Modeling time-bounded prefix Kolmogorov complexity *

David W. Juedes Jack H. Lutz
School of EE and CS Department of Computer Science
Ohio University Iowa State University
Athens, Ohio 45701 Ames, Towa 50011
U.S.A. U.S.A.
Abstract

In the literature, prefix Kolmogorov complexity is defined either in terms of self-delimiting
Turing machines or in terms of partial recursive prefix functions. These notions of prefix Kol-
mogorov complexity are equivalent because, as Chaitin showed, every partial recursive prefix
function can be simulated by a self-delimiting Turing machine. However, the simulation given by
Chaitin’s construction is not efficient, and so questions regarding the time-bounded equivalence
of these notions remained unresolved. Here we closely examine these questions.

As our main result, we show that every partial recursive prefix function can be simulated
with polynomial efficiency by a self-delimiting Turing machine if and only if P = NP. Thus,
it is unlikely that Chaitin’s construction can be used to show the polynomial-time equivalence
of these notions of prefix Kolmogorov complexity. Here we further examine the relationships
between these notions of time-bounded prefix Kolmogorov complexity.

1 Introduction

The theory of minimal programs has given valuable insight into numerous problems in disciplines
ranging from combinatorics to thermodynamics. (See Li and Vitdnyi [13] for various examples.)
The principal tool of this theory is a measure of the complexity of individual finite objects in terms
of the size of programs that produce them. This tool is Kolmogorov complexity.

For a given finite object (string) z, the Kolmogorov complexity of = is C(z), the length of the
shortest program that produces z. While intuitively simple, this rough definition has an obvious
shortcoming; the exact Kolmogorov complexity of an individual string is not an intrinsic property of
the string itself, but is dependent upon the underlying programming model. To see this, notice that
it is easy to construct a programming model where every program produces z, and hence C'(z) = 0.
(In this introduction, programming model and machine are synonymous with Turing machine.)
As a crucial, early development, Solomonoff [14], Kolmogorov [9], and Chaitin [4] independently

“This work was supported in part by National Science Foundation Grants CCR-9157382 (with matching funds
from Rockwell International , Microware Systems Corporation, and Amoco Foundation) and CCR-9610461.

showed that there is an optimal Kolmogorov complexity measure, and hence that the Kolmogorov
complexity of an individual string is indeed an intrinsic property of that string alone.

Theorem 1.1. (Optimality Theorem) There exists an optimal machine U such that for every
machine M there is a constant ¢ such that

Cuy(z) < Cp(zx) +c
for every .
If we restrict attention to optimal machines, then C'(x) becomes invariant over the choice of machine.

Theorem 1.2.(Invariance Theorem) Let U and U’ be optimal machines. There exists a constant
c such that

Cu(a) — Con ()] <

for all z.

Thus Cy(z) is truly an intrinsic property of z. We often remove the dependence on U and let
C(z) = Cy(x) for some fixed optimal machine U.

Most straightforward variants of Kolmogorov complexity are also intrinsic properties of strings.
For instance, a time-bounded version of Kolmogorov complexity is C*(z), the length of the shortest
program that produces x in less than or equal to ¢ steps. This version of Kolmogorov complexity
has an efficient optimality theorem.

Theorem 1.3. (Efficient Optimality Theorem) There exists a machine U such that for all
machines M there exists a constant ¢ such that

Cetlos! e () < C%(x) + ¢
for all z and ¢.

The efficient optimality theorem serves the same purpose for time-bounded Kolmogorov complexity
as the optimality theorem serves for Kolmogorov complexity; it provides a means to examine the
complexity of individual strings without relying upon the architecture of the underlying machine.
The efficient optimality theorem is invaluable in practice.

In the present paper, we examine a variant of Kolmogorov complexity for which an efficient
optimality theorem is desirable — time-bounded prefix Kolmogorov complexity. Very briefly, the
prefix Kolmogorov complexity of a string z is K (z), the length of shortest self-delimiting program
that produces x. A time-bounded version of K (z) is defined in the obvious way. This variant
of Kolmogorov complexity was defined independently by Levin [10, 11], Gécs [6], and Chaitin [5]

and is crucial to the formulation of algorithmic probability [10, 6, 12], computational depth [3, 8],
and algorithmic randomness in terms of Kolmogorov complexity [5, 15]. Similarly, time-bounded
prefix Kolmogorov complexity is crucial to formulations of time-bounded algorithmic probability
and computational depth.

In the literature, prefix Kolmogorov complexity is defined in terms of self-delimiting Turing
machines, or in terms of partial recursive prefiz functions. These versions of prefix Kolmogorov
complexity are intrinsic properties of strings since they satisfy optimality theorems. Indeed, these
notions of prefix Kolmogorov complexity are the same in the absence of time bounds. However,
optimality and equivalence results for these notions of prefix Kolmogorov complexity do not easily
translate to the time-bounded case. This requires some explanation.

We say that a set S is prefiz-free if no element x € S is a proper prefix of any other element in
S. A partial recursive prefix function is a partial recursive function whose domain is prefix-free. In
contrast, a self-delimiting Turing machine is a Turing machine with a one-way, read-only input tape.
An input z to a self-delimiting Turing machine M is valid if M halts with the input head reading
the last bit of z. This model of computation ensures that the set of valid inputs is prefix-free.

It is natural to define prefix Kolmogorov complexity either in terms of partial recursive prefix
functions or in terms of self-delimiting Turing machines. Since it is easy to construct a universal
self-delimiting Turing machine, it is straightforward to prove an optimality theorem for this version
of prefix Kolmogorov complexity. The proof of an optimality theorem for the version based on
partial recursive prefix functions is more involved.

In an early result, Chaitin [5] shows that each partial recursive prefix function f can be simulated
by a self-delimiting Turing machine My. We give Chaitin’s complete construction in Figure 1; an
equivalent construction is given by Li and Vitanyi [13, p. 192]. Chaitin’s construction proceeds as
follows. The machine M; reads the input one bit at a time. Let z be portion of the input that
M has read. If there is a proper extension of z in the domain of f, then M/ reads the next bit of
the input and appends it to z. If z is in the domain of f, then M; computes f(z) and halts. It is
straightforward to see that the set of valid inputs of My is exactly the domain of f. Moreover, M
produces the same output as f, and hence M; computes the partial recursive function f.

Chaitin’s construction may be used to construct an effective enumeration 77, Ty, . .. of all partial
recursive prefix functions. As done in [13], it is possible to use this enumeration to prove an
optimality theorem for prefix Kolmogorov complexity based on partial recursive prefix functions.
Notice that since every self-delimiting Turing machine computes a partial recursive prefix function,
Chaitin’s result also shows that the self-delimiting Turing machines compute ezactly the partial
recursive prefix functions. Moreover, Chaitin’s result immediately implies that every universal
self-delimiting Turing machine computes a universal partial recursive prefix function. Hence, these
notions of prefix Kolmogorov complexity are the same.

While these versions of prefix Kolmogorov complexity are the same in the absence of time
bounds, the relationships among these versions of prefix Kolmogorov complexity is much less clear
in the presence of time bounds. Adding time bounds to prefix Kolmogorov complexity based on

M
letf f be a partial recursive prefix function;
let S be the domain of f;
let © = A;
for each s € S do
begin
while z is a proper prefix of s do
begin
read another bit of the input;
append the bit to the end of z;
end;
if z = s then compute f(z) and halt with its output;
end;

Figure 1: Chaitin’s construction

self-delimiting Turing machines changes very little. There exist efficient universal self-delimiting
machines, and therefore proving an efficient optimality theorem for prefix Kolmogorov complex-
ity based on self-delimiting Turing machines is straightforward. Adding time bounds to prefix
Kolmogorov complexity based on partial recursive prefix functions is more problematic.

A straightforward approach to adding time bounds to prefix Kolmogorov complexity based
on partial recursive prefix functions is as follows. Let M be a Turing machine that computes a
partial recursive prefix function f. Then, K!,(z) is the length of the shortest program y such that
M(z) =y in < t steps. While this approach appears natural, it is problematic for several reasons.
First, it is not known whether there exists a uniform means to efficiently compute every partial
recursive prefix function. In particular, it is not known whether there exists an efficient universal
partial recursive prefix function. Moreover, it is not known whether this version of time-bounded
Kolmogorov complexity satisfies an efficient optimality theorem. Resolving these questions may be
difficult.

A closer examination of the proof of the optimality theorem for prefix Kolmogorov complexity
reveals the difficulty in the time-bounded case. In order to prove the optimality theorem for the
version based on partial recursive prefix functions, we first convert each partial recursive prefix
function to a self-delimiting Turing machine using Chaitin’s construction. Since the construction
given by Chaitin may dramatically increase the running time of the original machine, this approach
does not give an efficient optimality theorem. With this in mind, it is natural to pose the following

question.

(1) Can Chaitin’s construction be improved to show that every partial recursive prefix function
can be efficiently simulated by a self-delimiting Turing machine?

As our main result, we answer this question in the negative; every partial recursive prefix
function can be simulated efficiently by a self-delimiting Turing machine if and only if P = NP. Even
though the self-delimiting Turing machines compute exactly the partial recursive prefix functions,
they do not do so efficiently. In the proof of our main result, we give a partial recursive prefix
function that cannot be computed efficiently by a self-delimiting Turing machine unless P=NP.

Since the self-delimiting Turing machines may not be the most efficient means to compute
prefix functions, it is natural to ask whether they are a reasonable basis for time-bounded prefix
Kolmogorov complexity. The answer to this question is presently “yes” since there is no known
alternative; however, the final answer to this question depends heavily on answers to the following
open questions.

(2) Does there exist an efficient universal partial recursive prefix function?

(3) Does there exist an efficient optimality theorem for prefiz Kolmogorov complexity based on
partial recursive prefix functions?

(4) If the answer to (3) is yes, then are the notions of prefiz Kolmogorov complezity based on
self-delimiting Turing machines and partial recursive prefix functions efficiently equivalent?

This paper is organized as follows. In section 2 we present the preliminary notation and termi-
nology that we use throughout the paper. In section 3, we carefully review the fundamental uni-
versality and optimality theorems for time-bounded prefix Kolmogorov complexity, and we bound
the difference between the two time-bounded notions of prefix Kolmogorov complexity. In section 4
we examine the connection between the complexity of computing partial recursive prefix functions
with self-delimiting Turing machines and the complexity of NP. In Theorem 4.2, we prove that the
partial recursive prefix functions can be computed efficiently by self-delimiting Turing machines if
and only if P=NP. We show that the complexity of computing partial recursive prefix functions with
self-delimiting Turing machines is even more closely connected to the complexity of NP. We show
that if Chaitin’s construction can be improved even slightly then NPGE;. Finally, we conclude in
section 5 with some observations on time-bounded prefix Kolmogorov complexity.

2 Preliminaries

Here we follow most of the accepted conventions in the subject, such as those found in the books
by Balcdzar, Diaz, and Gabarré [1, 2], Hopcroft and Ullman [7], and Li and Vitényi [13]. However,

we work exclusively with the alphabet {0,1}. Thus the sets {0,1}*, {0,1}", and {0,1}<" denote
the set of all strings, the set of strings of length n, and the set of strings of length < n, respectively.

Throughout the paper we use a standard string pairing function (,) defined by (z,y) = bd(z)01y,
where bd(x) is x with each bit doubled (e.g., bd(101) = 110011). Here we assume that (z,y,z) =
(z,(y,2)), (x,y,z,w) = (z,(y, z,w)), etc. Note that |(z,y)| = 2|z| + |y| + 2 for all z,y € {0,1}*.

Given two strings = and y, we write C y if x is a prefiz of y, i.e., if there exists a string z such
that xz = y. (Note that z may be A, the empty string.) A set X of strings is prefiz-free if for every
z,y € X, z C y implies = y. For example, the set A = {1¥0|k € N} = {0,10,110,1110,...} is
prefix-free.

Our model of computation is the Turing machine. If M is a Turing machine, we write M (y) |
if M on input y halts after taking finitely many steps. We write timej;(y) for number of steps that
M takes on input y. We write

PROGwy = {y|M(y) 1}

for the set of valid inputs to M. Similarly, we write PROG/(z) = {y|M(y) = #} and PROG},(z) =
{y|[M(y) =z in <t steps}.

We are primarily interested in Turing machines whose sets of valid inputs are prefix-free. We
specifically use a class of Turing machines where this condition is enforced, namely, the self-
delimiting Turing machines. A self-delimiting Turing machine has a single input tape, a single
output tape, and k — 2 worktapes. Each of the k-tapes is infinite and only 0’s, 1’s, and blanks may
appear on these tapes. Each of the k tapes has a dedicated scanning head. The scanning head for
the input tape is read-only and may not move left. At the start of the computation, this head is
scanning a blank cell immediately to the left of the input string.

Self-delimiting Turing machines employ a modified halting criterion. The computation of a
self-delimiting Turing machine M on input y is a success, and we write M(y) | if M halts after
finitely many steps with the input tape head reading the last (rightmost) bit of y. Otherwise, the
computation M(y) is a failure, and we write M (y) 1. With this criterion, it is clear that PROGj
is prefix-free for every self-delimiting Turing machine M.

If M is a standard Turing machine and PROG), is prefix-free, then M computes a partial
recursive prefix function. Notice that M need not be a self-delimiting Turing machine for this
to occur. We say that M computes a universal partial recursive prefix function if M computes a
partial recursive prefix function and, for every partial recursive prefix function f, there exists a
string s such that M(zs -y) = f(y) for every y in the domain of f and M(z - y) diverges for
every y not in the domain of f.

We now precisely define prefix Kolmogorov complexity.

Definition. Let ¢ € N and let M be a standard Turing machine that computes a partial recursive
prefix function.

1. The prefix Kolmogorov complezity of x € {0,1}* relative to M is
Kulz) = min({|7r| \ M(r) | and M(n) = x} U {oo}),

the length of the shortest input for M that produces x. The prefix Kolmogorov complexity of
z € {0,1}* is - .
K(z) = Ky(z)

for some machine U that computes a universal partial recursive prefix function.

2. The t-time-bounded (prefix) Kolmogorov complexity of x relative to M is

Kt (z) = min({|7r| ‘ M () = z and timeps(m) < t} U {oo})

When M or U is a self-delimiting Turing machine, we write K for K.

As mentioned in the introduction, defining K t(x) is problematic since it requires an appropriate
function or machine of reference. We address this issue in the following sections.

3 Efficient Universality and Optimality

In this section we review fundamental theorems for time-bounded prefix Kolmogorov complexity
and provide precise statements of the results mentioned in the introduction. Propositions 3.1-3.4
below may be found in the text [13].

Proposition 3.1. There exists an efficient universal self-delimiting Turing machine. That is, there
exist a polynomial p and a self-delimiting Turing machine U that satisfy the following condition.
For every self-delimiting Turing machine M, there exist a prefix mp; and a constant ¢ such that
U(rym) = M(m) and timey (mprm) < c- p(timeps(m)) for every program .

The polynomial p in Proposition 3.1 may be improved to O(n logn) using standard techniques
[7]. This immediately implies an efficient optimality theorem for this version of prefix Kolmogorov
complexity.

Proposition 3.2.(Efficient Optimality for K) There exists a self-delimiting Turing machine U
such that for every self-delimiting Turing machine M there exists a constant ¢ such that

thloch(w) < Ki(z)+c

for every € {0,1}* and t € N. 0

As usual, we now fix a self-delimiting Turing machine U as in Proposition 3.2 and let K'(z) =
K};(z). We may not be able to do the same for K since the existence of an efficient universal
partial recursive prefix function is open. However, the existence of a universal partial recursive
prefix function is well-known.

Proposition 3.3. There exists a universal partial recursive prefix function. That is, there exists
a partial recursive prefix function U such that for every partial recursive prefix function f there
exists a string 7 such that U(ns-y) = f(y) for each y in the domain of f and U(n - y) diverges
for every y not in the domain of f.

The existence of a universal partial recursive prefix function immediately implies optimality.

Proposition 3.4. (Optimality for K) There exists a partial recursive prefix function U such
that for every partial recursive prefix function M there exists a constant ¢ such that

f{\U(IL‘) < EM(J?) +c
for every z € {0,1}*.

Constructing an efficient universal partial recursive prefix function appears to be difficult. As
we show in section 4, Chaitin’s construction will not suffice for this unless P=NP. Moreover, it
is easy to see that the set of indices of standard Turing machines that compute partial recursive
prefix functions is not recursively enumerable and so a brute force approach to construct a universal
machine will not work. However, this does not preclude the possibility that another construction
will produce such a machine.

Here we conjecture that, indeed, another construction will not work. In conjectures 3.5 and 3.6
below, we surmise that there does not exist an efficient universal partial recursive prefix function
and there does not exist an efficient optimal partial recursive prefix function. The terms “efficient
universal partial recursive prefix function” and “efficient optimal partial recursive prefix function”
require some explanation since they do not appear explicitly in the conjectures. The term efficient
universal partial recurvive prefix function actually refers to a Turing machine that computes a
partial recursive prefix function and efficiently simulates every Turing machine (in the standard
enumeration) that computes a partial recursive prefix function. The term efficient optimal partial
recursive prefix function again refers to a Turing machine U that computes a partial recursive prefix
function. In this case, the additional requirement is that time-bounded Kolmogorov complexity
with respect to U is within an additive constant of the time-bounded Kolmogorov complexity for
any other Turing machine that computes a partial recursive prefix function. Consider the precise
conjectures below.

Conjecture 3.5. For every polynomial p, there is no Turing machine U that computes a partial
recursive prefix function and satisfies the following requirement: for every Turing machine M that

computes a partial recursive prefix function, there exist a string my; and a constant ¢ such that
U(ma - y) = M(y) for each y in the domain of M (U (my; - y) diverges for each y not in the domain
of M) and timey (mpr - y) < c- p(timens (y)).

Conjecture 3.6. For every polynomial p, there is no Turing machine U that computes a partial
recursive prefix function and satisfies the following requirement: for every Turing machine M that
computes a partial prefix function, there exists a constant ¢ such that

f(\gp(t)(x) < Kb(z)+c
for each z and ¢t € N.

As we show in section 4, both Conjecture 3.5 and 3.6 imply that P # NP, and so these
conjectures are likely to be difficult to directly resolve in the affirmative. However, both conjectures
may be refutable without resolving whether P = NP. A natural question is whether there is a
complexity-theoretic hypothesis that implies either conjecture.

If conjecture 3.6 is false, then this variant of prefix Kolmogorov complexity is indeed an intrinsic
property of strings. In this case, it is natural to ask whether there is a significant difference between
K and K in the time-bounded case. Here, we provide some simple bounds on the difference between
these two variants of prefix Kolmogorov complexity.

Since every self-delimiting Turing machine computes a partial recursive prefix function, it is
easy to modify any partial recursive prefix function to also efficiently simulate every self-delimiting
Turing machine. Thus it is reasonable to expect that

K8 (z) < K'z) + ¢ (1)

for any M that is a potential candidate for an efficient optimal partial recursive prefix function.
However, it is possible that there is an M satisfying (1) such that IA(fV[(ac) is much smaller than
K'(z). Here we bound the difference between K' and j(\}fv[(The following theorem was pointed
out to the authors by Harry Buhrman.)

Theorem 3.7. For every partial recursive prefix function M there exists a constant ¢ such that

Ketloeh* ey < KL (2) + O(log |z)
for every € {0,1}* and t € N.

Proof. A straightforward modification of a proof in the text [13, p. 194] provides upper and lower
bounds on K'(z) and K%,(z) in terms of C'(z). In particular, for each partial recursive prefix
function M there exists a constant ¢; such that

certlostter(p) < Ky (z) + 1 2)

for each x € {0,1}* and ¢t € N. Similarly, there exists a constant ¢y such that
Keatlostte gy < Ot () + 21log CF(z) + ¢ (3)

for each z € {0,1}* and ¢ € N. Combining these inequalities with an appropriate choice of a
constant ¢ gives the following.

—~
—
~—

Kc.t(logt)2+0($) < gatlgtta () + 210g(001't10g Hel(z)) + e
2 ~
< Kb(z) + 2log(CH 8 (@) +ea 4+ ¢
< Ki(z) +2log(|z)) +c.

4 Simulation and NP

As mentioned in the introduction, both Conjecture 3.5 and 3.6 are false if we can efficiently compute
every partial recursive prefix function with a self-delimiting Turing machine. In this section we show
that this avenue to resolve Conjectures 3.5 and 3.6 will not work unless P=NP. We begin by precisely
formulating this hypothesis.

Hypothesis 4.1. (The efficient simulation hypothesis) For every partial recursive prefix
function M, there exist a self-delimiting Turing machine M’ and a polynomial p such that M(x) =
M'(z) and timepr (z) < p(timep(z)) for every z € {0,1}*.

The efficient simulation hypothesis is a statement about the complexity of computing partial
recursive prefix functions by self-delimiting Turing machines. As we show in this section, the
complexity of computing partial recursive prefix functions by self-delimiting Turing machines is
closely tied to the complexity of NP.

Theorem 4.2. (Main Theorem) The efficient simulation hypothesis holds if and only if P=NP.

Proof. We begin by showing that the efficient simulation hypothesis is true if we can perform prefix
searching efficiently.
Assume that P = NP, and consider the language

A= {<$7y7z>

e (¢) yCw and
Jw € {0,1}="" such that (i) My(w) halts in |z| steps. [~

10

It is clear that A € NP. Since P = NP, there exists a fixed polynomial p such that A € DTIME(p).
We will use a p-time bounded machine for A to do efficient prefix searching.

Let M be a partial recursive prefix function, and let be the index of this machine in the
standard enumeration. (We assume without loss of generality that timeps(z) > |z| for all valid
inputs z. If this is not true, then M is not a prefix machine.) We now give a self-delimiting Turing
M’ that efficiently simulates M, with the help of efficient prefix searching. (See Figure 2.) It is easy

M’
begin
z =\
y=X
(1) while (z,y,2) ¢ A do
z = 20;
(2) while TRUE
begin
(2.1) if M(y) halts in |z| steps
then output M, (y) and halt;
Else
move input tape head to the right;
y = y[next input bit];
(2.2) while (z,y,2) ¢ A do
z = 20
end;
end.

Figure 2: The machine M’ from Theorem 4.2

to see that M’ is a self-delimiting Turing machine since the input tape head for M’ moves only to the
right. Moreover, M' halts with the input tape head reading the last bit of y if and only if M halts
and outputs M(y) = M'(y). To see that M’ operates in the required time bound, fix y € {0,1}*,
assume that M halts on y, and let s = timeps(y). We will show that timenr (y) < p'(timenr(y)),
where p' is a polynomial satisfying p'(n) > 3-n - p(c-n) for for some ¢ € N and all n.

During the operation of M’ on y, the string z never has more than s characters. It follows that
there is a constant ¢ such that |[(z,y,2)| < c- s for every z, y, and z. With this in mind, it is easy
to see that the first while loop requires at most s - p(c - s) steps. Likewise, the second while loop
performs at most |y| iterations. Statement (2.1) of the loop consumes at most |y|-s < s-p(c- s)

11

steps. Statement (2.2) of the loop consumes at most s - p(c - s) steps. It follows that
timen(y) < 3-s-p(e-s) <p'(timen(y))-

Thus M’ efficiently simulates M.

We have just shown that the efficient simulation hypothesis is true if P=NP. To show the
converse, we show that the efficient simulation hypothesis enables us to decide SAT efficiently.

To begin, construct a partial recursive prefix function M that behaves as follows.

(i) M on input (x,y) outputs 0 if = is a boolean formula with n variables and y € {0,1}" is a
satisfying assignment to .

(i) M on input (z,A) outputs 1 if z is a boolean formula with no satisfying assignments.
(iii) M runs forever on any input that does not satisfy conditions (i) or (i) above.

By our choice of pairing function, it is clear that the set of valid inputs (programs) to M is a
prefix-free set.

The machine M halts on two types of programs: programs of the form (z, \), and programs of
the form (z,y). M runs fastest on strings of the form (x,y). In fact, there exists a constant ¢ such
that timen ((z,y)) < c- |(z, A)|?, while timen ((x, \)) < ¢-2l@N Since (x, \) T (x,y) for every y,
we can efficiently determine whether (z, A) is a valid program if we can efficiently simulate M on
all valid programs of the form (z,y).

Assume the efficient simulation hypothesis. Fix a self-delimiting Turing machine M’ and a
polynomial p such that M’ simulates M on all valid programs y and timep (y) < p(timen(y)). In
this case, we can use M’ to solve SAT in polynomial time. Consider the machine MsaT in Figure
3.

It is clear that MgaT runs in polynomial time. Moreover, if z has a satisfying assignment, then
there exists a y such that M ({x,y)) must accept in < c- |(z, \)|? steps. Thus M’'({(z,y)) must read
past (z,\) in p(c- |(z, \)|?) steps. In this case, Mgar accepts correctly. Otherwise, Msat () rejects
correctly. It follows that Mgar accepts SAT in polynomial time. Since SAT is NP-complete, it
follows that P = NP. O

The complexity of NP is even more closely tied to the complexity of computing partial recursive
prefix functions by self-delimiting Turing machines than Theorem 4.2 indicates. If we relax our
notion of “efficient” in the efficient simulation hypothesis, then we arrive at other consequences
concerning the complexity of NP. Consider the following theorem.

Theorem 4.3. Assume that ¢ : N — N is a nondecreasing, time-constructible function such that for
every partial recursive prefix function M there is a self-delimiting Turing machine M’ such that for

every z € {0,1}*, M(z) = M'(z) and timeyy (x) < t(timeps(z)). Then, NP C OLj DTIME(t(n°)).
c=0

12

Msar(z):
begin
if = is not a boolean formula,
reject;
else
Simulate M'((z, \)) for p(c- (|(z, \)|?)) steps.
if M' moves past (x, A) on the input tape
accept z;
else
reject x;
end;

Figure 3: The machine Mgat from Theorem 4.2

Proof. If we assume the hypothesis, then a straightforward modification of the construction of the
machine Mgar from the proof of Theorem 4.2 shows that SAT is decidable in DTIME(t(c - n?)).

o.¢]
Since SAT is NP-complete, it follows immediately that NP C |J DTIME(t(n®)). O
c=0

If ¢t is a quasipolynomial function, i.e., t = O(n(log”)k) for some k, then improving Chaitin’s
construction to be t(n)-efficient implies that

NP C Py = {L|L is decidable in DTIME(f) for some quasipolynomial f}.

If ¢ is a subezponential function, i.e., for every e > 0, t(n) < 2" for all but finitely many n, then
improving Chaitin’s construction to be ¢(n)-efficient implies that NP C DTIME(2").

Since Chaitin’s construction gives a simulation where prefix machines are simulated by self-
delimiting machines at the expense of an exponential blowup in the running time, it is reasonable
to ask if Chaitin’s construction can be improved even slightly. Theorem 4.3 shows that even a slight
improvement separates NP from Es.

5 Conclusion

We have shown that self-delimiting Turing machines cannot efficiently simulate all partial recursive
prefix functions unless P=NP. Three questions remain open:

13

(i) Is there an efficient optimality theorem for prefix Kolmogorov complexity based on partial

recursive prefix functions?

(ii) Is there an efficient universal partial recursive prefix function?

(iii) Are the two notions of prefix Kolmogorov complexity efficiently equivalent?

In the absence of an affirmative answer to (i), our main theorem is prima facie evidence that time-
bounded prefix Kolmogorov complexity should be based on self-delimiting Turing machines and
not on partial recursive prefix functions.

Acknowledgments The authors thank Harry Buhrman and Giora Slutzki for useful discussions.
We especially thank Harry Buhrman for pointing out Theorem 3.7.

References

[1] J. L. Balcdzar, J. Diaz, and J. Gabarrd. Structural Complezxity I. Springer-Verlag, Berlin,
1988.

[2] J. L. Balcdzar, J. Diaz, and J. Gabarrd. Structural Complezxity II. Springer-Verlag, Berlin,
1990.

[3] C. H. Bennett. Logical depth and physical complexity. In R. Herken, editor, The Universal
Turing Machine: A Half-Century Survey, pages 227-257. Oxford University Press, Oxford,
1988.

[4] G. J. Chaitin. On the length of programs for computing finite binary sequences: statistical
considerations. Journal of the ACM, 16:145-159, 1969.

[5] G. J. Chaitin. A theory of program size formally identical to information theory. Journal of
the Association for Computing Machinery, 22:329-340, 1975.

[6] P. G4cs. On the symmetry of algorithmic information. Soviet Mathematics Doklady, 15:1477—
1480, 1974.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, Mass., 1979.

[8] D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility. Theoretical
Computer Science, 132:37-70, 1994.

[9] A. N. Kolmogorov. Three approaches to the quantitative definition of ‘information’. Problems

of Information Transmission, 1:1-7, 1965.

14

[10] L. A. Levin. Laws of information conservation (nongrowth) and aspects of the foundation of
probability theory. Problems of Information Transmission, 10:206-210, 1974.

[11] L. A. Levin. Various measures of complexity for finite objects (axiomatic description). Soviet
Mathematics Doklady, 17:522-526, 1976.

[12] L. A. Levin. Randomness conservation inequalities; information and independence in mathe-
matical theories. Information and Control, 61:15-37, 1984.

[13] M. Li and P. M. B. Vitdnyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer—Verlag, New York, second edition, 1997.

[14] R. J. Solomonoff. A formal theory of inductive inference. Information and Control, 7:1-22,
224-254, 1964.

[15] V. V. V’jugin. The algebra of invariant properties of finite sequences. Problems of Information
Transmission, 18:147-161, 1982.

15

