Kolmogorov Complexity, Complexity Cores, and
the Distribution of Hardness*

David W. Juedes and Jack H. Lutz

Department of Computer Science
Towa State University
Ames, TA 50011, USA

juedes@iastate.edu, lutz@iastate.edu

Abstract. Problems that are complete for exponential space are prov-
ably intractable and known to be exceedingly complex in several techni-
cal respects. However, every problem decidable in exponential space is
efficiently reducible to every complete problem, so each complete prob-
lem must have a highly organized structure. The authors have recently
exploited this fact to prove that complete problems are, in two respects,
unusually simple for problems in expontential space. Specifically, every
complete problem must have ususually small complexity cores and un-
usually low space-bounded Kolmogorov complexity. It follows that the
complete problems form a negligibly small subclass of the problems de-
cidable in exponential space. This paper explains the main ideas of this
work.

1 Introduction

It is well understood that an object that is complex in one sense may be simple
in another. In this paper we show that every decision problem that is complex in
one standard, complexity-theoretic sense must be unusually simple in two other
such senses.

Throughout this paper, the terms “problem,” “decision problem,” and “lan-
guage” are synonyms and refer to a set A C {0,1}*, i.e., a set of binary strings.
The three notions of complexity considered are completeness (or hardness) for
a complexity class, space-bounded Kolmogorov complexity, and the existence
of large complexity cores. (All terms are defined and discussed in §§2-6 below,
so this paper is essentially self-contained.) In a certain setting, we prove that
every problem that is complete for a complexity class must have unusually low
space-bounded Kolmogorov complexity and unusually small complexity cores.
Thus complexity in one sense tmplies simplicity in another.

To be specific, we work with the complexity class ESPACE
= DSPACE(?linear). There are two related reasons for this choice. First, ESPACE

* This research was supported in part by National Science Foundation Grants CCR-
8809238 and CCR-9157382 and in part by DIMACS, where the second author was
a visitor while part of this work was carried out.

2 David W. Juedes and Jack H. Lutz

has a rich, well-behaved structure that is well enough understood that we can
prove absolute results, unblemished by oracles or unproven hypotheses. In par-
ticular, much i1s known about the distribution of Kolmogorov complexities in
ESPACE [Lut92a, §4 below], while very little is known at lower complexity
levels. Second, the structure of ESPACE is closely related to the structure of
polynomial complexity classes. For example, Hartmanis and Yesha [HY84] have
shown that
E ; ESPACE <— P ; P/Poly N PSPACE.

This, together with the first reason, suggests that the separation of P from
PSPACE might best be achieved by separating E from ESPACE. We thus seek
a detailed, quantitative account of the structure of ESPACE.

For simplicity of exposition, we work with polynomial time, many-one re-
ducibility (“<Z -reducibility”), introduced by Karp[Kar72]. Problems that are
<P _complete for ESPACE have been exhibited by Meyer and Stockmeyer [MST72],
Stockmeyer and Chandra[SC89], and others. Such problems are correctly re-
garded as exceedingly complex. They are provably intractable in terms of compu-
tational time and space. They have exponential circuit-size complexity [Kan82],
weakly exponential space-bounded Kolmogorov complexity [Huy86], and dense
complexity cores [0S86, Huy87]. Problems that are <F -hard for ESPACE have
all these properties and need not even be recursive.

Notwithstanding these lower bounds on the complexity of < -hard problems
for ESPACE, we will prove in §6 below that such problems are unusually simple
in two respects. The word “unusually” here requires some explanation.

Suppose that we choose a language A C {0,1}* probabilistically, according
to a random experiment in which an independent toss of a fair coin is used to
decide membership of each string « € {0,1}* in A. For a set X of languages,
let Pr(X) = Pra[A € X] denote the probability that A € X (the probability
that event X occurs”) in this experiment, provided that this probability exists.
(All sets X of languages considered in this paper are Lebesque measurable, so
that Pr(X) is well-defined. Thus we will not concern ourselves with issues of
measurability.) If the event X has the property that Pr(X) = 1, then we say
that almost every language A C {0,1}* is in X. In such a case, the complement
X¢ of X has probability Pr(X°) = 0, so it is unusual for a language A to be
in X°. In particular, a language A 1s unusually simple in the sense of a given
complexity measure if there is a lower complexity bound that holds for almost
all languages but does not hold for A.

This probabilistic notion of “almost every” and “unusual” is intuitive and
suggestive of our intent, but is not strong enough for our purposes. As we have
noted, we seek to understand the structure of ESPACE. Accordingly, we will
prove in §6 below that <P -hard problems for ESPACE are unusually simple
for problems in ESPACE in two specific senses. This means that, in each of
these senses, there is a lower complexity bound that holds for almost every
language in ESPACE but does not hold for languages that are < -hard for
ESPACE. This immediately yields a quantitative result on the distribution of
<P _complete problems in ESPACE: Almost every language in ESPACE fails to
be <P _complete.

Kolmogorov Complexity, Cores, and Hardness 3

But what does it mean for “almost every language in ESPACE” to have
some property? Naively, we would like to say that almost every language is ES-
PACE is in some set X if, in the above random experiment, Pr(X|ESPACE)
= Pry[4 € X|A € ESPACE] = 1. The problem here is that ESPACE is
a countable set of languages, so Pra[A € ESPACE] = 0, so the conditional
probability Pr(X|ESPACE) is not defined. We thus turn to resource-bounded
measure, a complexity-theoretic generalization of Lebesque measure developed
by Lutz[Lut92a, Lut92b]. Suppose we are given a resource bound, e.g., the set
pspace, consisting of all functions computable in polynomial space. Then resource-
bounded measure theory defines the pspace-measure fipspace(X) of a set X of lan-
guages (provided that X is pspace-measurable). In all cases, 0 < ppspace(X) < 1.
If ptpspace (X) = 0 or fpspace(X) = 1, then Pr(X) = 0 or Pr(X) = 1, respectively,
but the pspace-measure conditions are much stronger than this: It is shown in
[Lut92a, Lut92b] that, if ppspace(X) = 0, then X NESPACE is a negligibly small
subset of ESPACE. In fact, pspace-measure induces a natural, internal, measure
structure on ESPACE. In this structure, a set X of languages has measure 0
in ESPACE, and we write y(X|ESPACE) = 0, if ppspace(X N ESPACE) = 0.
A set X has measure | in ESPACE, and we write p(X|ESPACE) = 1, if
#(X¢|ESPACE) = 0. Finally, we say that almost every language in ESPACE
is in some set X of languages if u(X|ESPACE) = 1. In §3 below we summarize
those aspects of resource-bounded measure that are used in this paper.

Kolmogorov complexity, discussed in several papers in this volume, was intro-
duced by Solomonoff[Sol64], Kolmogorov[Kol65], and Chaitin[Cha66]. Resource-
bounded Kolmogorov complexity has been investigated extensively [Kol65, Har83,
Sip83, Lev84, Lon86, BB86, Huy86, Ko86, AR88, AllI89, AWI0, Lut90, Lut92a,
etc.]. In this paper we work with the space-bounded Kolmogorov complexily of
languages. Roughly speaking, for A C {0,1}*, n € N, and a space bound ¢, the
space-bounded Kolmogorov complexity K.S*(A=,) is the length of the shortest
program that prints the 2”-bit characteristic string of A—,, = AN {0,1}", using
at most ¢ units of workspace. This quantity KS*(A=,) is frequently interpreted
as the “amount of information” that is contained in A—, and 1s “accessible”
by computation using < ¢ space. In §4 below, we review the precise formula-
tion of this definition (and the analoguous definition of KS*(A<,)) and some
of its properties. After surveying some recent complexity-theoretic applications
of an almost-everywhere lower bound on K.S'(A<,)[Lut92a], we prove a new
almost everywhere lower bound result (Theorem 6/Corollary 7) showing that
for all ¢ € N and € > 0, almost every language A € ESPACE has space-bounded
Kolmogorov complexity

KS*" (A=p) > 2" —nf a.e.

(This improves the 2" — 2" lower bound of [Lut92a].) It should be noted that
the proof of this result is the only direct use of resource-bounded measure in
this paper. All the measure-theoretic results in §5-6 are proven by appeal to this
almost everywhere lower bound on space-bounded Kolmogorov complexity.

In §5 , we review the fundamental notion of a complezity core, introduced

by Lynch[Lyn75] and investigated by many others [Du85, ESY85, Orp86, OS86,

4 David W. Juedes and Jack H. Lutz

BD87, Huy87, RO87, BDR88, DB89, Ye90, etc.]. Intuitively, a complexity core
for a language A is a fixed set K of inputs such that every machine whose
decisions are consistent with A fails to decide efficiently on almost all elements
of K. The meanings of “efficiently” and “almost all” are parameters of this
definition that may be varied according to the context. In §5, in order to better
understand ESPACE, we work with DSPACE(2°?)-complexity cores (for fixed
constants ¢). In Theorem 9 we prove that any upper bound on the densities of
DSPACE(2°")-complexity cores for a language A implies a corresponding upper
bound on the space-bounded Kolmogorov complexity of A. The quantitative
details imply that almost every language in ESPACE has co-sparse complexity
cores.

In §6, we apply these results to our main topic, which is the complexity
and distribution of <2 -hard problems for ESPACE. It is well-known that such
problems are not feasibly decidable and must obey certain lower bounds on their
complexities. As noted above, Huynh[Huy86] has proven that every <P -hard for
ESPACE has weakly exponential (i.e., > 27" for some € > 0) space-bounded
Kolmogorov complexity; and Orponen and Schoéning[OS86] have (essentially)
proven that every <% -hard language for ESPACE has a dense DSPACE(2")-
complexity core. Intuitively, such results are not surprising, as we do not expect
hard problems to be simple. However, in §6, we prove that these hard problems
must be simple in that they obey upper bounds on their complexities. In Theorem
13 we prove that every DSPACE(2")-complexity core of every < -hard language
for ESPACE must have a dense complement. Note that this upper bound is the
“mirror image” of the Orponen-Schoning lower bound cited above: Every hard
problem has a dense core, but this core’s complement must also be dense. In
Theorem 14 we use Theorems 9 and 13 to prove that every <2 -hard language
for ESPACE has space-bounded Kolmogorov complexity that is less than 27 by
a weakly exponential amount. Again, note that this upper bound is the “mirror
image” of the Huynh lower bound cited above.

We have seen that almost every language in ESPACE has co-sparse com-
plexity cores and essentially maximal Kolmogorov complexity. Thus our upper
bounds imply that the <P -complete problems have unusually low space-bounded
Kolmogorov complexity and uwnusually small complexity cores for problems in
ESPACE. It follows that the <P -complete problems form a measure 0 subset of
ESPACE.

In order to simplify the exposition of the main ideas and to highlight the role
played by Kolmogorov complexity, we do not state our results in the strongest
possible form in this volume. The interested reader may wish to consult the tech-
nical paper [JL92] for a more thorough treatment of these issues. For example,
it is shown in [JL92] that <P -hard problems for E have unusually small com-
plexity cores, whence the < -complete problems for E form a measure 0 subset
of E. (Note added in proof: Recently, Mayordomo[May91] has independently
proven that the <P _-complete problems for E form a measure 0 subset of E.
Mayordomo’s proof exploits the Berman [Ber76] result that every < -complete
problem for E has an infinite subset in P.)

Kolmogorov Complexity, Cores, and Hardness 5

2 Preliminaries

Most of our notation and terminology is standard. We deal with sirings, lan-
guages, functions, and classes. Strings are finite sequences of characters over the
alphabet {0, 1}; we write {0, 1}* for the set of all strings. Languages are sets
of strings. Functions usually map {0, 1}* into {0, 1}*. A class is either a set of
languages or a set of functions.

When a property ¢(n) of the natural numbers is true for all but finitely many
n € N, we say that ¢(n) holds almost everywhere (a.e.) . Similarly, ¢(n) holds
infinitely often (i.0.), if ¢(n) is true for infinitely many n € N. We write [¢] for
the Boolean value of a condition ¢. That is, [¢] = 1 if ¢ is true, 0 if ¢ is false.

If © € {0,1}* is a string, we write |z| for the length of x. If A C {0,1}* is
a language, then we write A°, A<, and A_, for {0,1}*\ A, AN {0,1}=<" and
AN{0,1}" respectively. The sequence of strings over {0,1}, so = A, 51 = 0,89 =
1,83 =00, ..., is referred to as the standard lexicographic enumeration of {0, 1}*.
The characteristic string of A<, is the N-bit string

Xag, = [s0 € A[s1 € A]...[sn-1 € A],

where N = [{0,1}S7| = 2n+! — 1.

We use the string pairing function (z,y) = bd(x)01ly, where bd(z) is # with
each bit doubled (e.g., bd(1101) = 11110011). Note that |{z, y}| = 2|=| + |y| + 2
for all z,y € {0,1}*. For each ¢ : {0,1}* — {0,1}* and k¥ € N, we also define
the function g, : {0,1}* — {0, 1}* by gx(x) = g({0*, 2)) for all z € {0, 1}*.

If A is a finite set, we denote its cardinality by |A|. A language D is dense
if there exists some constant ¢ > 0 such that [D<,| > 27" a.e. A language S is
sparse if there exists a polynomial p such that |S<,| < p(n) a.e.. A language S
is co-sparse if S° is sparse. -

All machines here are deterministic Turing machines. A machine M is an
acceptor if M on input either accepts, rejects or does not halt. The language
accepted by a machine M is denoted by L(M). A machine M is a transducer
defining the function fas if M on input x outputs fas(x). The functions time ()
and spaceps(x) represent the number of steps and tape cells, respectively, that
the machine M uses on input #. Some of our machines take inputs of the form
(z,n), where # € {0,1}* and n € N. These machines are assumed to have
two input tapes, one for # and the other for the standard binary representation
B(n) € {0,1}* of n.

The following standard time- and space-bounded uniform complexity classes
are used in this paper.

DTIME(t(n)) = {L(M) | (Fe)(Va)timen (2) ~t(|e]) + ¢}
DTIMEF(t(n)) = {far | (Fe)(Va)timepr (x) < (|)+ e}
DSPACE(s(n)) = {L(M) | (3¢)(Vx)spacen (x) ¢ s(|e]) + c}

DSPACEF (s(n)) = {fm | (3c)(Va)spacer (x) < ¢ - s(|z|) + c}

6 David W. Juedes and Jack H. Lutz

PSPACE = _ DSPACE(n'),

i=1

PF = | DTIMEF(n’),

i=1

E = [DTIME(2"), and

e=1

ESPACE = |] DSPACE(2™).

e=1

The nonuniform complexity class P/Poly, mentioned in §1, is defined in terms
of machines with advice. An advice function is a function h : N — {0, 1}*. A
language A is in P/Poly if and only if there exist B € P, a polynomial p, and an
advice function h such that |h(k)| < p(k) and = € A <= (x, h(|2])) € B for all
k € N and z € {0,1}*. Tt is well-known [KL80] that P/Poly consists exactly of
those languages that are computed by polynomial-size Boolean circuits.

If A and B are languages, then a polynomial time, many-one reduction
(briefly <P -reduction) of A to B is a function f € PF such that A = f~1(B) =
{z|f(x) € B}. A <L -reduction of A is a function f € PF that is a <Z -reduction
of A to some language B. Note that f is a < -reduction of A if and only if f is
<P _reduction of A to f(A) = {f(x) |z € A}. We say that A is polynomial time,
many-one reducible (briefly, <P -reducible) to B, and we write A<E B/ if there
exists a <P -reduction f of A to B. In this case, we also say that A<P B wvia f.

A language H is <P -hard for a class C of languages if A < H for all A € C.
A language C' is <P -complete for C if C € C and C is < -hard for C. If C = NP,
this is the usual notion of NP-completeness[GJ79]. In this paper we are especially
concerned with languages that are <P -hard or <F -complete for ESPACE.

3 Resource-Bounded Measure

In this section we very briefly give some fundamentals of resource-bounded mea-
sure, where the resource bound is polynomial space. (This is the resource bound
that endows ESPACE with measure structure.) For more details, examples, mo-
tivation, and proofs, see [Lut92a, Lut92b].

The characteristic sequence of a language A C {0, 1}* is the binary sequence
xa € {0,1} defined by xa[f] = [si € A] for all ¢ € N. (Recall from §2,
that sg, s;, 2, ... is the standard enumeration of {0,1}*.) For « € {0,1}* and
A C{0,1}*, we say that « is a prefiz, or partial specification, of A if x is a prefix
of xa, ie., if there exists y € {0,1}°° such that x4 = @y. In this case, we write
xz E A. The cylinder specified by a string « € {0,1}" is

Co ={ACH{0,1}"|z T A}.

We let D = {m2 "|m,n € N} be the set of nonnegative dyadic rationals.
Many functions in this paper take their values in D or in [0,00), the set of

Kolmogorov Complexity, Cores, and Hardness 7

nonnegative real numbers. In fact, with the exception of some functions that
map into [0, 00), all our functions are of the form f: X — Y, where each of the
sets X,Y is N, {0,1}*, D, or some cartesian product of these sets. Formally, in
order to have uniform criteria for their computational complexity, we regard all
such functions as mapping {0, 1}* into {0, 1}*. For example, a function f : N* x
{0,1}* — NxD is formally interpreted as a function f : {0, 1}* — {0, 1}*. Under
this interpretation, f(¢,j,w) = (k, ¢) means that f((Oi, (07, w))) = (0% (u,v)),
where u and v are the binary representations of the integer and fractional parts
of ¢, respectively. Moreover, we only care about the values of f for arguments of
the form (0%, (07, w)), and we insist that these values have the form (0%, (u,v))
for such arguments.

For a function f: N x X — Y and k € N, we define the function f; : X — Y
by fr(z) = f(k,z) = f({0*, z)). We then regard f as a “uniform enumeration”
of the functions fy, f1, fa,.... For a function f: N" x X — Y (n > 2), we write
Jeo = (fu), ete.

We work with the resource bound
pspace = {f : {0,1}* — {0,1}* | f is computable in polynomial space}.

(The length |f(z)| of the output is included as part of the space used in com-
puting f.)

Resource-bounded measure was originally developed in terms of “modulated
covering by cylinders” [Lut90]. Though the main results of this paper are true,
the underlying development was technically flawed. This situation is remedied
in [Lut92a, Lut92b], where resource-bounded measure is reformulated in terms
of density functions. We review relevant aspects of the latter formulation here.

A density function is a function d : {0, 1}* — [0, o0) satisfying

d(20)+ d(x1)

2
for all # € {0,1}*. The global value of a density function d is d(A). An n-
dimensional density system (n-DS)is a function d : N x {0, 1}* — [0, o0) such
that dy is a density function for every k € N”. It is sometimes convenient to

regard a density function as a 0-DS. R
A computation of an n-DS d is a function d : N" ™! x {0,1}* — D such that

d(x) >

dier (1) — di(2)| <277 (1)

for all k € N" r € N, and « € {0,1}*. A pspace-computation of an n-DS d is
a computation d such that d € pspace. An n-DS is pspace-computable if there
exists a pspace-computation dofd.

The set covered by a density function d is

S = |J Ce
d(z)>1

A density function d covers a set X of languages if X C S[d]. A null cover of
a set X of languages is a 1-DS d such that, for all ¥ € N, dj covers X with

8 David W. Juedes and Jack H. Lutz

global value di()) < 27%. It is easy to show [Lut92b] that a set X of languages
has classical Lebesgue measure 0 (i.e., probability 0 in the coin-tossing random
experiment) if and only if there exists a null cover of X. In this paper we are
interested in the situation where the null cover d is pspace-computable.

Definition1. Let X be a set of languages and let X¢ denote the complement
of X.

(1) A pspace-null cover of X is a null cover of X that is pspace-computable.

(2) X has pspace-measure 0, and we write fipspace(X) = 0, if there exists a
pspace-null cover of X.

(3) X has pspace-measure 1, and we write pipspace(X) = 1, if ppspace(X°) = 0.

(4) X has measure 0 in ESPACE, and we write u(X | ESPACE) = 0, if
fipspace(X N ESPACE) = 0.

(5) X has measure 1 in ESPACE, and we write u(X | ESPACE) = 1, if p(X° |
ESPACE) = 0. In this case, we say that X contains almost every language
in ESPACE.

It is shown in [Lut92a, Lut92b] that these definitions endow ESPACE with
internal measure-theoretic structure. Specifically, if 7 is either the collection
Zpspace of all pspace-measure 0 sets or the collection Zgspacr of all sets of mea-
sure 0 in ESPACE, then 7 is a “pspace-ideal,” ¢.e., is closed under subsets, finite
unions, and “pspace-unions” (countable unions that can be generated in poly-
nomial space). More importantly, it is shown that the ideal Tgspacr is a proper
ideal, z.e., that ESPACE does not have measure 0 in ESPACE.

Our proof of Theorem 6 below does not proceed directly from the above
definitions. Instead we use a sufficient condition, proved in [Lut92a], for a set to
have pspace-measure 0. To state this condition we need a polynomial notion of
convergence for infinite series. All our series here consist of nonnegative terms.

(o]
A modulus for a series) a, is a function m : N — N such that
n=0
(o]
Z ap <277

for all j € N. A series is p-convergent if it has a modulus that is a polynomial.

The following sufficient condition for a set to have pspace-measure 0 is a
special case (for pspace) of a resource-bounded generalization of the classical
first Borel-Cantelli lemma.

Lemma 2. (Lutz[Lut92a]). If d is a pspace-computable 1-DS such that the series
>~ dn(A) is p-convergent, then
n=0

NPSPace(m U Sldn]) = ppspace({A[A € S[dy] i.0.}) = 0.

t=0n=t

Kolmogorov Complexity, Cores, and Hardness 9

4 Space-Bounded Kolmogorov Complexity

In this section we present the basic facts about space-bounded Kolmogorov com-
plexity that are used in this paper.

Some terminology and notation will be useful. For a fixed machine M and
“program” w € {0, 1}* for M, we say that “M (7, n) = w in < s space” if M, on
input (7, n), outputs the string w € {0,1}* and halts without using more than
s cells of workspace. We are especially interested in situations where the output
is of the form ya_, or of the form x4, , i.e., the 27-bit characteristic string of
A_,, or the (2"F1 — 1)-bit characteristic string of A<y, for some language A.

Given a machine M, a space bound s : N — N, a language A C {0,1}*,
and a natural number n, the s(n)-space-bounded Kolmogorov complexity of A—,
relative to M is

KSJSV(IH)(AIH) = min{|ﬂ'|‘M(ﬂ', n) = xa_, in < s(n) space }.

Similarly, the s(n)-space-bounded Kolmogorov complexity of A<y, relative to M
is

KSJSV(IH)(ASH) = mm{|ﬂ'|‘M(ﬂ',n) = Xac, in < s(n) space }.

Well-known simulation techniques show that there is a machine U that is
optimal in the sense that for each machine M there is a constant ¢ such that for
all s, A and n, we have

KSE M ALY < K (A, + ¢
and
KS5H Mt (Ac,) < KBS (A, + e

As is standard in this subject, we fix an optimal machine U and omit it from
the notation.
We now recall the following almost-everywhere lower bound result.

Theorem 3. (Lutz[Lut92a]). Let ¢ € N and € > 0.
(a) If ,
X ={AC{0,1}*|KS* (A=) > 2" — 2 a.e.},

then pipspace(X) = p(X|ESPACE) = 1.
(b) If

Y = {AC{0,1}*|KS?" (Acp) > 2"+ — 2 a.e],
then pipspace(Y) = p(Y|ESPACE) = 1.

Informally, Theorem 3 says that KS(A=,) and KS(A<y) are very high for
almost all n, for all almost all A € ESPACE. This lower bound has been useful
in a variety of applications in complexity theory, especially in contexts involving
Boolean circuits.

10 David W. Juedes and Jack H. Lutz

Fzample 1. The circuil-size complexity of a language A C {0, 1}* is the function
CS4 : N — N defined as follows: For each n € N, C'S4(n) is the minimum size
(number of gates) required for an n-input, l-output Boolean (acyclic, combina-
tional) circuit to decide the set A—,. (See [Lut92a, BDG88, Weg87] for details
of the circuit model, which can be varied in minor ways without affecting this
discussion.) Circuit-size complexity has been investigated extensively for over
forty years. Shannon[Sha49] proved that almost every language A C {0, 1}* has

circuit-size complexity
n

CSa(n) > 27 a.e. (4.1)

That is, if we choose the language A C {0, 1}* probabilistically, according to a
random experiment in which an independent toss of a fair coin is used to decide
membership of each string « € {0,1}* in A, then

n

Pra[CSa(n) > 27 a.e]=1. (4.2)

Lupanov[Lupb8] proved that every language A C {0, 1}* has circuit-size com-
plexity on .

CSa(n) < - (1+ O(\/ﬁ)) (4.3)
Since the lower bound (4.1) and the upper bound (4.3) have asympotic ra-
tio 1, these results say that almost every language A has essentially maximum
circuit-size complexity almost everywhere. Lupanov named this phenomenon the
Shannon effect.

Lutz[Lut92a] used Theorem 3 to investigate the Shannon effect in ESPACE.
The upper bound (4.3) applies a fortiori to languages in ESPACE, but the lower
bound (4.2) does not directly say anything about ESPACE because Pry[4 ¢
ESPACE] = 1 in the same random experiment. However, it is not difficult to
see that an upper bound on C'Sy(n) implies an upper bound on KS(A=p). In
fact, Lutz[Lut92a)] showed that the quantitave details of this relation, combined
with Theorem 3(a), imply that, for every real o < 1, almost every language
A € ESPACE (and, as a corollary, almost every language A C {0,1}*) has
circuit-size complexity

on 1
CSa(n) > —(1+ aosn

) a.e.
Thus the Shannon effect holds with full force in ESPACE.

n

Fzample 2. Nisan and Wigderson[NW88] proved that, if E contains a language
A that is, in a certain technical sense, “very hard to approximate with circuits,”
then this language A can be used to construct a pseudorandom generator that is
fast enough and secure enough to establish the condition P = BPP. Subsequent
to this, Lutz[Lut91] proved that there is a constant ¢ € N such that every
language A that is not “very hard to approximate with circuits” has space-
bounded Kolmogorov complexity

KS*" (Az,) < 2" — 2% io.

Kolmogorov Complexity, Cores, and Hardness 11

By Theorem 3(a), this implies that almost every language A € ESPACE is “very
hard to approximate with circuits.” This fact, together with the result of Nisan
and Wigderson, immediately yields an upward measure separation theorem, stat-
ing that

P # BPP = u(E|ESPACE) = 0.

(Hartmanis and Yesha[HY84] had previously shown that P # BPP = E;
ESPACE.)

In each of the above examples, space-bounded Kolmogorov complexity 1s used
to prove that some set 7 of languages has measure 1 in ESPACE. In each case,
the method is simply to prove that every language not in Z has unusually low
space-bounded Kolmogorov complexity for languages in ESPACE. That is, every
language not in Z has space-bounded Kolmogorov complexity that infinitely
often violates the lower bounds obeyed by almost every element of ESPACE.

In this paper we will use similar arguments to show that almost every lan-
guage A € ESPACE fails to be <P _-complete for ESPACE. In fact, we will
prove that every language I that is <X -hard for ESPACE has unusually low
space-bounded Kolmogorov complexity, by which we mean space-bounded Kol-
mogorov complexity that violates a lower bound obeyed by almost every lan-
guage A € ESPACE (and almost every language A C {0, 1}*).

As it turns out, Theorem 3 is not strong enough for this purpose! We will
show that every <P -hard language H for ESPACE has an unusually low upper
bound on its space bounded Kolmogorov complexity, but this upper bound will
not violate the lower bounds of Theorem 3. We are thus led to ask how tight the
lower bounds of Theorem 3 are.

We first consider Theorem 3(b). Martin-Lof [Mar71] has shown that, for every
real a > 1, almost every language A C {0, 1}* has space-bounded Kolmogorov
complexity

KS* (Acn) > 2" —an ae. (4.4)

(In fact, Martin-Lof showed that this holds even in the absence of a space bound.)
The following known bounds show that the lower bound (4.4) is tight.

Theorem 4. There exist constants c1,co € N such that every language A satis-
fies the following two conditions.

(i) KSzn(ASH) < 2"t ey for all n.
(i) KS**"(Acn) < 27t —n d.o.

(Part (i) of Theorem 4 is well known and obvious. Part (ii), proven in [Lut92a],
extends a result of Martin-Léf [Mar71].)

Since the bound of Theorem 3(b) is considerably lower than that of (4.4),
one might expect to improve Theorem 3(b). However, the following upper bound
shows that Theorem 3(b) is also tight. (In comparing Theorems 3(b) and 5 it is
critical to note the order in which 4 and ¢ are quantified.)

12 David W. Juedes and Jack H. Lutz

Theorem 5. For every language A € ESPACE, there exists a real € > 0 such
that ,
KS* " (Acn) < 2" =2 e

Proof. Fix A € ESPACE and a € N such that A € DSPACE(2%"). For each
n €N, let ' = | ;27| and let y, be the string of length ont1 _ 9n'+1 quch that
XA<, = XA, Yn. Let M be a machine that, on input (y,n), computes xa__,
using < gan’ space and then outputs x4, ,y. Let ¢ be the optimality constant
for the machine M (given by the definifion of the optimal machine U at the
beginning of this section). Then M (y,,n) outputs x4, in < gan’ space, so for
all sufficiently large n, we have h

KS%" (Acn) < KS5 (Acn) + ¢

< ynl +c
— 2n+1 _ 2n'+1 + ¢
< 2n+1 _ 25n

bl

_ 1
where ¢ = rk

Thus we cannot hope to improve Theorem 3(b).

An elementary counting argument shows that, for every ¢ € N, there exists
a language A € ESPACE with KS*7(A—,) > 2" for all n € N. This suggests
that the prospect for improving Theorem 3(a) may be more hopeful. In fact, we
have the following almost-everywhere lower bound result.

Theorem6. Let ¢ € N and let f : N — N be such that f € pspace and
S 2770 s p-convergent. If

n=0

X ={AC{0,1}|KS* (A=) > 2" — f(n) ae.},

then pipspace(X) = p(X|ESPACE) = 1.

Proof. Assume the hypothesis. By Lemma 2, it suffices to exhibit a pspace-
computable 1-DS d such that

Z d, () is p-convergent (4.5)
n=0

and

X C ﬁ D S[dy)- (4.6)

t=0n=t

Some notation will be helpful. For n € N, let

B, = {r € {0,135~/ 0|U(x n) € {0,1}%" in < 2° space }. (4.7)

Kolmogorov Complexity, Cores, and Hardness 13
For n € N and 7 € B,,, let

Zn,ﬂ' = U CzU(ﬂ',n)~

|z|=27—1

(Thus Z, is the set of all languages A such that U(w, n) is the 2”-bit charac-
teristic string of A=,.) For n € N and w € {0, 1}, let

o(n,w)= Y Pr(Znx|Cu), (4.8)

T€EB,
where the conditional probabilities Pr(Z, »|Cw) = Pra[d € Z, .|A € Cy] are
computed according to the random experiment in which a language A C {0, 1}*
is chosen probabilistically, using an independent toss of a fair coin to decide

membership of each string in A. Finally, define the function d : N x {0,1}* —
[0, 00) as follows. (In all three clauses, n € N, w € {0,1}*, and b € {0,1}.)

(i) If 0 < |w| < 2* — 1, then d,(w) = 21~/("),
(11) fon—1< |w| < 9n+l _ 1, then dn(wb) — dn(w) o(n,wb)

o(n,w) *
(iii) If w| > 27+ — 1, then d,(wb) = d,(w).
(The condition ¢(n,w) = 0 can only occur if d,(w) = 0, in which case we
understand clause (ii) to mean that d,(wb) = 0.)

It is clear from (4.8) that

o(n,w0)+ o(n, wl)
2

o(n,w) =

for all n € N and w € {0, 1}*. Tt follows by a routine induction on the definition
of d that d is a 1-DS. It is also routine to check that d is pspace-computable.
(The crucial point here is that we are only required to perform computations of
the type (4.8) when |w| > 2" —1, so the 2°* space bound of (4.7) is polynomial in
|w|.) Since 3 277(") is p-convergent, it is immediate from clause (i) that (4.5)
n=0
holds. All that remains, then, is to verify (4.6).
For each language A C {0, 1}*, let

Ia={n e N|KS*" (4=,) < 2" - f(n)}.

Fix a language A for a moment and let n € I4. Then there exists 7y € B,, such
that A € Z, »,. Fix such a program m and let «, y € {0, 1}* be the characterstic
strings of A<p, A<p, respectively. (Thus |z| = 27 — 1, |y| = 2"T! — 1, and
y=aU(mg,n).) The definition of d tells us that dn(y) is dp(z) times a telescoping
product, 1.e.,

n

on_
_ o(n,y[0..27+i

dn(y) = dn(x) Zl:[o 40(75,3;5{)[..2"—1-32])
= du(2) 504 (+9)
— 9l-f(n)alny)

o(n,z)

14 David W. Juedes and Jack H. Lutz

Since Cy C 7, x,, we have
o(n,y) = j{: Pr(Zn 2|Cy) > Pr(Zn 2, |Cy) = 1. (4.10)
T€EB,

For each m € B,, the events C; and 7, » are independent, so

o(n,z) = EZJ:B Pr(Z, »|Ce)

= WEZJ:B Pr(Z,) (4.11)

= |Bn|2_2n
< 21—f(”).

By (4.9), (4.10), and (4.11), we have d,(y) > 1. It follows that A € Cy, C S[d,].
Since n € I4 is arbitrary here, we have shown that A € S[d,,] for all A C {0, 1}*
and n € I4. It follows that, for all A C {0, 1}*,

AEXCZ>|IA|IOO
= A€ S[dy] io.
=Ae (Sl

t=0n=t

i.e., (4.6) holds. This completes the proof.
Corollary 7. Letc € N and e > 0. If

X ={AC{0,1}|KS*" (A=) > 2" —n€ a.c.},
then pipspace(X) = p(X|ESPACE) = 1.

(o]
Proof. Routine calculus shows that the series Y 27" is p-convergent.
n=0
Corollary 7 is clearly a substantial improvement of Theorem 3(a). We will
exploit this improvement in the following two sections.

5 Complexity Cores

A complexity core for a language A is a fixed set K C {0, 1}* such that every
machine consistent with A fails to decide efficiently on almost all inputs from K.
In this section we review this notion carefully and prove that upper bounds on
the size of complexity cores for a language A imply corresponding upper bounds
on the space-bounded Kolmogorov complexity of A.

Given a machine M and an input # € {0,1}*, we write M(z) = 1 if M
accepts , M(z) = 0 if M rejects z, and M(z) = L in any other case (i.e.,
if M fails to halt or M halts without deciding x). If M(z) € {0,1}, we write
spacepr () for the number of tape cells used in the computation of M(x). If
M(z) = L, we define spaceps(x) = co. We partially order the set {0,1, L} by
1 <0and L <1, with 0 and 1 incomparable. A machine M 1is consistent with
a language A C{0,1}" if M(z) < [« € A] for all € {0,1}".

Kolmogorov Complexity, Cores, and Hardness 15

Definition 8. Let s : N — N be a space bound and let A, K C {0,1}*. Then K
is a DSPACE(s(n))-complezity core of A if, for every ¢ € N and every machine
M that is consistent with A, the “fast set”

F = {x|spacepr(x) < c-s(lx|)+ e}

satisfies |F' N K| < co. (By our definition of spacens(x), M(z) € {0,1} for all
x € F. Thus F is the set of all strings that M “decides efficiently”.)

Note that every subset of a DSPACE(s(n))-complexity core of A4 is a
DSPACE(s(n))-complexity core of A. Note also that, if ¢{(n) = O(s(n)), then
every DSPACE(s(n))-complexity core of A is a DSPACE(¢(n))-complexity core
of A.

Remark. Definition 8 quantifies over all machines consistent with A, while the
standard definition of complexity cores (cf. [BDGI0]) quantifies only over ma-
chines that decide A. This difference renders Definition 8 stronger than the stan-
dard definition when A is not recursive. For example, consider tally languages
(i.e., languages A C {0}*). Under Definition 8, every DSPACE(n)-complexity
core K of every tally language must satisfy |K \ {0}*| < oo. However, under
the standard definition, every set K C {0,1}* is vacuously a complexity core for
every nonrecursive language (tally or otherwise). Thus by quantifying over all
machines consistent with A, Definition 8 makes the notion of complexity core
meaningful for nonrecursive languages A. This enables one to eliminate the ex-
traneous hypothesis that A is recursive from several results. In some cases (e.g.,
the fact that A is P-bi-immune if and only if {0, 1}* is a P-complexity core for
A [BS85]), this improvement is of little interest. However in §6 below, we show
that every <P -hard language H for ESPACE has unusually small complexity
cores, hence unusually low space-bounded Kolmogorov complexity. This upper
bound holds regardless of whether H is recursive.

It should also be noted that standard existence theorems on complexity cores
(e.g., every language A € P has an infinite P-complexity core [Lyn75]; every <2 -
hard language for E has a dense P-complexity core [OS86]) remain true under
Definition 8. Thus no harm is done by quantifying over all machines consistent

with A.

Intuitively, a language is complex if it has very large complexity cores. The
converse implication, that a language is simple if it does not have large complex-
ity cores, is supported by the following technical result.

Theorem9. Let A C {0,1}*, ¢ >0,b>¢>0, and g : N — [0,00). If every
DSPACE(2)-complexity core K of A has density |[K=p| < 2" —g(n) i.0., then
KSzbn(A:n) < 2" —n~fg(n) + 3elogn i.o.

Proof. Let A C {0,1}*, ¢ > 0, and b > ¢ > 0. Let k = [1], fix a,d such
that b > a > d > ¢, and let My, My, M5, ... be a standard enumeration of the

16 David W. Juedes and Jack H. Lutz

deterministic Turing machines. For each m € N, define the sets
F,, = {z|spaceyy,, (z) < 2921},
B = Fu \ {0,135,

B= |J Ba,

cons(m,A)
K = {0,117\ B,
where the predicate cons(m, A) asserts that M, is consistent with 4. Note that,
if M, is a machine that is consistent with A, then F,,,NK = F,,\ B C F;,,\ B, C

{0, 1}5mk, so |Fy N K| < co. Thus K is a DSPACE(2°")-complexity core for A.
Let

S = {n|[K=nl £ 2" = g(m)} = {n||Bonl > g(n)}.
Then, for each n € S, we have

g(n) <1B=nl=1C |J Bm)=nl

cons(m,A)

> 1(Bi)=nl

cons(m,A)

= > |(Bn)=n]

(m*<n)A(cons(m,A))

< > |(Bin)=nl
(0<m<n®)A(cons(m,A))

< > |(Fon)=n]
(0<m<ne)A(cons(m,A))

IN

and there are < n° terms in this last sum, so there exists 0 < m < n® such that
M, is consistent with A and |(Fi,)=n| > n~g(n).

Now let M be a machine that implements the algorithm of Figure 1 with
input ({#(m),y),n), where y € {0,1}* and B(m) is the binary representation
of a natural number m. (Let N = 2" and let wy, ..., wn_1 be the lexicographic
enumeration of {0, 1}”. We use the symbol L for a bit of z that has not yet been
defined. For a string y # A, head(y) is the first bit of y and tail(y) is the rest
of y.) Since a > d, it is clear that M can be designed so that M ({8(m),y),n)
uses < 2% workspace. For each n € S, choose m € N and y € {0,1}* such
that 0 < m < n®, My, is consistent with A, |(Fn)=n| > n~g(n), and y consists
of the 27 — |(Fp)=n| successive bits Jw; € A] for w; € {0,1}" \ F;,. Then
M({B(m),y),n) is the 27-bit characteristic string of A—,, so

KS3 (Azn) < [(B(m), v)]
= [yl +2|8(m)[+ 2
< 2% —|(Fm)=n|+2logm +3
< 2" —n"%g(n) + 2¢elogn + 3.

Kolmogorov Complexity, Cores, and Hardness 17

begin
z:= 17,
fori:=0to N —1do
begin
Simulate M;,(w;) as long as this uses < 29" space.
if this simulation accepts or rejects
then set z[1] := 1 or z[7] := 0, respectively
else (z[1],y) := (head(y), tail(y))
end;
output z;
end M.

Fig. 1. Algorithm for proof of Theorem 9.

It follows that there is a constant cjr € N such that, for all n € S|
KSzbn(A:n) < 2" —n"%(n) + 2¢elogn + 3 + cur.

Hence, ,
KS? n(A:n) < 2" —n"%(n) + 3elogn. (5.1)
for all but finitely many n € S.

If the hypothesis of Theorem 9 holds, then S is infinite, so (5.1) holds i.o.

Since almost every language in ESPACE has high space-bounded Kolmogorov
complexity almost everywhere, Theorem 9 allows us to conclude that almost
every language in ESPACE has very large complexity cores.

Theorem 10. Fiz real constants ¢ > 0 and € > 0. Let Y be the set of all lan-
guages A such that A has a DSPACE(2°")-complexity core K with |K=p| >
2% —n a.e. Then fipspace(Y) = p(Y|ESPACE) = 1.

Proof. Let ¢,eand Y be as given. Assume that A ¢ Y. Then every DSPACE(2°")-
complexity core K of A has [K—-,| < 2" — ni.0. Since § > 0, it follows by
Theorem 9 that

KSZ(CJrl)n(A:n) < 2" —n% 4+ 2elogn io.
Since n® > nT + 2clogn a.e., it follows that

o(ct1)n

KS (A,) < 2" —nf io.

Taking the contrapositive, this argument shows that X C Y where
X = {AC{0,11*KS* " (Asp) > 2" — nf ael).
It follows by Corollary 7 that ppspace(Y) = u(Y|ESPACE) = 1.

Corollary 11. For every ¢ > 0, almost every language in ESPACE has a co-
sparse DSPACE(2°"™)-complexity core.

18 David W. Juedes and Jack H. Lutz

6 The Distribution of Hardness

In this section we use the results of §§4-5 to investigate the complexity and
distribution of the <P -hard languages for ESPACE. From a technical stand-
point, the main result of this section is Theorem 12, which says that every <I -
hard language for ESPACE is DSPACE(2")-decidable on a dense, DSPACE(2")-
decidable set of inputs.

Two simple notations will be useful in the proof of Theorem 12. First, the
nonreduced image of a language S C {0,1}* under a function f : {0,1}* —
{0,1}" is

F2(8) = {f(x)|« € S and |f(z)| > |z[}.
Note that
FZUH8) = SN ({0,137

for all f and 5.
The collision set of a function f: {0, 1}* — {0,1}* is

Cr={z [y <2)f(=) = f(y)}-

(Here, we are using the standard ordering so < s; < s2 < ... of {0,1}*.) Note
that f is one-to-one if and only if C'; = (. Also,

ST < 1F(S) +1C5]

holds for every set S C {0, 1}*.
A language A C {0,1}* is incompressible by <Z -reductions if |C}| < oo for
every <F _reduction f of A.

Theorem 12. For every <P -hard language H for ESPACE, there exist B, D €
DSPACE(2") such that D is dense and B = HN D.

Proof. By a construction of Meyer[Mey77], there is a language
A € DSPACE(2") that is incompressible by <F -reductions. For the sake of
completeness, we review the construction of A at the end of this proof. First,
however, we use A to prove Theorem 12.

Let I be <P -hard for ESPACE. Then there is a <P -reduction f of A to H.
Let B = fZ(A),D = f2({0,1}*). Since A € DSPACE(2") and f € PF, it is
clear that B, D € DSPACE(2").

Fix a polynomial ¢ and a real number € > 0 such that |f(z)| < q(]x|) for
all z € {0,1}* and ¢(n?*) < nae. Let W = {x‘|f(x)| < |#|}. Then, for all

sufficiently large n € N, writing m = |[n?¢], we have

FEOFEMNA{0, 13 C F{0, 13=5™)\ fF(Wem)
C f2({0,13=™)
C D<yim)
g ng

Kolmogorov Complexity, Cores, and Hardness 19

whence

[Denl > [£({0,135™)] = [{0, 17|
> {0,135 = |Cy| = [{0, 1} <™
=27 —|Cyl.

Since |C}| < oo, it follows that |D<,| > 2" for all sufficiently large n. Thus D
is dense.

Finally, note that B = f2(A) = f2(f~Y(H)) = HN f2({0,1}*) = HN D.
This completes the proof of Theorem 12.

We now describe Meyer’s construction of the language A. It is well-known
that there is a function ¢ € DTIMEF(nlOg”) that is universal for PF in the sense
that

PF = {gx|k € N}.

(Recall that gy is defined by gr(z) = g({0*, z)) for all = € {0,1}*.) Fix such a
function ¢. Let A = L(M), where M is a machine that implements the algorithm

begin
—input z;
R:=0;5:=0;
for n = 0 to |z| do
begin
R:=RU{n};
if there exists (k,y, z) € R x {0,1}™ x {0,1}="
such that z < y and gx(y) = gr(z) then
begin
find the lexicographically first such (k,y, z);
if » ¢ S then S :=SU{y};
R:= R\ {k}
end
end;
if v € S then accept else reject
end M.

Fig. 2. Meyer’s construction (for proof of Theorem 12).

in Figure 2. Tt is clear by inspection that A € DSPACE(2"). To see that A is
incompressible by <% -reductions, suppose that f € PF and |C¢| = oo. It suffices
to show that f is not a <P -reduction of A. Fix k € N such that f = g;. Then
there is some n € N such that, on input # = 07, M finds a triple (k,y,2)
on cycle n of the for-loop. We then have f(y) = gx(y) = gx(2) = f(z) and
yEA &= 2¢ A so fTHf(A)) £ A, so fisnot a < -reduction of A.

20 David W. Juedes and Jack H. Lutz

We now use Theorem 12 to prove our upper bound on the size of complexity
cores for hard languages.

Theorem 13. Every DSPACE(2")-complexity core of every <L -hard language
for ESPACE has a dense complement.

Proof. Let H be <P -hard for ESPACE, and let K be a DSPACE(2")- complexity
core of H. Choose B, D for H as in Theorem 12. Fix machines Mg, and Mp
that decide B and D respectively, with spaceyr, () = O(2171) and spaceyr,, (x) =
0(21*1). Let M be a machine that implements the following algorithm.

begin
input x;
if Mp(x) accepts
then simulate Mp(z)
else run forever
end M.

Then # € D = M(z) =t € Bl =[x € HND] =[x € Hland 2 ¢ D =
M(z) = L < [€ H], so M is consistent with H. Also, there is a constant
¢ € N such that for all x € D,

spacepr(x) < 2™ 4 c.

Since K is a DSPACE(2")-complexity core of H, it follows that K N D is finite.
But D is dense, so this implies that D \ K is dense, whence K¢ is dense.

Our upper bound on the size of complexity cores now yields an upper bound
on the space-bounded Kolmogorov complexity of hard languages.

Theorem 14. For every <t -hard language H for ESPACE, there exists € > (
such that 2
KS* (H=p) < 2" = 2" i.o.

Proof. Let H be <P _hard for ESPACE. By Theorem 13, there exists ¢ > 0 such
that every DSPACE(2")-complexity core K of H has density |K=,| < 2" —
27" i.0. It follows by Theorem 9 that KS%" (H=p) <27 — n=127" 4+ 3logn i.o.
Since n=127"" > 27" 4 3logn a.e., this implies that Ks2" (H=p) < 2" — 27 i.o.

Theorems 13 and 14 give upper bounds on the complexity of hard languages. All
that remains is to observe that it is unusual for languages in ESPACE to satisfy
these bounds:

Theorem 15. Let H, C be the sets of languages that are <P -hard, <P -complete
for ESPACE, respectively. (Thus, C = H N ESPACE.) Then H has pspace-
measure 0, so C is a measure 0 subset of ESPACE.

Proof. By Theorem 14, HN{A C {0, 1}* KS¥" (A=) > 2" —/n ae} =0, so
this follows from Corollary 7.

Kolmogorov Complexity, Cores, and Hardness 21
7 Conclusion

Very roughly speaking, our results (together with earlier work of [0S86, Huy86])
admit the following simple summary. We use KS(A=,) and |K=,| as measures
of the complexity of a language A, where K 1s a “largest” complexity core for
A. These measures roughly satisfy the condition 0 < KS(A=,) < |K=p| <
2". In both measures, almost every language in ESPACE has complexity = 2"
for almost every n. In both measures, every hard language for ESPACE has
complexity between 27" and 27 — 2" for infinitely many n. In fact [JL92], these
bounds are tight.

Acknowledgment

We thank Osamu Watanabe and two anonymous reviewers for suggestions that
have improved the exposition of this paper.

References

[AlI89] E. W. Allender. Some consequences of the existence of pseudorandom gener-
ators. Journal of Computer and System Sciences 39:101-124, 1989.

[AR88] E. W. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Com-
puting 17:1193-1202 ,1988.

[AW90] E. W. Allender and O. Watanabe. Kolmogorov complexity and degrees of
tally sets. Information and Computation 86:160-178, 1990.

[Amb86] K. Ambos-Spies. Randomness, relativizations, and polynomial reducibilities.
In Proceedings of the First Annual Structure in Complexity Theory Confer-
ence, pages 23-34, 1986.

[BB86] J. L. Balcdzar and R. Book. Sets with small generalized Kolmogorov com-
plexity. Acta Informatica 23:679-688, 1986.

[BDGS88] J. L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I, Springer-
Verlag, 1988.

[BDGY0] J. L. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity II, Springer-
Verlag, 1990.

[BS85] J. L. Balcdzar and U. Schoning. Bi-immune sets for complexity classes. Math-
ematical Systems Theory 18:1-10, 1985.

[Ber76] L. Berman. On the structure of complete sets: almost everywhere complexity
and infinitely often speed-up. In Proceedings of the 17th. IEEFE Symp. of the
Foundations of Computer Science, pages 76-80, 1976.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing 6:305-322, 1977.

[BD87] R. Book and D.-Z. Du. The existence and density of generalized complexity
cores. Journal of the Association for Computing Machinery 34:718-730, 1987.

[BDR88] R. Book, D.-Z Du, and D. Russo. On polynomial and generalized complexity
cores. In Proceedings of the Third Structure in Complexity Theory Conference,
pages 236-250, 1988.

[Cha66] G. J. Chaitin. On the length of programs for computing finite binary se-
quences. Journal of the Association for Computing Machinery 13:547-569,
1966.

22
[Duss]
[DB8Y]
[ESY85]
[GI79]

[Har83]

[HY84]

[Huy86]

[Huy87]
[JL92]
[Kan82]

[Kar72]

[KL80]

[Ko86]
[KMs1]
[Kol65]
[Levsd]

[Lon86]

[Lup58]
[Lut90]
[Lut91]

[Lut92a]

David W. Juedes and Jack H. Lutz

D.-Z. Du. Generalized complexity cores and levelability of intractable sets.
Ph.D. dissertation, University of California, Santa Barbara, CA. 1985.

D.-Z. Du and R. Book. On inefficient special cases of NP-complete problems.
Theoretical Computer Science 63:239-252, 1989.

S. Even, A. Selman, and Y. Yacobi. Hard core theorems for complexity classes.
Journal of the Association for Computing Machinery 35:205-217, 1985.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness, W.H. Freeman and Company, 1979.

J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasi-
ble computations. In Proceedings of the 24th IEEE Symposium on the Foun-
dations of Computer Science, pages 439—-445, 1983.

J. Hartmanis and Y. Yesha. Computation times of NP sets of different den-
sities. Theoretical Computer Science 34:17-32, 1984.

D. T. Huynh. Resource-bounded Kolmogorov complexity of hard languages.
In Proceedings of the First Annual Structure in Complexity Theory Confer-
ence, pages 184-195, 1986.

D. T. Huynh. On solving hard problems by polynomial-size circuits. Infor-
mation Processing Letters 24:171-176, 1987.

D. W. Juedes and J. H. Lutz. The complexity and distribution of hard prob-
lems. in preparation.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.
Information and Control 55:40-56, 1982.

R. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations. Ed. R. E. Miller, and J. W. Thatcher, 85-104. New York:
Plenum Press, 1972.

R. M. Karp and R. J. Lipton. Some connections between nonuniform and
uniform complexity classes. In Proceedings of the 12th ACM Symposium on
Theory of Computing, pages 302-309, 1980. Also published as Turing ma-
chines that take advice. L’Enseignement Mathematique 28:191-209, 1982.

K. I. Ko. On the notion of infinite pseudorandom sequences. Theoretical Com-
puter Science 48:9-33, 1986.

K. I. Ko, and D. Moore. Completeness, approximation, and density. SIAM
Journal on Computing 10:787-796, 1981.

A. N. Kolmogorov. Three approaches to the quantitative definition of ‘infor-
mation’. Problems of Information Transmission 1:1-7, 1965.

L. A. Levin. Randomness conservation inequalities; information and indepen-
dence in mathematical theories. Information and Control 61:15-37, 1984.

L. Longpré. Resource bounded Kolmogorov complexity, a link between com-
putational complexity and information theory. Ph.D. thesis, Cornell Univer-
sity, 1986. Technical Report TR-86-776.

O. B. Lupanov. On the synthesis of contact networks. Dokl. Akad. Nauk SSSR
19:23-26, 1958.

J. H. Lutz. Category and measure in complexity classes. SIAM Journal on
Computing 19:1100-1131, 1990.

J. H. Lutz. An upward measure separation theorem. Theoretical Computer
Science 81:127-135, 1991.

J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Com-
puter and System Sciences 44, 1992, to appear.

Kolmogorov Complexity, Cores, and Hardness 23

[Lut92b] J. H. Lutz. Resource-bounded measure. in preparation.

[LynT75]

[Mar71]

[May91]

[MeyT7]
[MST72]

[NW8S]

[Orp86]
[0S86]
[ROS7]
[Sha49]
[Sip83]
[Sol64]
[SC89]
[Weg87]
[Wils5]

[Ye90]

N. Lynch. On reducibility to complex or sparse sets. Journal of the Associa-
tion for Computing Machinery 22:341-345, 1975.

P. Martin-Lof. Complexity oscillations in infinite binary sequences.
Zeitschrift fur Wahrscheinlichkeitstheory und Verwandte Gebiete 19:225-230,
1971.

E. Mayordomo. Almost every set in exponential time is P-bi-immune. In Pro-
ceedings of the Seventeenth International Symposium on Mathematical Foun-
dations of Computer Science, Springer—Verlag, 1992, to appear.

A. R. Meyer. reported in [BH77].

A. R. Meyer and L. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In Proceedings of the 13"
IFEE Symposium on Switching and Automata Theory, pages 125-129, 1972.
N. Nisan and A. Wigderson. Hardness vs. randomness. In Proceedings of
the 29th IEEE Symposium on Foundations of Computer Science, pages 2—11,
1988.

P. Orponen. A classification of complexity core lattices. Theoretical Computer
Sceence 70:121-130, 1986.

P. Orponen and U. Schoning. The density and complexity of polynomial cores
for intractable sets. Information and Control 70:54-68, 1986.

D. A. Russo and P. Orponen On P-subset structures. Mathematical Systems
Theory 20:129-136, 1987.

C. E. Shannon. The synthesis of two-terminal switching circuits. Bell System
Technical Journal 28:59-98, 1949.

M. Sipser. A complexity-theoretic approach to randomness. In Proceedings of
the 15th ACM Symposium of the Theory of Computing, pages 330-335, 1983.
R. J. Solomonoff. A formal theory of inductive inference. Information and
Control 7:1-22,224-254, 1964.

L. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM Journal on Computing 8:151-174, 1979.

I. Wegener. The Complexity of Boolean Functions. (Wiley—Teubner series in
computer science), Stuttgart: Wiley—Teubner, 1987.

C. B. Wilson. Relativized circuit complexity. Journal of Computer and Sys-
tem Sciences 31:169-181, 1985.

H. Ye. Complexity cores for P/poly. submitted.

This article was processed using the ITEX macro package with LMAMULT style

