}\left(C_{x}\right)=2^{-|x|}$ for each $x \in\{0,1\}^{*}$.

We say that almost every language has a property $\theta$ if $\operatorname{Pr}_{A}[A$ has property $\theta]=1$.
Definition (Martin-Löf [13]). A constructive null cover of a set $X$ of languages is a total recursive function

$$
G: \mathbf{N} \times \mathbf{N} \rightarrow\{0,1\}^{*} \cup\{\top\}
$$

such that, for each $k \in \mathbf{N}$,
(i) $X \subseteq \bigcup_{l=0}^{\infty} C_{G(k, l)}$ (the covering condition), and
(ii) $\sum_{l=0}^{\infty} \operatorname{Pr}\left(C_{G(k, l)}\right) \leq 2^{-k}$ (the measure condition).

A constructive null set is a set of languages which has a constructive null cover.
Definition (Martin-Löf [13]). A language $A$ is (algorithmically) random, and we write $A \in$ RAND, if $A$ is not an element of any constructive null set.

It is easy to see that each constructive null set $X$ has probability $\operatorname{Pr}(X)=0$. However, Martin-Löf [13] proved that $\operatorname{Pr}_{A}[A \in \mathrm{RAND}]=1$, so the converse is not true: For each $A \in \operatorname{RAND}, \operatorname{Pr}(\{A\})=0$ but $\{A\}$ is not a constructive null set.

Choosing languages $A$ and $B$ independently from $\Omega$ is equivalent to choosing the pair $(A, B)$ from the product space $\Omega \times \Omega$ with the probability distribution given by $\operatorname{Pr}(X \times$ $Y)=\operatorname{Pr}(X) \operatorname{Pr}(Y)$ for all events $X, Y \subseteq \Omega$. Formally, one can then define cylinders and constructive null sets in $\Omega \times \Omega$ as we did for $\Omega$ above. A pair of independent random oracles is then a pair $(A, B)$ which is not an element of any constructive null set in $\Omega \times \Omega$. However, it is easily shown that this is exactly equivalent to the following.

Definition. $A$ and $B$ are independent random languages if $A \oplus B \in$ RAND.
If $A$ and $B$ are independent random languages, it is easy to see that $A, B \in$ RAND. However, the converse does not hold. For example, $A \oplus A$ is not random, even if $A$ is random.

The class BPP, first defined by Gill [5], consists of those decision problems $A$ for which there exist a polynomial time-bounded probabilistic Turing machine $M$ and a constant $\alpha>\frac{1}{2}$ such that $\operatorname{Pr}[M$ accepts $x]>\alpha$ for all $x \in A$ and $\operatorname{Pr}[M$ rejects $x]>\alpha$ for all $x \notin A$. This definition is not used in this paper, so it may be best to regard (1.1) as a definition of BPP.

With the exception of the above definition, all machines in this paper are deterministic oracle Turing machines. Such a machine is polynomial time-bounded if there is a polynomial $q$ such that, for every input $x \in\{0,1\}^{*}$ and every oracle $B, M^{B}(x)$ accepts or rejects $x$ in $\leq q(|x|)$ steps. We write $L\left(M^{B}\right)=\left\{x \mid M^{B}(x)\right.$ accepts $\left.x\right\}$. A language $A$ is polynomial time Turing reducible to a language $B$, and we write $A \leq_{T}^{\mathrm{P}} B$, if $A=L\left(M^{B}\right)$ for some polynomial time-bounded machine $M$. We write $\mathrm{P}(A)=\left\{B \mid A \leq_{T}^{\mathrm{P}} B\right\}$.

The class RAND(pspace) is discussed only in sections 1 and 4 and will not be defined here. Details may be found in $[9,10,11,12]$.

## 3 Result

We now prove the independent random oracle characterization of BPP.
Theorem. For every pair $A, B$ of independent random oracles,

$$
\mathrm{P}(A) \cap \mathrm{P}(B)=\mathrm{BPP}
$$

Proof. The right-to-left inclusion follows immediately from (1.3). For the left-to-right inclusion, assume that

$$
D \in \mathrm{P}(A) \cap \mathrm{P}(B) \backslash \mathrm{BPP}
$$

It suffices to prove that $A \oplus B$ is not random.
Fix machines $M_{a}, M_{b}$ testifying that $D \in \mathrm{P}(A), D \in \mathrm{P}(B)$, respectively, and fix a strictly increasing polynomial $q$ such that $|y|<q(|x|)$ for all $x$ and all queries $y$ of $M_{a}$ or $M_{b}$ on input $x$. For each $n \in \mathbf{N}$, let $K(n)=2^{q(n)}-1$ and $N(n)=2 K(n)+1=2^{q(n)+1}-1$. Throughout this proof, let $u, v \in\{0,1\}^{K(n)}$ denote the characteristic strings of sets $U, V \subseteq$ $\{0,1\}^{<q(n)}$, respectively, and let $u \oplus v \in\{0,1\}^{N(n)}$ denote the characteristic string of $U \oplus V$.

For each $n \in \mathbf{N}$ and $u \in\{0,1\}^{K(n)}$, let

$$
\mathcal{V}(u)=\left\{v \in\{0,1\}^{K(n)} \mid L\left(M_{a}^{U}\right)_{\leq n}=L\left(M_{b}^{V}\right)_{\leq n}\right\} .
$$

For each $k, n \in \mathbf{N}$, then, let $\mathcal{U}_{k, n}$ be the set of all strings $u \in\{0,1\}^{K(n)}$ with the following two properties.
(i) $0<|\mathcal{V}(u)| \leq 2^{K(n)-k}$.
(ii) No prefix of $u$ is in $\mathcal{U}_{k, n^{\prime}}$ for any $0 \leq n^{\prime}<n$. (This condition holds vacuously if $n=0$.)

For each $k \in \mathbf{N}$, let $\mathcal{U}_{k}=\bigcup_{n=0}^{\infty} \mathcal{U}_{k, n}$. Note that condition (ii) ensures that each $\mathcal{U}_{k}$ is an instantaneous code (i.e., no element of $\mathcal{U}_{k}$ is a prefix of any other) and hence satisfies the Kraft inequality,

$$
\sum_{u \in \mathcal{U}_{k}} 2^{-|u|} \leq 1
$$

For each $k \in \mathbf{N}$ and $u \in\{0,1\}^{*}$, define a nonempty list $\Gamma_{k}(u)$ of elements of $\{0,1\}^{*} \cup\{T\}$ as follows. If $u \in \mathcal{U}_{k}$, then $\Gamma_{k}(u)=\left(u \oplus v_{1}, \ldots, u \oplus v_{j}\right)$, where $v_{1}, \ldots, v_{j}$ enumerate $\mathcal{V}(u)$ lexicographically. If $u \notin \mathcal{U}_{k}$, then $\Gamma_{k}(u)=\{\top\}$. Then, for each $k \in \mathbf{N}$, let $\Gamma_{k}$ be the infinite
list obtained by concatenating the lists $\Gamma_{k}(u)$ for all $u \in\{0,1\}^{*}$. (The concatenation is lexicographic in $u$, i.e., $\Gamma_{k}=\Gamma_{k}(\lambda) \cdot \Gamma_{k}(0) \cdot \Gamma_{k}(1) \cdot \Gamma_{k}(00) \cdot \cdots$.) Finally, define a function

$$
G: \mathbf{N} \times \mathbf{N} \rightarrow\{0,1\}^{*} \cup\{\top\}
$$

by letting $G(k, l)$ be the $l^{\text {th }}$ item in the list $\Gamma_{k}$. Since $M_{a}$ and $M_{b}$ are time-bounded machines, and since the lists $\Gamma_{k}(u)$ are all nonempty, it is clear by inspection that $G$ is a total recursive function. We will show that $G$ is a constructive null cover of the singleton set $\{A \oplus B\}$.

To see that $G$ satisfies the covering condition, fix $k \in \mathbf{N}$. Since $D \notin \mathrm{BPP}$, (1.1) and the Kolmogorov [6] zero-one law tell us that $\operatorname{Pr}_{E}\left[L\left(M_{b}^{E}\right)=D\right]=0$. It follows that there exists some $n \in \mathbf{N}$ such that the event

$$
\mathcal{E}_{n}=\left\{E \mid L\left(M_{b}^{E}\right)_{\leq n}=D_{\leq n}\right\}
$$

has probability $\operatorname{Pr}\left(\mathcal{E}_{n}\right) \leq 2^{-k}$. Let $u$ be the characteristic string of $A_{<q(n)}$ and let $v$ be the characteristic string of $B_{<q(n)}$. Note that $v \in \mathcal{V}(u)$. Also, by our choice of $q$ and $n$, we have $2^{-k} \geq \operatorname{Pr}\left(\mathcal{E}_{n}\right)=2^{-K(n)}|\mathcal{V}(u)|$. Thus $0<|\mathcal{V}(u)| \leq 2^{K(n)-k}$. This implies that $u^{\prime} \in \mathcal{U}_{k}$ for some prefix $u^{\prime}$ of $u$; say $u^{\prime} \in \mathcal{U}_{k, n^{\prime}}$, where $n^{\prime} \leq n$. Let $v^{\prime}$ be the characteristic string of $B_{<q\left(n^{\prime}\right)}$. Then $v^{\prime} \in \mathcal{V}\left(u^{\prime}\right)$ and $u^{\prime} \in \mathcal{U}_{k}$, so $u^{\prime} \oplus v^{\prime}$ appears in the list $\Gamma_{k}$, i.e., $G(k, l)=u^{\prime} \oplus v^{\prime}$ for some $l \in \mathbf{N}$. We now have $A \oplus B \in C_{u \oplus v} \subseteq C_{u^{\prime} \oplus v^{\prime}}=C_{G(k, l)}$, so $\{A \oplus B\} \subseteq \bigcup_{l=0}^{\infty} C_{G(k, l)}$, affirming the covering condition.

To see that $G$ satisfies the measure condition, fix $k \in \mathbf{N}$ once again. Then

$$
\begin{aligned}
\sum_{l=0}^{\infty} \operatorname{Pr}\left(C_{G(k, l)}\right) & =\sum_{u \in \mathcal{U}_{k}} \sum_{v \in \mathcal{V}(u)} 2^{-|u \oplus v|} \\
& =\sum_{n=0}^{\infty} \sum_{u \in \mathcal{U}_{k, n}} \sum_{v \in \mathcal{V}(u)} 2^{-N(n)} \\
& \leq \sum_{n=0}^{\infty} \sum_{u \in \mathcal{U}_{k, n}} 2^{K(n)-k-N(n)} \\
& =2^{-k-1} \sum_{n=0}^{\infty} \sum_{u \in \mathcal{U}_{k, n}} 2^{-K(n)} \\
& =2^{-k-1} \sum_{n=0}^{\infty} \sum_{u \in \mathcal{U}_{k, n}} 2^{-|u|} \\
& =2^{-k-1} \sum_{u \in \mathcal{U}_{k}} 2^{-|u|} \\
& \leq 2^{-k-1},
\end{aligned}
$$

by the Kraft inequality. We have now shown that $G$ is a constructive null cover of $\{A \oplus B\}$, whence $A \oplus B$ is not random.

## 4 Open Question

Our independent random oracle characterization extends the probability one oracle characterization (1.4) of Ambos-Spies [1] and Kurtz [7]. This extension is analogous to that
from (1.1) to (1.3). However, our proof is not strong enough to give a result analogous to (1.2). We thus ask the following question: Does the independent pseudorandom oracle characterization

$$
(\forall A \oplus B \in \mathrm{RAND}(\text { pspace })) \mathrm{P}(A) \cap \mathrm{P}(B)=\mathrm{BPP}
$$

hold?

## References

[1] K. Ambos-Spies, Randomness, relativizations, and polynomial reducibilities, Proceedings of the First Structure in Complexity Theory Conference, 1986, pp. 23-34.
[2] C. H. Bennett and J. Gill, Relative to a random oracle $A, \mathrm{P}^{A} \neq \mathrm{NP}^{A} \neq \mathrm{co}^{-\mathrm{NP}^{A}}$ with probability 1, SIAM Journal on Computing 10 (1981), pp. 96-113.
[3] G. J. Chaitin, A theory of program size formally identical to information theory, Journal of the Association for Computing Machinery 22 (1975), pp. 329-340.
[4] G. J. Chaitin, Incompleteness theorems for random reals, Advances in Applied Mathematics 8 (1987), pp. 119-146.
[5] J. Gill, Computational complexity of probabilistic Turing machines, SIAM Journal on Computing 6 (1977), pp. 675-695.
[6] A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933.
[7] S. Kurtz, A note on randomized polynomial time, SIAM Journal on Computing 16 (1987), pp. 852-853.
[8] L. A. Levin, On the notion of a random sequence, Soviet Mathematics Doklady 14 (1973), pp. 1413-1416.
[9] J. H. Lutz, Category and measure in complexity classes, SIAM Journal on Computing 19 (1990), pp. 1100-1131.
[10] J. H. Lutz, Pseudorandom sources for BPP, Journal of Computer and System Sciences 41 (1990), pp. 307-320.
[11] J. H. Lutz, Almost everywhere high nonuniform complexity, Journal of Computer and System Sciences, to appear. See also Proceedings of the Fourth Structure in Complexity Theory Conference, 1989, pp. 37-53.
[12] J. H. Lutz, A pseudorandom oracle characterization of BPP, Proceedings of the Sixth Structure in Complexity Theory Conference, 1991, to appear.
[13] P. Martin-Löf, On the definition of random sequences, Information and Control 9 (1966), pp. 602-619.
[14] N. Nisan and A. Wigderson, Hardness vs. randomness, Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 2-11.
[15] J. C. Oxtoby, Measure and Category, Springer-Verlag, 1980, second edition.
[16] C. P. Schnorr, Process complexity and effective random tests, Journal of Computer and System Sciences 7 (1973), pp. 376-388.
[17] A. Kh. Shen', On relations between different algorithmic definitions of randomness, Soviet Mathematics Doklady 38 (1989), pp. 316-319.
[18] R. M. Solovay, 1975, reported in [4].
[19] S. Tang and R. Book, Polynomial-time reducibilities and "almost-all" oracle sets, Theoretical Computer Science (1991), to appear.
[20] S. Tang and O. Watanabe, On tally relativizations of BP-complexity classes, SIAM Journal on Computing 18 (1989), pp. 449-462.


[^0]:    *This research was supported in part by National Science Foundation Grant CCR-8809238.

