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Abstract

This paper investigates the instance complexities of problems that
are hard or weakly hard for exponential time under polynomial time�
many�one reductions� It is shown that almost every instance of almost
every problem in exponential time has essentially maximal instance
complexity� It follows that every weakly hard problem has a dense set
of such maximally hard instances� This extends the theorem� due to
Orponen� Ko� Sch�oning and Watanabe ������� that every hard prob�
lem for exponential time has a dense set of maximally hard instances�
Complementing this� it is shown that every hard problem for exponen�
tial time also has a dense set of unusually easy instances�

� Introduction

A problem that is computationally intractable in the worst case may or may
not be intractable in the average case� In applications such as cryptography
and derandomization� where intractability is a valuable resource� worst�case
intractability seldom su�ces� average�case intractability often su�ces� and
almost�everywhere intractability is sometimes required� Implicit in these
distinctions is the truism that some instances of a computational problem
may be hard while others are easy�

The complexity of an individual instance of a problem cannot be mea�
sured simply in terms of the running time required to solve that instance�
because any algorithm for that problem can be modi�ed to solve that in�
stance quickly via a look�up table� Orponen� Ko� Sch�oning� and Watan�
abe 	
�� used ideas from algorithmic information theory to circumvent this
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di�culty� thereby introducing a precise formulation of the complexities of
individual instances of computational problems�

Given a decision problem A � f�� �g�� an instance x � f�� �g�� and a
time bound t � N � N� Orponen� Ko� Sch�oning� and Watanabe 	
�� de�ned
the t�time�bounded instance complexity of x relative to A� written ictx � A��
to be the number of bits in the shortest program � such that � decides x
in at most tjxj� steps and � does not decide any string incorrectly for A�
See sections � and 
 below for complete de�nitions of this and other terms
used in this introduction�� Instance complexity has now been investigated
and applied in a number of papers� including 	
�� ��� �� ��� ��� �� 

�� and
is discussed at some length in the text 	����

In this paper we investigate the instance complexities of problems that
are hard or weakly�hard for exponential time under polynomial time� many�
one reductions� Our most technical results establish the measure�theoretic
abundance of problems for which almost all instances have essentially max�
imal instance complexities� From these results we derive our main results�
which are lower bounds on the instance complexities of weakly hard prob�
lems� and we separately establish upper bounds on the instance complexities
of hard problems� We now discuss these results in a little more detail�

The t�time�bounded plain Kolmogorov complexity of a string x� written
Ctx�� is the number of bits in the shortest program � that describes i�e��
prints� x in at most tjxj� steps� As observed in 	
��� it is easy to see
that� for t� modestly larger than t� ict

�
x � A� cannot be much larger than

Ctx�� since a description of x contains all but one bit of the information
required for a program to correctly decide whether x � A and decline to
decide all other strings� An instance x thus has essentially maximal t�time�
bounded instance complexity if ictx � A� is nearly as large as Ct�x�� where
t� is modestly larger than t� Orponen� Ko� Sch�oning� and Watanabe 	
��
established the existence of a problem A � E � DTIME�linear� for which all
but �nitely many instances x have instance complexities that are essentially
maximal in the sense that ic�

n

x � A� � Ct�x� � � logCt�x� � c� where c
is a constant and t�n� � cn��n � c� In contrast with this existence result�
we prove in this paper that almost every language A � E has the property
that all but �nitely many instances x have essentially maximal instance
complexities in the slightly weaker but still very strong� sense that ic�

n

x �
A� � ����Ct�x�� for any �xed real � � �� where t�n� � ��n� We also show
that almost every A � E� � DTIME�poly� has the property that all but
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�nitely many instances x satisfy the condition ic�
n

x � A� � Ct�x��Ct�x���
for any �xed real � � �� where t�n� � �n

�
�

Naturally arising problems that are � or are presumed to be � intractable
have usually turned out to be complete for NP or some natural complexity
class containing NP� The complexities of such problems are thus of greater
interest than the complexities of arbitrary problems� The instance complex�
ities of problems that are complete or just hard� for NP or exponential time
under �P

m�reductions have consequently been a focus of investigation�

Regarding problems that are �P
m�hard for exponential time� Orponen�

Ko� Sch�oning and Watanabe 	
�� have shown that every such problem H
must have an exponentially dense set of instances x that are hard in the
sense that for every polynomial t� ictx � H� � Ct�x��� logCt�x��c� where
c is a constant and t�n� � cn��n � c� Buhrman and Orponen 	�� proved
a related result stating that� if H is actually �P

m�complete for exponential
time� then H has a dense set of instances x that are hard in the sense that
for every polynomial tn� � n�� ictx � H� � Ctx��c� where c is a constant�

The main results of this paper show that this phenomenon � a dense set
of instances whose complexities are essentially maximal � holds not only for
�P
m�hard problems for exponential time� but in fact for all weakly �P

m�hard
problems for exponential time with slight technical modi�cations in the
instance complexity bounds�� This is a signi�cant extension of the earlier
work because Ambos�Spies� Terwijn and Zheng 	�� have shown that almost
every problem in E is weakly �P

m�hard� but not �
P
m�hard� for E� and similarly

for E��

To be precise� we prove that for every weakly �P
m�hard language H for

E� and every � � � there exists � � � such that the set of all instances x

with ic�
n
�

x � H� � � � ��C��nx� is dense� as is the set of all x for which

ic�
n
�

x � H� � C��n
�

x��C��n
�

x��� Since Juedes and Lutz 	��� have shown
that every language that is weakly �P

m�hard for E is weakly �
P
m�hard for E�

but not conversely� even for languages in E�� our results hold a fortiori for
problems that are weakly �P

m�hard for E�

Regarding problems that are NP�complete  of which we take SAT to be
the canonical example�� any nontrivial lower bound on instance complexity
must be derived from some unproven hypothesis or entail a proof that P ��
NP� because languages in P have bounded instance complexities 	
��� As�






suming P �� NP� Orponen� Ko� Sch�oning and Watanabe 	
�� showed that for
every polynomial t and constant c� the set fxjictx � SAT � � c log jxjg is in��
nite� Assuming the hypothesis that nonuniformly secure one�way functions
exist which implies P �� NP�� Ko 	��� proved that this set is nonsparse�
Assuming E �� NE which also implies P��NP�� Orponen� Ko� Sch�oning
and Watanabe 	
�� showed that SAT has an in�nite set of instances of
essentially maximal complexity in the sense that for every polynomial t
there exist a polynomial t�� a constant c� and in�nitely many x such that
ictx � SAT � � Ct�SAT �� c�

The hypothesis that NP does not have p�measure �� written �pNP� �� ��
has been proposed by Lutz� This hypothesis has been shown to imply rea�
sonable answers to many complexity�theoretic questions not known to be
resolvable using P �� NP or other �traditional� complexity�theoretic hy�
potheses� Such results are discussed in the surveys 	��� �� ��� ����� The
�pNP� �� � hypothesis implies the hypothesis E ��NE 	��� and is equivalent
to the assertion that NP does not have measure � in E�	��� Here we note
that� if �pNP� �� �� then SAT is weakly �

P
m�hard for E�� whence our above�

mentioned results imply that SAT has a dense set of instances of essentially
maximal complexity� That is� if �pNP� �� �� then for every � � � there exists

� � � such that the set of all x for which ic�
n
�

x � SAT � � �� ��C��nx� is

dense� as is the set of all x for which ic�
n
�

x � SAT � � C��n
�

x��C��n
�

x���

In the course of this introduction� we have seen that almost every prob�
lem A in exponential time has both of the following properties�

�� All but �nitely many instances of A have essentially maximal instance
complexity our abundance results��

�� A is weakly �P
m�hard for exponential time 	���

Thus weakly hard problems can have essentially maximal complexity at
almost every instance� In contrast� we also show that every problem H that
is actually �P

m�hard for exponential time must have a dense set of instances x
that are unusually easy in the very strong sense that ic�

�n
x � H� is bounded

above by a constant� Our proof of this fact is based largely on the proof by
Juedes and Lutz 	��� of an analogous result for complexity cores�

The rest of this paper is organized as follows� In section � we sum�
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marize our basic terminology and notation and brie�y review some basic
aspects of resource�bounded measure� In section 
 we review the de�nition
and basic properties of instance complexity� and we note that� for a lan�
guage A� the condition of having very high t�time�bounded instance com�
plexity is strongly incomparable with the condition of being incompressible

by �
DTIME�t�
m �reductions� In particular this implies that our lower bound

results are much stronger than the analogous lower bounds for complexity
cores proven in 	����� Section � is the main section of this paper� In this
section we prove our abundance theorems� derive our lower bounds on the
instance complexities of weakly hard problems� and note the consequences
for the complexity of SAT if �pNP� �� �� In section � we prove that ev�
ery hard problem for exponential time has a dense set of unusually easy
instances�

� Preliminaries

We write N for the set of natural numbers� Z for the set of integers� and Z�

for the set of positive integers� All polynomials here have coe�cients in N�
and all logarithms are base ��

We write 		��� for the Boolean value of a condition �� i�e�� 		��� � if � then �
else �� We write jSj for the cardinality of a set S and Sc for the comple�
ment of S� In addition to the quanti�ers �x and �x� we use the quanti�ers
��x �there exists in�nitely many x such that � � � �� and ��x �for all but
�nitely many x� � � � ���

All strings in this paper are binary strings x � f�� �g�� We write jxj for
the length of x� and we use the standard enumeration s� � �� s� � �� s� �
�� s� � ��� ��� of f�� �g

�� A string x is a pre�x of a string y� and we write
x v y� if there is a string z such that xz � y�

All languages equivalently� decision problems� here are sets A � f�� �g��
We identify each language A with its characteristic sequence

	A � 		s� � A��		s� � A��		s� � A�� � � � �

Relying on this identi�cation� we write A	� � � � n � �� for the binary string
consisting of the �rst n bits of 	A�
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A language A � f�� �g� is sparse if there exists a polynomial q such that
�n� jA 	 f�� �g�nj � qn�� and exponentially dense or� simply� dense� if
there exists a real number � � � such that ��n� jA 	 f�� �g�nj � �n

�

�

Our main results involve resource�bounded measure� which was developed
by Lutz 	��� ���� We brie�y review a fragment of the theory that is su�cient
for the purposes of this paper� The interested reader is referred to any of
the surveys 	��� ��� �� ��� for further discussion�

De�nition� A martingale is a function d � f�� �g� � 	��
� with the prop�
erty that� for all w � f�� �g��

dw� �
dw�� � dw��

�
� ��

A martingale d succeeds on a language A � f�� �g� if

lim sup
n��

dA	���n � ��� �
�

The success set of a martingale d is

S�	d� � fAjd succeeds on Ag�

Intuitively� a martingale d is a betting strategy that� given a language A�
starts with capital amount of money� d�� and bets on the membership or
nonmembership of the successive strings s�� s�� s�� � � � in A� Prior to betting
on a string sn� the strategy has capital dw�� where

w � 		s� � A�� � � � 		sn�� � A���

After betting on the string sn� the strategy has capital dwb�� where b �
		sn � A��� Condition �� ensures that the betting is fair� The strategy
succeeds on A if its capital is unbounded as the betting progresses�

Notation� The classes p� � p and p�� both consisting of functions f �
f�� �g� � f�� �g�� are de�ned by

p� � p � ff j f is computable in polynomial timeg�

p� � ff j f is computable in n�log n�
O���

timeg�
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These classes induce measure structure on the classes E� � E and E�� re�
spectively�

De�nition� Let i � f�� �g� A martingale d is pi�computable if there is a
function �d � N  f�� �g� � Q such that �d � pi with input r� w� coded in
the form �r�w� and� for all r � N and w � f�� �g��

j �dr� w� � dw�j � ��r�

A pi�martingale is a martingale that is pi�computable�

Martingales were introduced by Ville 	�
�� and resource�bounded martin�
gales were used extensively by Schnorr 	
�� 
�� ��� ��� in his investigations
of random and pseudorandom sequences� Lutz 	��� used resource�bounded
martingales to induce measure structure on E and E� by means of the fol�
lowing de�nitions� Let X be a set of languages and let i � f�� �g�

�� X has pi�measure �� and we write �piX� � �� if there is a pi�
martingale d such that X � S�	d��

�� X has pi�measure �� and we write �piX� � �� if �piX
c� � ��


� X has measure � in Ei� and we write �X j Ei� � �� if �piX	Ei� � ��

�� X has measure � in Ei� and we write �X j Ei� � �� if �X
c j Ei� � ��

In this case� we say that X contains almost every language in Ei�

We write �XjEi� �� � to indicate that X does not have measure � in Ei�
Note that this does not assert that ��XjEi�� has some nonzero value�

The following is obvious but useful�

Fact ���� For every set X � f�� �g��

�pX� � � �� �p�X� � � �� Pr	A � X� � �

� �
�X j E� � � �X j E�� � ��

where the probability Pr	A � X� is computed according to the random
experiment in which a language A � f�� �g� is chosen probabilistically� using
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an independent toss of a fair coin to decide whether each string x � f�� �g�

is in A�

It is shown in 	��� that these de�nitions endow E and E� with internal
measure structure� This structure justi�es the intuition that� if �XjE� � ��
then X 	 E is a negligibly small subset of E and similarly for E���

In addition to using the above de�nitions� we will use the resource�
bounded �rst Borel�Cantelli lemma� The statement of this lemma uses the
unitary success set

S�	d� � fA j �n�dA	� � � � n� ��� � �g

of a martingale d and the following notion of e�ective convergence�

De�nition� Let i � f�� �g� A series

�X
n��

an of nonnegative real numbers an

is pi�convergent if there is a function m � N � N such that m � pi with
input and output coded in unary� and

�X
n�m�k�

an � �
�k

for all k � N�

Routine calculus proves the following lemma�

Lemma ���� Let � � ��

�� The series
P

��f���g� �
���j�j

is p�convergent�

�� The series
P

��f���g� �
��j�j�

is p��convergent�

The following lemma gives the cases p and p� of the resource�bounded
generalization of the classical �rst Borel�Cantelli lemma�
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Lemma ����Lutz 	���� Let Z�� Z�� Z�� � � � be sets of languages� and let

Z � fAj��k�A � Zkg�

Let i � f�� �g� and assume that there is a function d � N  f�� �g� � 	��
�
satisfying the following four conditions� where we write dkw� � dk�w��

�� d is pi�computable�

�� For each k � N� dk is a martingale�


� For each k � N� Zk � S�	dk��

�� The series
P�

k�� dk�� is pi�convergent�

Then �piZ� � ��

Recall that a language H is �P
m�hard for a class C of languages if A

�P
mH for all A � C� and �P

m�complete for C if H � C and H is �P
m�hard for

C� Resource�bounded measure allowed Lutz to generalize these notions as
follows� We write PmH� � fAjA �P

m Hg��

De�nition� A language H � f�� �g� is weakly �P
m�hard for E respectively�

for E�� if �PmH�jE� �� � respectively� �PmH�jE�� �� ��� A language
H � f�� �g� is weakly �P

m�complete for E respectively� for E�� if H � E
respectively� H � E�� and H is weakly �P

m�hard for E respectively� for
E���

It is clear that every �P
m�hard language for E is weakly �

P
m�hard for E�

and similarly for E��

� Instance Complexity and Related Measures

In this section we review the basic properties of instance complexity and
discuss its relationships with Kolmogorov complexity� complexity cores� bi�
immunity and incompressibility by many�one reductions�
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Following 	
��� we de�ne an interpreter to be a deterministic Turing
machine with a read�only program tape� a read�only input tape� a write�only
output tape� and an arbitrary number of read�write work tapes� all with
alphabet f�� ��tg� where t is the blank symbol� Given a program � �
f�� �g� on the program tape and an input x � f�� �g� on the input tape� an
interpreter M may eventually halt in an accepting con�guration� a rejecting
con�guration� an undecided con�guration� or an output con�guration� or
it may fail to halt� If M halts in an accepting con�guration� we say that
� accepts x on M � and we write M�� x� � �� If M halts in a rejecting
con�guration� we say that � rejects x on M � and we write M�� x� � �� In
either of these two cases� we say that � decides x on M � If M halts in an
undecided con�guration� or if M fails to halt� we say that � fails to decide

x on M � and we write M�� x� ��� If M halts in an output con�guration
with output y � f�� �g� on the output tape� we write M�� x� � y�  If y is
� or �� the context will always make it clear whether �M�� x� � y� refers
to a decision or an output��

We write timeM �� x� for the running time of M with program � and
input x� If M�� x� ��� we stipulate that timeM �� x� �
�

A program � is consistent with a language A � f�� �g� relative to an
interpreter M if for all x � f�� �g�� M�� x� � f		x � A����g� i�e�� � either
decides x correctly for A or else fails to decide x�

We now recall the de�nition of time�bounded instance complexity� which
is the main topic of this paper�

De�nition�Orponen� Ko� Sch�oning and Watanabe	
��� Let M be an in�
terpreter� t � N � N� A � f�� �g�� and x � f�� �g�� The t�time�bounded

instance complexity of x with respect to A given M is

ictM x � A� � minfj�j j � is consistent with A relative to M and

timeM �� x� � tjxj�g�

where min 
 �
�

Thus ictM x � A� is the minimum number of bits required for a program
� to decide x correctly for A on M � subject to the constraints that � is
consistent with A relative to M and M�� x� does not run for more than
tjxj� steps�

��



Note� Our de�nition of ictM x � A� di�ers from that in 	
�� in that
we do not require M�� y� to halt within tjyj� steps � or even to halt at
all � for y �� x� In our complexity�theoretic setting� with time�constructible
functions t� this di�erence is technical and minor at most a constant number
of bits and a log t factor in the time bound�� and it simpli�es results such
as Lemma 
�
 below� In other settings� such as that of the time�unbounded
instance complexity conjecture 	
��� the halting behavior for y �� x is a more
critical issue�

We next recall the de�nition of plain Kolmogorov complexity�

De�nition�Solomono�	���� Kolmogorov	�
� and Chaitin	��� ���� Let M be
an interpreter� t � N � N� and x � f�� �g��

�� The plain Kolmogorov complexity of x relative to M is

CM x� � minfj�j j M�� �� � xg�

�� The t�time bounded plain Kolmogorov complexity of x relative to M
is

Ct
M x� � minfj�j j M�� �� � x and timeM �� �� � tjxj�g�

We again stipulate that min 
 �
��

The plain Kolmogorov complexity of x is thus the minimum number of
bits required to �describe� x using the interpreterM � This information con�
tent measure and its time�bounded variant have been discussed extensively
in the literature� We refer the reader to the text by Li and Vitanyi 	��� for
a comprehensive treatment�

The existence of optimal interpreters is of fundamental importance for
both instance complexity and Kolmogorov complexity�

De�nition� Let U be an interpreter�

�� U is optimal for plain Kolmogorov complexity if for every interpreter
M there is a constant cM � N such that for all x � f�� �g��

CU x� � CM x� � cM �

��



�� U is e�ciently optimal for plain Kolmogorov complexity if for every
interpreterM there is a constant cM � N such that for all time bounds
t � N � N and all x � f�� �g��

Ct�

U x� � Ct
M x� � cM �

where t�n� � cM tn� logtn�� � cM �


� U is e�ciently optimal for instance complexity if for every interpreter
M there is a constant cM � N such that for all time bounds t � N � N�
all A � f�� �g�� and all x � f�� �g��

ict
�

U x � A� � ictM x � A� � cM �

where t�n� � cM tn� logtn�� � cM �

The existence of optimal interpreters for plain Kolmogorov complexity
was proven by Solomono� 	���� Kolmogorov 	�
�� and Chaitin 	���� Standard
techniques extend this to e�cient optimality� and Orponen� Ko� Sch�oning�
and Watanabe 	
�� noted that this also achieves e�cient optimality for in�
stance complexity� We thus have the following well�known theorem�

Theorem ����Optimality Theorem� There is an interpreter U that is ef�
�ciently optimal for both plain Kolmogorov complexity and instance com�
plexity�

Following standard practice� we �x an interpreter U as in Theorem 
��
and omit it from the notation� writing Cx� � CU x�� C

tx� � Ct
U x�� and

ictx � A� � ictU x � A�� These three quantities are then simply called
the plain Kolmogorov complexity of x� the t�time�bounded plain Kolmogorov

complexity of x� and the t�time�bounded instance complexity of x with respect

to A� respectively�

Intuitively� the instance complexity of a string cannot be much greater
than its Kolmogorov complexity� since a description of the string is all but
one bit of the information needed to correctly describe that string and decline
to decide all others� The following known result formalizes this intuition�
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Theorem ����Orponen� Ko� Sch�oning� and Watanabe 	
��� For every time
constructible function t � N � N there is a constant c � N such that for all
A � f�� �g� and x � f�� �g�

ict
�
x � A� � Ctx� � c�

where t�n� � ctn� logtn�� � c�

Complexity cores were �rst introduced by Lynch 	
�� and have been
studied extensively over the past �fteen years 	��� ��� 
�� 
�� �� ��� 
�� ��
��� ��� ����

De�nition� Let t � N � N be a time bound and let A�K � f�� �g�� Then
K is a DTIMEt��complexity core of A if for every c � N and every program
� � f�� �g� that is consistent with A on U � the �fast set�

F � fxj timeU �� x� � ctjxj� � cg

satis�es jF 	Kj �
�

Note that every subset of a DTIMEt��complexity core ofA is a DTIMEt��
complexity core of A� Also� if sn� � Otn��� then every DTIMEt��
complexity core of A is a DTIMEs��complexity core of A�

De�nition� Let A�K � f�� �g��

�� K is a polynomial complexity core brie�y� a P�complexity core� of A
if for every k � N� K is a DTIMEnk��complexity core of A�

�� K is an exponential complexity core of A if there is a real number � � �
such that K is a DTIME�n

�

��complexity core of A�

The following lemma� which is a straightforward extension of a result of
Orponen� Ko� Sch�oning and Watanabe 	
�� see Corollary 
�� below�� relates
instance complexity to complexity cores�
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Lemma ���� Let t � N � N be a time bound� and let A�K � f�� �g�� Then
K is a DTIMEt��complexity core of A if and only if for every c � N there
are only �nitely many x � K for which icct�cx � A� � c�

Corollary ���� Let A�K � f�� �g��

�� Orponen� Ko� Sch�oning and Watanabe 	
���� K is a polynomial
complexity core of A if and only if for every polynomial t and ev�
ery constant c � N� there are only �nitely many x � K for which
ictx � A� � c�

�� K is an exponential complexity core of A if and only if there is a real
number � � � such that for every constant c � N� there are only �nitely

many x � K for which ic�
n
�

x � A� � c�

Corollary ���� Let A � f�� �g� and let t � N � N be time constructible�
Then f�� �g�is a DTIMEt��complexity core of A if and only if for every
c � N�

lim
n��

icct�csn � A� �
�

where s��s�� � � � is the standard enumeration of f�� �g
��

Remark ����Having f�� �g�as a complexity core is a very strong intractabil�
ity property that Balc�azar and Sch�oning 	�� have shown to be closely related
to complexity�theoretic bi�immunity� Speci�cally� every language that is
DTIMEt��bi�immune has f�� �g�as a DTIMEt��complexity core� and� al�
most conversely� there is a constant c � N such that if t�n� � ctn� log tn��
c� then every language that has f�� �g�as a DTIMEt���complexity core is
DTIMEt��bi�immune� In particular� a language is P�bi�immune if and only
if it has f�� �g�as a P�complexity core�

Corollary ����Orponen� Ko� Sch�oning and Watanabe 	
��� A language
A � f�� �g� has f�� �g� as a P�complexity core if and only if for every
polynomial t�

lim
n��

ictsn � A� �
�

��



Incompressibility by many�one reductions� an idea originally introduced
by Meyer 	
��� has played a central role in earlier work on complexity cores
and instance complexity and continues this role in the present paper�

De�nition� Let f � f�� �g� � f�� �g��

�� The collision set of f is the set

Cf � fx � f�� �g�j�y � x�fy� � fx�g�

where ��� refers to the standard ordering of f�� �g��

�� f is one�to�one almost everywhere brie�y� one�to�one a�e�� if Cf is
�nite� Note that f is one�to�one if and only if Cf � 
��

De�nition� Let A�B � f�� �g�� and let t � N � N�

�� A �
DTIME�t�
m �reduction of A to B is a function f � DTIMEFt� such

that A � f��B�� i�e�� for all x � f�� �g�� x � A i� fx� � B�

�� A �
DTIME�t�
m �reduction of A is a �

DTIME�t�
m �reduction of A to fA��

Note that f is a �
DTIME�t�
m �reduction of A if and only if there exists

B � f�� �g� such that f is a �
DTIME�t�
m �reduction of A to B��


� A is incompressible by �
DTIME�t�
m �reductions if every�

DTIME�t�
m �reduction

of A is one�to�one a�e��

�� A is incompressible by �P
m�reductions ifA is incompressible by�

DTIME�t�
m �

reductions for every polynomial t�

Lemma ��	�Juedes and Lutz 	���� Let A � f�� �g�� and let t � N � N be

time constructible� If A is incompressible by �
DTIME�t�
m �reductions� then A

has f�� �g�as a DTIMEt��complexity core�

Corollary ��
�Balc�azar and Sch�oning 	��� Every language that is incom�

pressible by �P
m�reductions has f�� �g

� as a P�complexity core�

��



In light of Theorem 
��� we consider a language A � f�� �g� to have
essentially maximal t�time�bounded instance complexity if for all but �nitely
many x � f�� �g�� ictx � A� is nearly as large as Ct�x�� where the growth
rate of t� is only modestly greater than that of t� The relations �nearly as
large as� and �only modestly greater than� here can and will� be made
precise in a variety of ways� depending upon the particular application�
The following known theorem establishes the existence of languages in E
that have essentially maximal time�bounded instance complexity in a very
strong sense�

Theorem �����Orponen� Ko� Sch�oning and Watanabe 	
��� There exist a
language A � E and a constant c � N such that for all x � f�� �g��

ictx � A� � Ct�x�� � logCt�x�� c�

where tn� � �n and t�n� � cn��n � c�

It is well�known and easy to see that limn��Csn� �
� Since Cx� �
Ctx� for all t and x� it follows that limn��Ctsn� � 
 for all t � Hence�
if a language A � f�� �g� has essentially maximal t�time�bounded instance
complexity in any reasonable sense� it will satisfy the condition

lim
n��

ictsn � A� �
�

Corollary 
�� and Lemma 
�� thus give us the following implications for all
A � f�� �g� and all time�constructible t � N � N�

A is incompressible by A has essentially

�
DTIME�t�
m �reductions maximal t�time�bounded

instance complexity
��

��

A has f�� �g�as a

DTIMEt��complexity core

Due to Remark 
�� and the implication on the left and the failure of
its converse�� incompressibility by many�one reductions is sometimes called
�strong bi�immunity��

��



We conclude this section by showing that incompressibility by�
DTIME�t�
m �

reductions and essentially maximal t�time�bounded instance complexity are
incomparable conditions� i�e�� neither implies the other�� whence the above�
displayed implications are the only implications that hold among these three
strong intractability properties�

Theorem ����� For all c � Z� and � � �� there exist A�B � E with the
following properties�

�� For all but �nitely many x � f�� �g��

ic�
cn

x � A� � �� ��C��c���n
x��

�� A is not incompressible by �P
m�reductions�


� B is incompressible by �
DTIME��cn�
m �reductions�

�� For all su�ciently large n � N�

Prx�f���gn 	ic
n�x � B� � �Cx�� � �� ��

where x is chosen according to the uniform probability measure on
f�� �gn�

Proof� Fix c � Z� and � � �� By Theorem ��� there is a language D � E
such that for all but �nitely many x � f�� �g��

ic�
�c���n

x � D� � ��
�

�
�C��c���n

x��

Let A � fbxjx � D and b � f�� �gg� It is clear A � E� and A has property
� because the function that deletes the �rst bit of every nonempty string
is a �P

m�reduction of A to D that is not one�to�one a�e� To see that A has
property �� let b � f�� �g be arbitrary� and let M� be an interpreter such
that for all ��x � f�� �g�� M��� x� simulates U�� bx�� For all x � f�� �g��
x � D � bx � A � so if a program � testi�es to the value of ic�

cn

bx � A��

then ic�
c�n���

M�
x � D� � j�j� i�e�� ic�

cn�c

M�
x � D� � ic�

cn

bx � A�� It follows by
an application of Theorem 
�� that there is a constant a � N such that for

��



all su�ciently large x � N� ic�
�c���n

x � D� � ic�
cn

bx � A��a� We now have
that for all but �nitely many x � N�

ic�
cn

bx � A� � ic�
�c���n

x � D�� a

� ��
�

�
�C��c���n

x�� a

� �� ��C��c���n
bx��

Since b � f�� �g is arbitrary here� it follows that A has property ��

It is well known that there is a language in E that is incompressible by
�P
m�reductions and contains at most one string of each length� For example�
this is Theorem ��� in the text 	
���It is routine to modify this construction

to obtain a language B �E that is incompressible by �
DTIME��cn�
m �reductions

and contains at most one string of each length� This language B clearly has
property 
� To see that it has property �� let l � dlog�

�
�e� so that ��l � �

� �

For each � � f�� �gl and n � N� let � � n � �j�j��sn� where sn is the n
th

string in the standard enumeration of f�� �g�� LetM� be an interpreter such
that for all n � N and �� x � f�� �g��

M�� � n� x� �

�
� if jxj � n � l and � �v x

� otherwise�

It is clear that timeM�� � n� x� � On� for all � � f�� �gl� n � l� and
x � f�� �gn� For each n � l� de�ne �n � f�� �g

l as follows� If B 	 f�� �gn �
fwg� then �n � w	� � � � l � �� is the l�bit pre�x of w� Otherwise i�e�� if
B 	 f�� �gn � 
�� �n � �

l� Note that for all n � l� the program �n � n is
consistent with B relative to M��

For each n � l� let Sn � fx � f�� �gnj�n �v xg� Then for all n � l and
x � Sn� the program � � n decides x in Ojxj� steps on M�� so there is a
constant a � N such that

ican�aM�
x � B� � j� � nj � logjxj� �� � �l � ��

It follows by an application of Theorem 
�� that there are constants n� � l
and b � N such that for all n � n� and all x � Sn�

icn
�
x � B� � logn� �� � �l � b�

Choose n� � n� such that for all n � n�� �n � logn� �� � � � ��l � b�

��



Let n � n�� and let x � f�� �gn be chosen according to the uniform
distribution on f�� �gn� It is well�known 	��� that Pr	Cx� � n� l� � ��l�
so

Pr	icn
�
x � B� � �Cx�� � Pr	icn

�
x � B� � logn� �� � �l � b�

� Pr	�Cx� � logn� �� � �l � b�

� Pr	x � Sn�� Pr	�Cx� � �n� l��

� Pr	x � Sn�� Pr	Cx� � n� l��

� �� ��l � ��l

� �� ��

Thus B has property �� �

� Hard Instances

In this section we prove our main results� We show that almost every in�
stance of almost every problem in E has essentially maximal instance com�
plexity� and similarly for E�� Using this� we show that every problem that is
weakly �P

m�hard for either of these classes has an exponentially dense set of
such maximally hard instances� We begin with our abundance theorem in
E� In contrast with Theorem 
���� which asserts the existence of a language
in E with essentially maximal instance complexity� the following result says
that almost every language in E has this property� albeit with a slightly
weaker interpretation of �essentially maximal��

Theorem ���� For all c � Z� and � � �� the set

Xc� �� � fAj��x�ic�
cn

x � A� � �� ��C��c���n
x�g

has p�measure �� hence measure � in E�

Proof� Fix c � Z� and � � �� assuming without loss of generality that � is
rational� and let Xc� �� be the indicated set� For each � � f�� �g�� de�ne

��



the sets

Cons�� � fAj� is consistent with A relative to Ug�

D�� � fxjtimeU �� x� � �
cjxjg�

Y� � fA � Cons�� j jD��j �
g�

Z� � fA � Cons��
��� jD��j � � �j�j

� g�

Note that our de�nition of timeU �� x� implies that � decides x on U for
all x � D���� Let

Y � fAj�� � f�� �g��A � Y�g�

Z � fAj��� � f�� �g��A � Z�g�

It clearly su�ces to prove the following three claims�

Claim �� Y c 	 Zc � Xc� ���

Claim �� �pY � � ��

Claim �� �pZ� � ��

To prove Claim �� let A � Y c 	 Zc� De�ne the sets B � f�jA � Z�g�
D �

S
��B D��� Note that each D�� is �nite because A � Y c and B is

�nite because A � Zc� Thus the set D is �nite�

For each � � f�� �g� and k � N� let � � k � �jskj�sk�� It is routine to
design an interpreter M for which there is a constant a � N such that the
following two conditions hold whenever � � f�� �g� and � � k � jD��j�

�� M� � k� �� is the kth element of D�� in the standard ordering of
f�� �g��

�� timeM � � k� �� � �
�c���n�a� where n � jM� � k� ��j� This is enough

time for M to simulate �n�� computations of the form U�� x�� each
for up to �cjxj steps� for strings x �f���g�n��

��



Now assume that x �� D� Let � be a program testifying to the value of

ic�
cn

x � A�� Then x � D��� so � �� B� so jD��j � �
�j�j
� � This implies

that x is the kth element of D�� for some � � k � �
�j�j
� � �� whence

M� �k� �� � x and timeM � �k� �� � �
�c���jxj�a� Letting tn� � ��c���n�a�

it follows that

Ct
M x� � j� � kj

� j�j� �jskj� �

� j�j� � logk � �� � �

� j�j�
�j�j

�
� �

� � �
�

�
�j�j� ��

This argument shows that� for all x �� D�

Ct
M x� � � �

�

�
�ic�

cn

x � A� � ��

Let cM be the optimality constant forM � and let t�n� � cM tn� log tn��
cM � Then the set

D� � fxj��c���jxj � t�jxj�g

is �nite� Since A �� Y � the set

D�� � fxjic�
cn

x � A� �
�cM � ��

�
g

is also �nite� Hence the set bD � D � D� �D�� is �nite� For all x �� bD� we
now have

C��c���n
x� � Ct�x�

� Ct
M x� � cM

� � �
�

�
�ic�

cn

x � A� � cM � �

� � � ��ic�
cn

x � A��

whence

ic�
cn

x � A� � �� ���ic�
cn

x � A�

� �� ��C��c���n
x��

��



This proves that A � Xc� ��� completing the proof of Claim ��

To prove Claim �� let d �
P�

i�� �
�idsi � where s��s�� � � � is the standard

enumeration of f�� �g�and for each � � f�� �g�� the function d� � f�� �g
� � Q

is de�ned by the following recursion�

�� d��� � ��

�� If w � f�� �g�� b � f�� �g� and � does not decide sjwj on U in at most

�cjsjwjj steps� then d�wb� � d�w��


� If w � f�� �g�� b � f�� �g� and � decides sjwj on U in at most �cjsjwjj

steps� then d�wb� � �d�w�		b � U�� sjwj����

It is clear that each d� is a martingale� whence d is a martingale�

To see that Y � S�	d�� let A � Y � Then there exists � � si � f�� �g�

such that A � Y�� i�e�� such that A � Cons�� and jD��j � 
� Since
A � Cons�� we have d�A	� � � � n�� � d�A	� � � � n� ��� for all n � N� Since
jD��j �
� we have d�A	� � � � n�� � �d�A	� � � � n� ��� for in�nitely many
n � N� It follows that limn�� d�A	� � � � n���� �
� whence A � S�	d�� �
S�	dsi � � S�	d��

To see that d is p�computable de�ne �d � N  f�� �g� � Q by

�dr� w� �

r�jwjX
i��

��idsi�w��

Then �d � p and for all r � N and w � f�� �g��

j �dr� w� � dw�j �
�X

i�r�jwj��

��idsiw�

� �jwj
�X

i�r�jwj��

��i

� ��r�

so �d testi�es that d is p�computable� We have now shown that d is a p�
martingale with Y � S�	d�� thereby proving Claim ��

��



To prove Claim 
� we use the resource�bounded �rst Borel�Cantelli lemma
Lemma ��
�� Speci�cally� de�ne d � N  f�� �g� � 	��
� by

dk�w� � ���
�jsk j
� dskw��

where each d� i�e�� each dsk� is de�ned exactly as in the proof of Claim �

above� It is clear that each dk � �
��

�jsk j
� dsk is a martingale and that d is

p�computable� To see that each Zsk � S�	dk�� �x k � N� let � � sk� and
let A � Z�� Then A � Cons��� so d�A	� � � � n�� � d�A	� � � � n� ��� for all

n � N� Also� jD��j � �
�j�j
� � so there are at least �

�j�j
� values of n for which

d�A	� � � � n�� � �d�A	� � � � n� ���� It follows that� for su�ciently large n�

d�A	� � � � n� ��� � �
�
�j�j
� �

whence dkA	� � � � n� ��� � �� Thus A � S�	dk�� completing the proof that
Zsk � S�	dk��

The series
P�

k�� dk�� �
P

��f���g� �
��

�j�j
� is p�convergent by Lemma ����

so Claim 
 now follows from Lemma ��
� �

Theorem ��� has the following analog in E��

Theorem ���� For all c � Z� and � � �� the set

X�c� �� � fAj��x�ic�
n
c

x � A� � C�n
�c���

x��C�n
�c���

x��g

has p��measure �� hence measure � in E��

Proof� The proof has the same structure as that of Theorem ���� so we
follow the latter proof� indicating the needed changes� Fix c and � as before�
assuming also without loss of generality that � � �� and let X�c� �� be as
given� For each � � f�� �g�� de�ne Cons�� as before� let

D�� � fxj timeU �� x� � �
jxjcg�

de�ne Y� as before� and let

Z� � fA � Cons��
���jD��j � � j�j�

� g�

�




De�ne the sets Y and Z as before� It su�ces to prove the following three
claims�

Claim �� Y c 	 Zc � X�c� ���

Claim �� �p�Y � � ��

Claim �� �p�Z� � ��

To prove Claim �� let A � Y c 	 Zc� De�ne the sets B and D as before�
noting that D is again �nite� De�ne the interpreter M as before� except
that we now have timeM � � k� �� � tn�� where tn� � �n

c�n�a and n �

jM� � k� ��j� For x �� D and � testifying to the value of ic�
n
c

x � A�� we
now have

Ct
M x� � ic�

n
c

x � A� �
�

�
ic�

n
c

x � A�� � ��

If we choose cM and t� as before� then the set

D� � fxj �jxj
c��

� t�jxj�g

is �nite� Also� since A �� Y � the set

D�� � fxj ic�
n
c

x � A� � 	�cM � ���
�
� g

is �nite� so the set bD � D �D� �D�� is �nite� For all x �� bD� we now have
C�n

c��

x� � Ct�x�

� Ct
M x� � cM

� ic�
n
c

x � A� �
�

�
ic�

n
c

x � A�� � cM � �

� ic�
n
c

x � A� � ic�
n
c

x � A���

The function gu� � u � u� is nondecreasing� so letting u � C�n
c��

x� and

v � ic�
n
c

x � A�� it follows that

u� u� � gu�

� gv � v��

� v � v��� v � v���

� v�

��



i�e�� that

ic�
n
c

x � A� � C�n
c��

x�� C�n
c��

x���

This proves that A � X�c� ��� completing the proof of Claim ��

The proof of Claim � is exactly as before� except that the time bound in
clauses � and 
 of the de�nition of d� is now �

jsjwjj
c

� whence the resulting
function d is a p��martingale�

The proof of Claim 
 is exactly as before� except that we now de�ne

dk�w� � ���
j�j�

� dskw��

and the series
�X
k��

dk�� �
X

��f���g�

���
j�j�

�

is now p��convergent by Lemma ���� �

Before proceeding� we note that Theorems ��� and ��� imply the following
known fact� which was proven independently by Juedes and Lutz 	��� as
stated� and Mayordomo 	
�� in terms of bi�immunity� which is equivalent
by Remark 
����

Corollary ����Juedes and Lutz 	���� Mayordomo 	
��� Let c � Z��

�� Almost every language in E has f�� �g� as a DTIME�cn��complexity
core�

�� Almost every language in E� has f�� �g
�as a DTIME�n

c

��complexity
core�

Proof� This follows immediately from Theorems ��� and ���� Corollary 
���
and the fact that limn��Csn� �
� �

Our next task is to use Theorems ��� and ��� to prove that every weakly
�P
m�hard language for exponential time has a dense set of very hard in�

stances� For this purpose we need a few basic facts about the behavior of

��



polynomial�time reductions in connection with time�bounded Kolmogorov
complexity� time�bounded instance complexity� and density�

The data processing inequality of classical information theory 	�
� says
that the entropy Shannon information content� of a source cannot be in�
creased by performing a deterministic computation on its output� The anal�
ogous data processing inequality for plain Kolmogorov complexity 	��� says
that if f is a computable function� then Cfx��� which is the algorithmic
information content of fx�� cannot exceed Cx�� the algorithmic informa�
tion content of x� by more than a constant number of bits� The following
lemma is a time�bounded version of this fact� It is essentially well�known�
though perhaps not in precisely this form�

Lemma ����data processing inequality� For each f � PF� there exist a
polynomial q and a constant c � N such that for all x � f�� �g� and all
nondecreasing t � N � N�

jfx�j � jxj � Ct��fx�� � Ctx� � c�

where t��n� � ct�n� logt�n�� � c and t�n� � tn� � qn��

Our next lemma is a straightforward extension of Proposition 
�� of 	
���

Lemma ���� For each f � PF there exist a polynomial q and a constant
c � N such that for allA � f�� �g�� x � f�� �g�� and nondecreasing t � N � N�

ict
��
x � f��A�� � ictfx� � A� � c�

where t��n� � ct�n� logt�n�� � c and t�n� � qn� � tqn���

The following consequence of Lemma ��� is especially useful here�

Corollary ���� For each f � PF there exist � � � and c � N such that for
all but �nitely many x � f�� �g�� for all A � f�� �g��

ic�
n
�

fx� � A� � ic�
n

x � f��A��� c�

��



Proof� Let f � PF and choose q and c for f as in Lemma ���� Let � �
��d � ��� where d is the degree of the polynomial q� and let tn� � �n

�

�
De�ne t� and t�� from t as in Lemma ���� Then there exists n� � N such that
for all n � n�� t

��n� � �n� It follows by Lemma ��� that for all x � f�� �g�

such that jxj � n�� for all A � f�� �g��

ic�
n
�

fx� � A� � ictfx� � A�

� ict
��
x � f��A��� c

� ic�
n

x � f��A��� c�

�

Juedes and Lutz 	��� introduced the following useful notation� The
nonreduced image of a language S � f�� �g� under a function f � f�� �g� �
f�� �g� is the language

f�S� � ffx�jx � S and jfx�j � jxjg�

Lemma ����Juedes and Lutz 	���� If f � PF is one�to�one a�e� and S �
f�� �g� is co�nite� then f�S� is dense�

We now prove that every weakly �P
m�hard language for exponential time

has a dense set of very hard instances� Orponen� Ko� Sch�oning� and Watan�
abe 	
�� have shown that every �P

m�hard language for exponential time has a
dense set of very hard instances� and Buhrman and Orponen 	�� have proven
a similar result with improved time bounds and density for languages that
are �P

m�complete for exponential time� Theorems ��� and ��� below can
be regarded as extending this phenomenon with some modi�cation in the
precise bounds� to all weakly �P

m�hard languages for exponential time�

Juedes and Lutz 	��� have proven that every weakly �P
m�hard language

for E is weakly �P
m�hard for E�� but that the converse fails� even for lan�

guages in E� We thus state our results in terms of weakly �P
m�hard languages

for E�� noting that they hold a fortiori for languages that are weakly �P
m�

hard for E�

Theorem ��	� If H is weakly �P
m�hard for E�� then for every � � � there

��



exists � � � such that the set

HI���H� � fxjic�
n
�

x � H� � �� ��C��nx�g

is dense�

Proof� Let H be weakly �P
m�hard for E�� and let � � �� Let X � X�� ���

be de�ned as in Theorem ���� and let

Y � fAj A is incompressible by �P
m�reductionsg�

By Theorem ��� we have �pX� � �� and Juedes and Lutz 	��� proved that
�pY � � �� so we have �pX 	 Y � � �� It follows that �p�X 	 Y � � ��
whence �X 	 Y jE�� � �� Since H is weakly �P

m�hard for E�� we have
�PmH�jE�� �� �� so it follows that there exists

A � X 	 Y 	 PmH� 	 E��

Since A � PmH�� there exists f � PF such that A � f��H�� By Corollary
���� there exist � � � and c� � N such that the set

S� � fxj ic�
n
�

fx� � H� � ic�
n

x � A�� c�g

is co�nite� It su�ces to show that the set HI���H� is dense�

Since A � X� the set

S� � fxjic�
n

x � A� � ��
�

�
�C��nx�g

is co�nite� By Lemma ���� there exist a polynomial q and a constant c� � N
such that for all x � f�� �g��

jfx�j � jxj � C��nx� � Ct��fx��� c�

where t�� is de�ned from q and tn� � ��n as in that lemma� Since t��n� �
o��n�� the set

S� � fx
��� jfx�j � jxj � ��jf�x�j � t��jfx�j�g

is co�nite� Finally� since limn��Csn� �
� the set

S� � fx

���� jfx�j � jxj � C��nfx�� � �
c� � c��

�
g

��



is co�nite� It follows that the set

S � S� 	 S� 	 S� 	 S�

is co�nite� Since A � Y � Lemma ��� tells us that the nonreduced image
f�S� is dense� We complete the proof by showing that f�S� � HI���H��

Assume that y � f�S�� Then there exists x � S such that y � fx�
and jfx�j � jxj� Since x � S� 	 S�� we have

ic�
n
�

y � H� � ��
�

�
�C��nx�� c��

Since x � S� 	 S� and jfx�j � jxj� it follows that

ic�
n
�

y � H� � ��
�

�
�	Ct��fx��� c��� c�

� ��
�

�
�C��nfx��� c� � c��

� �� ��C��nfx��

� �� ��C��ny��

whence y � HI���H�� �

Using Theorem ��� in place of Theorem ���� we prove the following sim�
ilar result�

Theorem ��
� If H is weakly �P
m�hard for E�� then for every � � � there

exists � � � such that the set

HI���� H� � fxjic�
n
�

x � H� � C��n
�

x�� C��n
�

x��g

is dense�

Proof� We follow the proof of Theorem ���� indicating the needed changes�
Let H be weakly �P

m�hard for E�� and let � � �� Assume without loss
of generality that � � �� Let X � X�� ��� be de�ned as in Theorem ����
and let Y be as before� Arguing as in the preceding proof� there exists
A � X 	 Y 	 PmH� 	 E�� Choosing f � �� c� and S as in that proof� it

��



su�ces to show that the set HI���� H� is dense� We continue following the
earlier proof� but now letting

S� � fxjic�
n

x � A� � C�n
�

x�� C�n
�

x�
�

� g�

choosing q and c� such that

jfx�j � jxj � C�n
�

x� � Ct��fx��� c��

where t�� is de�ned from q and tn� � �n
�
� and letting

S� � fx
��� jfx�j � jxj � ��jf�x�j

�
� t��jfx�jg�

S� � fx

���� jfx�j � jxj � C��n
�

fx��� � C��n
�

fx��
�

� � c� � c� g�

Then the set S � S� 	 S� 	 S� 	 S� is again co�nite� so it su�ces to show
that f�S� � HI���� H��

Let y � f�S�� and choose x as before� Since x � S� 	 S�� we have

ic�
n
�

y � H� � C�n
�

x�� C�n
�

x�
�

� � c��

Since jfx�j � jxj and x � S�� we have

C�n
�

x� � Ct��fx��� c� � C��n
�

fx��� c��

Since the function gn� � u� u
�

� is non decreasing� it follows that

ic�
n
�

y � H� � 	C��n
�

fx��� c��� 	C
��n

�

fx��� c��
�

� � c�

� C��n
�

fx��� C��n
�

fx��
�

� � c� � c���

Since x � S�� this implies that

ic�
n
�

y � H� � C��n
�

fx���C��n
�

fx���

� C��n
�

y�� C��n
�

y���

i�e�� that y � HI���� H�� �

By Lemma 
�
� Theorem ��� implies and by Theorem 
��� is much
stronger than� the following known result�


�



Corollary �����Juedes and Lutz 	����� If H is weakly �P
m�hard for E��

then H has a dense exponential complexity core�

Theorems ��� and ��� are incomparable in strength because Theorem ���
gives a tighter time bound on the plain Kolmogorov complexity� while Theo�
rem ��� gives a tighter bound on the closeness of the time�bounded instance
complexity to the time�bounded plain Kolmogorov complexity� For most
strings x� Ctx� and Cx� are both very close to jxj� so the time bound
on Ctx� is often of secondary signi�cance� Thus for many purposes� the
following simple consequence of Theorem ��� su�ces�

Corollary ����� If H is weakly �P
m�hard for E or E�� then for every � � �

there exists � � � such that the set

HI���� H� � fxjic�
n
�

x � H� � Cx�� Cx��g

is dense�

We conclude this section with a discussion of the instance complexities
of NP�complete problems� For simplicity of exposition we focus on SAT �
but the entire discussion extends routinely to other NP�complete problems�

We start with three known facts� The �rst says that the hypothesis
P �� NP implies a lower bound on the instance complexity of SAT �

Theorem �����Orponen� Ko� Sch�oning and Watanabe 	
��� If P �� NP�
then for every polynomial t and constant c � N� the set

fxjictx � SAT � � c log jxjg

is in�nite�

Each of the next two facts derives a stronger conclusion than Theo�
rem ���� from a stronger hypothesis�

Theorem �����Ko 	���� If nonuniformly secure one�way functions exist�
then for every polynomial t and constant c � N� the set

fxjictx � SAT � � c log jxjg


�



is nonsparse�

Theorem �����Orponen� Ko� Sch�oning and Watanabe 	
��� If E �� NE�
then for every polynomial t there exist a polynomial t� and a constant c � N
such that the set

fxjictx � SAT � � Ct�x�� cg

is in�nite�

The following theorem derives a strong lower bound on the instance
complexity of SAT from the hypothesis that �pNP� �� �� This hypothesis�
which was proposed by Lutz� has been proven to have many reasonable
consequences 	��� �� ��� ���� The �pNP� �� � hypothesis implies E �� NE
	��� and is equivalent to the assertion that NP does not have measure � in E�
	��� Its relationship to the hypothesis of Theorem ���
 is an open question�

Theorem ����� If �pNP� �� �� then for every � � � there exists � � � such
that the sets

HI���� SAT � � fxjic�
n
�

x � SAT � � �� ��C��nx�g�

HI���� SAT � � fxjic�
n
�

x � SAT � � C��n
�

x�� C��n
�

x��g

are dense�

Proof� If �pNP� �� �� then SAT is weakly �P
m�complete for E�� so this

follows from Theorems ��� and ���� �

� Easy Instances

In this brief section� we note that languages that are�P
m�hard for exponential

time have instance complexities that are unusually low in the sense that
they obey an upper bound that is violated by almost every language in
exponential time� Our proof is based on the following known result�

Theorem ����Juedes and Lutz 	���� For every �P
m�hard language H for E�

there exist B�D � DTIME��n� such that D is dense and B � H 	D�


�



The following theorem gives an upper bound on the instance complexities
of hard problems for exponential time� It says that every such problem has
a dense set of relatively� easy instances�

Theorem ���� For every �P
m�hard language H for E there is a constant

c � N such that the set

EIcH� � fxjic�
�n
x � H� � cg

is dense�

Proof� Let H be �P
m�hard for E� Choose B and D for H as in Theorem ����

It is routine to design an interpreter M with the following properties�

�� For all �� x � f�� �g��

M�� x� �

���
� if x � B
� if x � D �B
� if x �� D�

�� For all x � D� timeM �� x� � �
	jxj�

Note that M�� x� does not depend on ���

Then the program � is consistent with H relative to M � so for all x � D
we have ic�

�n

M x � H� � �� By the optimality of U � it follows that there is
a constant c � N such that for all x � D� ict

�
x � H� � c� where t�n� �

ctn� logtn�� � c and tn� � �	n� We thus have D 	 S � EIcH�� where

S � fxj�
jxj � t�jxj�g�

Since D is dense and S is co�nite� it follows that EIcH� is dense� �

By Theorem ���� almost every language in exponential time violates the
upper bound given by Theorem ���� Thus these two results together imply
the known fact 	��� that the set of �P

m�hard languages for exponential time
has p�measure �� It should also be noted that Ambos�Spies� Terwijn and
Zheng 	�� have shown that almost every language in E is weakly �P

m�hard







for E� It follows by Theorem ��� that almost every language in E is weakly
�P
m�hard for E and violates the instance complexity upper bound given by
Theorem ���� Thus Theorem ��� cannot be extended to the weakly �P

m�hard
problems for E�
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