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Abstract

Assuming that £ > 2 and Af does not have p-measure 0, it is
shown that BP -AE = AE. This implies that the following conditions
hold if Ag) does not have p-measure 0.

i) AM N co-AM is low for AP, (Thus BPP and the graph isomor-
2 g
phism problem are low for AL.)

(ii) If AY # PH, then NP does not have polynomial-size circuits.
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1 Introduction

Many widely believed conjectures in computational complexity are “strong”
in the sense that they are known to imply that P # NP, but are not known
to follow from the P # NP hypothesis. Recent investigations have shown
that a number of these conjectures do follow from the (apparently) stronger
hypothesis that NP does not have p-measure 0. (This hypothesis, written
t(NP) #£ 0, is defined in terms of resource-bounded measure, a theory devel-
oped in [18] and discussed briefly in section 2 below. Intuitively, u,(NP) # 0
holds if NP contains a non-negligible subset of the exponential time class
Ey; = DTIME(2pelynomial) _ the smallest deterministic time complexity class
known to contain NP.) For example, if p,(NP) # 0, it is now known that
NP contains P-bi-immune languages [25]; there is an NP search problem that
is not efficiently reducible to the corresponding decision problem [3, 23]; ev-
ery <P, . ,-complete problem for NP (a < 1) is exponentially dense [22];
every <P _complete problem for NP has an exponentially dense exponential
complexity core [6]; and there are problems that are <%}-complete, but not
<P _complete, for NP [23]. These conclusions, which are not known to follow
from P # NP or other “traditional” complexity-theoretic hypotheses (e.g.,
the separation of the polynomial-time hierarchy), suggest that p,(NP) # 0
is a plausible scientific hypothesis with substantial explanatory power. (See
[22, 6, 20] for further discussion of this hypothesis.)

This paper shows that the hypothesis 1, (NP) # 0 also has consequences
involving the complexity classes BP- A} (k > 2) and lowness for AL, In fact,
these consequences all follow from the hypothesis that the class AL does not
have p-measure 0. Since NP C AV, the hypothesis u,(AL) # 0 follows from,
and is thus at least as plausible as, the hypothesis p,(NP) #£ 0.

Section 3 contains the main observation of this paper, which concerns
the effect of the BP-operator on the classes AY (k > 2) of the polynomial-
time hierarchy. The BP-operator, introduced by Schéning [31] and discussed
in section 2 below, assigns to each complexity class C a complexity class
BP - C, which can be regarded as a “feasibly randomized version” of C. Two
important special-case values of this operator are the bounded-error prob-
abilistic polynomial-time class BPP = BP - P and the Arthur-Merlin class
AM = BP - NP. Generalizing the proofs by Lautemann [15] and Sipser and
Gécs [32] that BPP C ¥L N 1IY, Schoning [31] showed that, for all & > 1,
BP .- ¥F C ¥t This result, in combination with more elementary facts,
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established the inclusion structure depicted in Figure 1.
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The hypothesis p,(AL) # 0 simplifies this inclusion structure. Specif-
ically, Theorem 3.3 below shows that, if some class A? does not have p-
measure 0, then the classes A?,A?_H,... are all fixed points of the BP-
operator. That is, if /LP(A?) # 0, then for all & > j, BP- AL = AP, In
particular, if u,(AL) # 0, then the situation depicted in Figure 2 holds. In-
tuitively, Theorem 3.3 says that, if A} does not have p-measure 0, then it
contains a language that is sufficiently random to simmulate a BP-operator.
The proof makes essential use of the construction by Nisan and Wigder-
son [27] of secure pseudorandom generators from languages that are hard to
approximate by circuits.

The remaining observations of this paper, presented in sections 4 and 5,
involve lowness for AL and follow easily from Theorem 3.3 and recent results
in computational complexity.

The concept of lowness originated in recursion theory and was introduced
to complexity theory by Schoéning [29]. A language A C {0,1}* is low for a
relativizable complexity class C if C(A) = C, i.e., if oracle access to A does
not increase the computational power of C. A class £ of languages is then
low for C if C(L) =C, i.e., if every element of L is low for C. Kébler [12] has
recently provided a useful survey of lowness results in complexity theory.

Section 4 concerns the lowness of probabilistic complexity classes. Zachos
and Heller [36] proved that BPP is low for X}. Schoning [30] improved this
by showing that NP N co-AM is low for XY, whence the graph isomorphism
problem is low for ¥¥'. Klapper [9] strengthed this by establishing that all of
AM N co-AM is low for ¥T. More recently, Kébler, Schoning, and Toran [13]
showed that AM N co-AM is, in fact, low for AM. Theorem 4.2 below notes
that, under the hypothesis p,(AY) # 0, AM N co-AM is also low for AL.
Thus if p,(ALY) # 0 and the polynomial-time hierarchy does not collapse to
AL then the graph isomorphism problem is not <P -complete, <%-complete,
or <8N_complete for NP.

Section 5 concerns the lowness of self-reducible languages with polynomial-
size circuits. Karp and Lipton [8] used self-reducibility to show that, if
the polynomial hierarchy does not collapse to ¥}, then NP ¢ P/Poly,
i.e., NP does not have polynomial-size circuits. Ko and Schéning [11] re-
fined this by showing that every language in NP that has polynomial-size
circuits is low for XY, Very recently, Kobler and Watanabe [14] have sig-
nificantly improved upon these results by showing that every self-reducible
language with polynomial-size circuits — in fact, every self-reducible language

in (NP N co-NP)/Poly — is low for ZPP(NP). Thus, if the polynomial-time
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hierarchy does not collapse to ZPP(NP), then NP does not have polynomial-
size circuits. In Theorem 5.3 (which follows immediately from Theorem 3.3
and the result of Kobler and Watanabe), it is noted that, if u,(AL) # 0, then
every self-reducible language in (NP N co-NP)/Poly is low for AL. Thus, if
1, (ALY # 0 and polynomial-time hierarchy does not collapse to A}, then NP
does not have polynomial-size circuits.

2 Preliminaries

The reader is referred to any of the texts [2, 4, 13, 28] for basic material on
complexity classes, relativized complexity classes, the polynomial-time hier-
archy, feasible reductions, self-reducibility, polynomial advice, and (Boolean)
circuits. Oracle circuits are described in [34, 24]. For each & > 1, QBF}, is
the well-known k-quantified Boolean formula problem. Stockmeyer [33] and
Wrathall [35] have shown that QBFy is <F -complete for X%, and it is clear
that QBFy, € E, where E = DTIME(2!"@"). Other specific terminology and
notation used here include the following.
For languages A, B C {0, 1}*, the symmetric difference of A and B is

AAB=(A-B)U(B-A),
and the tagged union of A and B is

A@B:{w

xEA}U{:z;l

x € B} .
Using the standard enumeration
So=A,81=0,80=1,53=00,s4, =01,...
of {0,1}*, each language A C {0,1}* is identified with its characteristic se-

quence x4 € {0,1}°°, whose ith bit (1 > 0) is ya[i] = if s; € A then 1 else 0.
The cylinder generated by a string w € {0,1}* is the set

cw::{4g{m1y

XAm4w|—1y:w}
where y 4[0..] — 1] is the string consisting of the first [ bits of y 4.
Resource-bounded measure was introduced in [18]. Introductions to this

subject may be found in the papers [16, 22, 7, 6, 23, 21, 20], and in the theses
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[26, 5]. For the purpose of this note, it suffices to indicate the intuition and
cite a result that is used in the proof of Lemma 3.2.

Intuitively, a set X of languages has p-measure 0 (polynomial-time mea-
sure 0) if the following two conditions hold.

(i) If a language A C {0,1}* is chosen probabilistically according to a
random experiment in which an independent toss of a fair coin is used

to decide membership of each string in A, then the probability is 0 that
Ae X.

(ii) Condition (i) holds in a manner that can be computationally verified
in polynomial time.

It a set X has p-measure 0, then X N E is, in a precise sense, a negligibly
small subset of E [18].

More formally, a supermartingale is a function d : {0,1}* — [0, 00) such
that, for all w € {0, 1}*,

d(w0) + d(wl)
5 )

d(w) >

It d is a supermartingale, then the success set of d is

S[d] = {A limsup d(y 4[0..1 — 1]) = oo},

[—co

and the unitary success set of d is

J Cu= {A ‘ (31 € N)Yd(xa[0..1 - 1]) > 1}.

For any ¢« > 0, a real-valued function f : Ni x {0,1}* — R is p-computable
if there is a functlon [ Nt x {0,1}* — Q such that f(r ki, ki, w)
is computable in time polynomial in r + k4 + -+ + k; + |w| and, for all
roky, oo ki € Nand w € {0,1}%,

FOriky, - kpw) — (ko kw)| <277

Definition. A set X of languages has p-measure 0 if there is a p-computable
supermartingale d such that X C S*[d].



The expression fi,(X) = 0 means that X has p-measure 0. The expression
tp(X) # 0 means that X does not have p-measure 0. (This does not imply
that “up(X)” has some nonzero value.)

A series Y/~ ay of nonnegative reals is p-convergent if there is a poly-
nomial ¢ such that, for all r € N, E;ozqm ap < 27", The proof of Lemma 3.2
uses the following polynomial-time version of the classical first Borel-Cantelli
lemma.

Theorem 2.1 (Lutz [18]). Assume that d : Nx{0,1}* — [0, 00) is a function
with the following properties.

(i) d is p-computable.
(ii) For each k € N, the function di, defined by dy(w) = d(k,w), is a

supermartingale.
(iii) The series >/~ dx(A) is p-convergent.
Then

lip (ﬁ G Sl[dk]) = 0.

i=0k=j

The BP-operator, introduced by Schéning [31], is defined as follows. If

C is a class of languages, then BP - C is the class of languages A C {0,1}*

for which there exist a polynomial ¢ and a language B € C such that, for all
x e {0,1}",

Pr [zeA<=<uz,y>€ B> g (2.1)

ye{o,1}a(l=]) 3

(The probability here is computed according to the uniform distribution

on {0,1}907D using the string-pairing function < x,y >= bd(x)0ly, where

bd(x) is x with each bit doubled, e.g., bd(110) = 111100.) It is clear that the

BP-operator is monotone (C C D = BP -C C BP - D) and commutes with

complementation (BP - co — C = co — BP - C). For all “reasonable” classes

C — including all complexity classes discussed in this note — Schoéning [31]

has shown that C C BP - C and that, in inequality (2.1), any real number

3 € (3,1) can be used in place of 2 without changing the resulting class

BP - C.



3 The classes BP - A}j

This section shows that, if A} does not have p-measure 0, then at all levels
k > 2 of the polynomial-time hierarchy, BP - AY = AF. The proof uses the
idea of languages that are hard to approximate by circuits. The key defini-
tions, which were introduced by Nisan and Wigderson [27], are as follows.

Definition. Let B,C C {0, 1}*.

1. For n,s € N, C is sP-hard at n if, for every n-input oracle circuit ~
with size(y) < s,

|L(vP) A C=y| > 277! (1 —~ 1) :

S

where L(7P) is the set of inputs on which v with oracle B outputs
L and C=, = CnA{0,1}". (If s = 0, this holds trivially because the
right-hand side is —o0)

2. The hardness of C' at n relative to B is

HE(n) = max {s € N|C is s”-hard at n} .

Definition. For 0 < o < 1 and B C {0,1}*, the relativized hardness class
HPB is defined by

P = {C C {0,1}

Hg(n) > 200 a.e.}

where “a.e.” (“almost everywhere”) means that the condition holds for all
but finitely many n € N.

The following result was proven via explicit construction of a pseudoran-
dom generator.

Theorem 3.1 (Nisan and Wigderson [27]). For all 0 < o < 1 and all
A C{0,1}%, if EA N HA # 0, then PA = BPPA.

Theorem 3.1 has been useful in several recent investigations, and has
focused some attention on the condition E4 N HA # §. Lutz [17] showed
that, for 0 < a < %, the (nonrelativized) class H, has pspace-measure 1, so
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it ENH, =0, then E has measure 0 in ESPACE. Lutz [19] showed that, for
0<ac< %, the set of all A satisfying E4 N H% = § has pspace-measure 0.
This result was recently improved by Allender and Strauss [1], who proved
that, for 0 < a < %, the set of all A satisfying E* N H# = § has p-measure 0.
The following lemma is a small, but useful, extension of this fact.

Lemma 3.2. For all 0 < a < % and all S € E,
i ({4 ‘ B nH =0} =0,

Proof. For brevity, the notation and calculations of [19] are followed, while
using the test language of [1].

Let 0 < o < % and S € E. Without loss of generality, assume that « is
rational. For each A C {0,1}*, define the test language

C(A) = {:1;

pad(x) € A} \

where
pad(x) = 2102

Let
X = {A ‘ C(A) ¢ Hg@s} .

Since C(A) € E4 for all A C {0,1}*, it suffices to show that u,(X) = 0.
For each n € N, define the sets

OCIRC(n) = {7}y is a novel n-input oracle circuit with size(y) < 2°"},

DELTA (n) = {D c {0,1}" | |D| < 211 — z—w)}.

(An n-input oracle circuit is novel if it is functionally distinct from all those
preceding it in a standard enumeration.) It was shown in [19] that there is a
constant kg € N such that, for all £ = 2" > ko,

| OCIRC(n) | - | DELTA(n) | -2 < e % (3.1)

For each v € OCIRC(n) and D € DELTA(n), define the set
Voo ={A| L") 8 D = ().},
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and for each k € N, let

Uw,D Yip ifk=2",
Xy =

0 if £ is not a power of 2,

where the union is taken over all v € OCIRC(n) and D € DELTA(n). It is

easy to see that
X=X (3.2)

=0 k=j

so Theorem 2.1 can be used to show that u,(X) = 0.
Define d : N x {0,1}* — [0, 00) as follows, writing di(w) for d(k,w).

(i) If & < ko or k is not a power of 2, then dy(w) = 0.
(i) If k = 2" > ko and |w| < 2841, then di(w) = e—k%'

(iii) If £ = 2" > ko and |w| > 21, then
dilw) =3 Pr(Yop | Cu).
~v,D

where the sum is taken over all ¥ € OCIRC(n) and D € DELTA(n),
and the conditional probabilities Pr(Y, p|C, ) are computed according
to the random experiment in which a language B C {0,1}* is chosen
probabilistically, using an independent toss of a fair coin to decide
membership of each string in B.

The following four claims are verified below.

CraiM 1. d is p-computable.

CrAamM 2. For each k € N, dj, is a supermartingale with di(\) < e‘k%.
Cram 3. For all k > ko, X; C S'[dy].

Cramm 4. X C (72, Ul S [dal-



Assume for a moment that Claims 1-4 are true. By Claim 2, the series
Y reo dr(A) is p-convergent. It follows by Claim 1, Claim 4, and Theorem
2.1 that u,(X) = 0, completing the proof of Lemma 3.2. Thus it suffices to
prove Claims 1-4.

PrROOF OF CrAIM 1. In the definition of d, it is clear that cases (i),
(ii), and (iii) can be distinguished in time polynomial in k + |w|. In case (i),
the computation of dj(w) is then trivial, and in case (ii), standard numerical
techniques suffice to compute an approximation of dj(w) to within 27" in
time polynomial in r + k + |w|. Attention is thus focused on case (iii).

In case (iii), for each fixed v and D, all oracle queries in the computation
of L(yA®%)/A D concern strings s; with |s;| < 2" <k, whence s < 281 < |w.
It A e C, and such a query concerns membership in A, then the answer is
already determined by w. If such a query concerns membership in S, then,
since S € B, the answer can be computed in 200D = 2000 — 145|9M) time,
Thus, for each fixed v and D, the conditional probability Pr(Y, p|C,) can
be exactly computed in time polynomial in |w| as follows: If Y, , N C, =0,
i.e., the condition A € C,, forces L(y*®%) A D # C(A)=,, then this is
determined in time polynomial in |w|, and Pr(Y, p|C,) = 0. Otherwise,
Pr(Y, p|Cy,) = 27, where m is the number of strings x such that w does
not determine membership of pad(x) in A, and this, too, can be determined
in time polynomial in |w|. Thus Pr(Y, p|C,) can be computed in |w|°M)
time for each v and D. By (3.1), there are fewer than |w]| different values of
v and D, so it follows that di(w) can be computed in time polynomial in |w|
in case (iii). This completes the proof of Claim 1.

Proor oF CraiM 2. Let k£ € N. It k < ko or k is not a power of 2,
then dj is trivially a supermartingale, so assume that & = 2" > k. Let
w € {0,1}*. There are three cases.

L If Jw| < 2¥Y — 1, then di(w) = dp(w0) = dp(wl) = e‘k%, so di(w) =
%[dk(w()) + di(wl)].

2. If [w] > 28+, then a routine calculation with conditional probabilities

shows that dy(w) = %[dk(w()) + di(wl)].
3. If |w] = 2M1 — 1, then di(w) = o and, for b € {0,1},

di(wb) = 3" Pr(Y, p ‘ Cus). (3.3)

¥,D
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In this case, the length of wb ensures that, for A € C,;, and each fixed
v and D, the bits of wb completely determine the set L(y4%%) A D,
while determining none of the 2" = k bits of C'(A)=,. Thus, for each
v, D, and b € {0,1}, Pr(Y, p|Cus) = 27", Tt follows by (3.1) that

N

dip(w) = ek > [d(w0) 4 di(wl)].

DN | —

The above three cases confirm that dj is a supermartingale. It is clear
that dg()) < e+

ProOOF OF CLAIM 3. Let k > kq. If £ is not a power of 2, then Claim 3 is
trivially affirmed, so assume that k = 2. Let A € X}, and fix 4" € OCIRC(n)
and D' € DELTA(n) such that A € Y, p.. Fix [ € N sufficiently large
that L(y*®%) A D' and C(A)-, are completely determined by the string
w; = x4[0..1 — 1]. Then [ > 2! 5o

di(w)) =Y Pr(Y, p|Cy,) = Pr(Yy pr|Cyy) = 1.

¥,D

Thus A € S'[dy].

Proor or CrLAM 4. Let A € X. Then A € X, for infinitely many
k. Tt follows by Claim 3 that A € S'[d,] for infinitely many k, whence
Aenez, U, S'dy].

This completes the proof of Lemma 3.2.

The following result is the main observation of this paper.

Theorem 3.3. If 2 < j < k and y,(AY) # 0, then BP - A} = A}

Proof. Assume the hypothesis, and let
x={a]ptnngeernio — gl

where @ = ;. By Lemma 3.2 and the hypothesis, y,(X) = 0 and ,up(A?) # 0,
so there exists a language A € A? —~ X CAF —X. Since A ¢ X,

ABQBF
0 7& EA N ngachFk_1 C FA®QBFi_1 Ha@Q k-1

Y
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so by Theorem 3.1,
pA®QBEL 1 — BppASRETi-1,

It follows that

A} BP - A} = BPp@PFi-

BPPA@QBFk_l _ PA@QBFk—l

Ay

M 1N

Corollary 3.4. If u,(AL) # 0, then for all k£ > 2, BP - AV = A},

Assuming that pu,(AL) # 0, the inclusion relations depicted in Figure
2 follow from Corollary 3.4 and the inclusion relations in Figure 1. The
operators P, 3", and V¥ also behave as one would expect in Figure 2. That is
(still assuming that u,(AL) # 0), the identities P(AM) = AL, VF'- AM = 11},
etc. all hold. It should be noted, however, that Figure 2 cannot be used as
“casually” as Figure 1, because Figure 2 does not relativize. For example,
even if u,(AL) # 0 in the unrelativized case, Ko [10] has shown that there is
an oracle A such that, for all K > 0, BP - X} (A) € X}, (A).

4 Lowness of AMNco— AM

In this section it is shown that, if A} does not have p-measure 0, then
AMNco— AM is low for AL, The demonstration is easy, using Theorem 3.3
and the following known result.

Theorem 4.1 (Kébler, Schoning, and Téran [13]). AM N co-AM is low for
AM.

The following observation is now easily established.

Theorem 4.2. If y,(AY) # 0, then AM N co-AM is low for AL.

Proof. Assume the hypothesis. Then, by Theorems 4.1 and 3.3,

NP(AMNco-AM) C AM(AM Nco-AM) =AM
BP-NP C BP- A} = AL,

12



SO

AY(AM N co-AM) = P(NP(AM N co-AM))
P(A7) = A5

M 1N

O

It was recently shown by Allender and Strauss [1] that, if u,(AY) # 0,
then BPP C AL. The following corollary extends this result.

Corollary 4.3. If u,(AL) # 0, then BPP is low for AL.

Proof. This follows immediately from Theorem 4.2 and the fact that BPP C
AM N co-AM. O

The graph isomorphism problem is known to be in NP N co-AM [13],
which is contained in AM N co-AM. This gives the following corollaries.

Corollary 4.4. If u,(AL) # 0, then the graph isomorphism problem is low
for AL,

Corollary 4.5. If u,(A}) # 0 and AL # PH, then the graph isomorphism
problem is not <P - complete, <E-complete, or <F"F-complete for NP.

Note that, in each of Corollaries 4.3, 4.4, and 4.5, the added hypothesis
1,(AY) # 0 has allowed AL to replace X in a previously known result.

5 Lowness and Polynomial Advice

The relationship between uniform and nonuniform complexity is one of the
greatest enigmas of computational complexity. A principal component of
current understanding of this relationship is the proof by Karp and Lipton
[8] that, if X5 # PH, then NP € P/Poly. That is, if the polynomial-time
hierarchy does not collapse to X5, then NP does not have polynomial-size
circuits. The following recent result allows a significant weakening of Karp
and Lipton’s hypothesis.

Theorem 5.1 (Koébler and Watanabe [14]).

1. Every self-reducible language in (NPNco-NP)/Poly is low for ZPP(NP).
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2. If k> 1, and ZPP(X}Y) # PH, then X} € (ZF N 1IY)/Poly.
Corollary 5.2. If ZPP(NP) # PH, then NP ¢ (NP N co-NP)/Poly.

In this brief section, it is noted that the hypothesis u,(AL) # 0 allows
AL to replace ZPP(NP) here.
Theorem 5.3.

1. Tf p, (AY) # 0, then every self-reducible language in (NP Nco-NP)/Poly

is low for Ag.

2. k> 1, pp(ALy;) #0, and A}, # PIH, then ¥} Z (X} N1I})/Poly.

Proof.

1. Assume the hypothesis, and let A € (NPNco-NP)/Poly be self-reducible.
Then by Theorems 5.1(1) and 3.3 (in that order), AL (A) C ZPP(NP(A))
= 7ZPP(NP) C BPP(NP) = BP - Al' = AL,

2. Assume the hypothesis. Then, by Theorem 3.3, ZPP(¥}) C BPP(ZE_H)
=BP-AL,, = AL, ; PH, so by Theorem 5.1(2), XF ¢ (X2 NIIY)/Poly.

U
Corollary 5.4. If i, (AL) # 0 and A} # PH, then NP € (NPNco-NP)/Poly.

Thus, if y,(AL) # 0 and the polynomial-time hierarchy does not collapse
to AL, then NP does not have polynomial-size circuits.

6 Conclusion

The following two questions arise immediately from the observations pre-
sented here.

1. Assuming that u,(NP) # 0, can AL be replaced by a smaller class, e.g.,
OF  in any or all of the above observations?

2. What is the relationship between the hypotheses u,(NP) # 0 and
1, (ALY # 07 Are they equivalent, or is the latter in some sense weaker?

It is to be hoped that this paper is a small first step toward a compre-
hensive understanding of lowness properties under strong, measure-theoretic
hypotheses.
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