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Abstract

This paper investigates the notion of resource�bounded
genericity developed by Ambos�Spies� Fleischhack� and
Huwig� Ambos�Spies� Neis� and Terwijn have recently
shown that every language that is t�n��random over the
uniform probability measure is t�n��generic� It is shown
here that� in fact� every language that is t�n��random over
any strongly positive� t�n��computable probability measure
is t�n��generic� Roughly speaking� this implies that� when
genericity is used to prove a resource�bounded measure re�
sult� the result is not speci�c to the underlying probability
measure�
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� Introduction

In the �����s� the development and application of resource�bounded
measure � a complexity�theoretic generalization of classical Lebesgue
measure developed by Lutz ���	 � has shed new light on some of the
most central questions in computational complexity
 Progress that
has resulted from the use of resource�bounded measure � by now
the work of many investigators � has been surveyed in ���� �	


Recently� Ambos�Spies� Neis� and Terwijn ��	 have observed that
the notion of time�bounded genericity developed by Ambos�Spies�
Fleischhack� and Huwig �
	 interacts informatively with resource�
bounded measure
 In fact� this notion of genericity� which �like
its recursion�theoretic precursors� was originally formulated as a
uniform method for carrying out all diagonalization strategies of
a certain strength� provides a new method for proving results on
resource�bounded measure
 This method� �rst discovered and ap�
plied by Ambos�Spies� Neis� and Terwijn ��	 has since been applied
by Ambos�Spies ��� �	 and Ambos�Spies and Mayordomo ��	
 Time�
bounded genericity has also been characterized as a kind of strong
immunity property by Balc�azar and Mayordomo ��	
 Recently� a
strengthened version of genericity� called balanced genericity� has
been shown by Ambos�Spies� Mayordomo� Wang� and Zheng ��	 to
give an exact characterization of time�bounded Church stochastic�
ity
 The reader is referred to the surveys ��� �� ��	 for discussions of
these developments� and of the relationship between this notion of
genericity and some other kinds of genericity that have been used
in computational complexity
 �In this paper� the term �genericity�
is reserved for the notion developed by Ambos�Spies� Fleischhack�
and Huwig �
	
�

The crux of the relationship between genericity and resource�
bounded measure is the pair of facts� proven by Ambos�Spies� Neis�
and Terwijn ��	� that� for �xed k � N� the nk�generic languages form
a measure � subset of the complexity class E � DTIME��linear��

�



and the ��logn�
k

�generic languages form a measure � subset of E� �
DTIME��polynomial�
 To put the matter di�erently� almost every
language in E is nk�generic� which is written

�
�
GEN�nk�

��� E� � �� ���

and almost every language in E� is �
�logn�k �generic� which is written

�
�
GEN���logn�

k

�
��� E�

�
� �� ���

This pair of facts is also the crux of the method for using genericity
to prove resource�bounded measure results
 For example� if one
wants to prove that a certain set X of languages has measure � in
E �written �

�
X
��� E� � ��� it su�ces by ��� to prove that� for some

�xed k � N� X � E does not contain any nk�generic language


As it turns out� facts ��� and ��� both follow from a single�
tight relationship between time�bounded genericity and the time�
bounded randomness concepts investigated by Schnorr ���� ��� ���
��	 some �� years ago
 Speci�cally� Ambos�Spies� Neis� and Terwijn
��	 showed that� for every time bound t �N� N� every t�n��random
language is t�n��generic� i
e
�

RAND�t�n�� � GEN�t�n��� �
�

�Note� The actual statement in ��	 is that RAND�et�n�� � GEN�t�n���
where et�n� is enough larger that t�n� to handle some computational
simulation tasks
 It was then shown in ��	 that� with a more careful
formulation of these classes� the argument in ��	 can be made to
achieve �
�
� Facts ��� and ��� follow immediately from �
� and the
known facts ���� �	 that almost every language in E is nk�random�
and almost every language in E� is ��logn�

k

�random


Ambos�Spies� Neis� and Terwijn ��	 also pointed out that inclu�
sion �
� is proper� i
e
�

RAND�t�n��
�
��GEN�t�n�� ���






for t�n� � n�
 In fact� they noted that the genericity method is
weaker than direct measure or randomness arguments� in the sense
that there are sets of interest in computational complexity that have
measure � in E� but that cannot be proven to have measure � in E
by this genericity method


All the results mentioned thus far involve resource�bounded mea�
sure and randomness over the uniform probability measure � on the
set C of all languages
 This corresponds to the random experiment
in which a language A � f�� �g� is chosen by using an independent

toss of a fair coin to decide membership of each string in A


In this paper� we investigate the relationship between time�
bounded genericity and time�bounded randomness �and measure�
over more general probability measures on C
 Probability measures
other than the uniform probability measure occur naturally in ap�
plications� were incorporated by Schnorr ���� ��	 into the theory of
resource�bounded randomness� and have recently been incorporated
by Lutz and Breutzmann ��	 into resource�bounded measure


In our main theorem� we generalize �
� by proving that� for every
time bound t � N � N� every language that is t�n��random over
any strongly positive t�n��time computable probability measure �
on C is t�n��generic
 That is�

RAND��t�n�� � GEN�t�n�� ���

holds for every such probability measure �
 Thus� not only is t�n��
genericity weaker than t�n� randomness over the uniform probabil�
ity measure �as indicated by ����� but it is simultaneously weaker
than all t�n��randomness notions over strongly positive� t�n��com�
putable probability measures


Just as ��� is stronger than �
�� so are the consequences of ���
for measure in complexity classes stronger than ��� and ���
 We
show in this paper that� for every positive� p�computable probability
measure � on C� the languages that are nk�random over � form a

�



��measure � subset of E
 It follows by ��� that� for every strongly
positive� p�computable probability measure � on C�

��GEN�nk�
���E� � �� ���

i
e
� ��almost every language in E is nk�generic
 Similarly� we show
that� for every strongly positive� p��computable probability measure
� on C�

��GEN���logn�
k

�
���E�� � �� ���

i
e
� ��almost every language in E� is ��logn�
k

�generic


What do these results say about the genericity method for prov�
ing theorems on measure in complexity classes� Viewed from the
standpoint of the uniform probability measure �or any other par�
ticular strongly positive� p�computable probability measure�� these
results say that the genericity method is much weaker than direct
martingale arguments
 However� viewed from the standpoint of
strongly positive� p�computable probability measures in general� ���
and ��� say that the genericity method is very powerful
 For exam�
ple� ��� says that� if we can prove that no element of X � E is
nk�generic� then it follows that X has ��measure � in E for every
strongly positive� p�computable probability measure � on C


This paper is largely self�contained
 In section �� we intro�
duce notation and review the notion of genericity developed by
Ambos�Spies� Fleischhack� and Huwig �
	
 In section 
� we re�
view the notion of time�bounded randomness developed by Schnorr
���� ��� ��� ��	� prove our main theorem on time�bounded gener�
icity and time�bounded randomness over feasible probability mea�
sures� and derive and discuss the consequences of this theorem for
resource�bounded measure
 In section � we make a brief closing
remark


In order to simplify the exposition of the main ideas� we do
not state our results in the strongest possible form in this volume

The technical paper ��
	 gives a more thorough treatment of these
matters


�



� Preliminaries

��� Notation

We write f�� �g� for the set of all ��nite� binary� strings� and we
write jwj for the length of a string w
 The empty string� �� is the
unique string of length �
 The standard enumeration of f�� �g� is
the sequence s� � �� s� � �� s� � �� s� � ��� � � �� ordered �rst by
length and then lexicographically
 For w � f�� �g� and � � n � jwj�
w�n	 denotes the nth bit of w
 �The leftmost bit of w is w��	
�

The Boolean value of a condition � is ���		 � if � then � else �


We work in the Cantor space C� consisting of all languages
A � f�� �g�
 We identify each language A with its characteristic
sequence� which is the �in�nite� binary� sequence A whose nth bit is
��sn � A		 for each n � N
 �The leftmost bit of A is the �th bit
�

Relying on this identi�cation� we also consider C to be the set
of all sequences


A string w is a pre�x of a sequence A� and we write w v A�

if there is a sequence B such that A � wB� We write A����n � �	
for the n�bit pre�x of A
 For each string w � f�� �g�� the cylinder
generated by w is the set

Cw �
n
A � C

��� w v A
o
�

Note that C� � C


��� Genericity

We brie�y review the notion of time�bounded genericity introduced
by Ambos�Spies� Fleishhack� and Huwig �
	
 For more motivation

�



and discussion� and for comparisons with other notions of generic�
ity that have been used in computational complexity� the reader is
referred to ��� �� ��	


A condition is a set C � f�� �g�� i
e
� a language
 A language
A � f�� �g� meets a condition C if some pre�x of �the characteristic
sequence of� A is an element of C
 A condition C is dense along a
language A � f�� �g� if A has in�nitely many pre�xes w for which
fw�� w�g �C �� 	
 A condition C is dense if it is dense along every
language


De�nition �Ambos�Spies� Fleischhack� and Huwig �
	�
 Let C be
a class of conditions
 A language A � f�� �g� is C�generic� and we
write A � GEN�C�� if A meets every condition in C that is dense
along A


We are primarily interested in C�genericity when C is a time
complexity class


De�nition �Ambos�Spies� Fleischhack� and Huwig �
	� Let t � N�
N
 A language A � f�� �g� is t�n��generic if A is DTIME�t�n���
generic


We close this section with a single expository example� due to
Ambos�Spies� Neis� and Terwijn ��	
 If C is a class of languages�
recall that a language A � f�� �g� is C�bi�immune if neither A nor
Ac � f�� �g� � A contains an in�nite element of C
 If t � N �
N� then we say that A is t�n��bi�immune if A is DTIME�t�n���bi�
immune


Example �Ambos�Spies� Neis� and Terwijn ��	� If c � �� then every
nc�generic language is �cn�bi�immune


Proof� Let c � �� and let A � f�� �g� be nc�generic
 To see that A
is �cn�bi�immune� let B be an in�nite element of DTIME��cn�� and

�



let b � f�� �g
 De�ne the condition

C �
n
wb
��� w � f�� �g� and sjwj � B

o
�

The predicate �sjwj � B� is decidable in O��cjsjwj j� � O�jwjc� time�
so C � DTIME�nc�
 Also� for all D � f�� �g� and sn � B� D�����n�
�	b � C
 Since A is in�nite� this implies that C is dense
 Since A
is nc�generic it follows that A meets C
 Since this holds for b � ��
B cannot be a subset of A
 Since it holds for b � �� B cannot be a
subset of Ac
 �

� Genericity and ��Randomness

In this section� we prove our main result� that every language that is
t�n��random over a strongly positive� t�n��computable probability
measure is t�n��generic
 We also brie�y discuss the implications
of this result for the use of resource�bounded genericity in proving
theorems about resource�bounded measure


��� Randomness over Feasible Probability Mea�

sures

Before proving our main result� we review the notion of time�bounded
randomness over a given probability measure as developed by Schnorr
���� ��	
 More complete expositions of the ideas reviewed here may
be found in ���� ��� �	


We �rst recall the well�known notion of a �Borel� probability
measure on C


De�nition� A probability measure on C is a function

� � f�� �g� � ��� �	

�



such that ���� � �� and for all w � f�� �g��

��w� � ��w�� � ��w���

Intuitively� ��w� is the probability that A � Cw when we �choose
a language A � C according to the probability measure �
� We
sometimes write ��Cw� for ��w�


Examples�

�
 A sequence of biases is a sequence �� � ���� ��� ��� � � ��� where

each �i � ��� �	
 Given a sequence of biases ��� the ���coin�

toss probability measure �also called the ���product probability

measure� is the probability measure �
�� de�ned by

�
���w� �

jwj��Y
i��

���� �i� 
 �� � w�i	� � �i 
 w�i	�

for all w � f�� �g�
 If � � �� � �� � �� � � � � � then we write

�� for �
��
 In this case� we have the simpler formula

���w� � ��� ������w� 
 �����w��

where ��b� w� denotes the number of b�s in w
 If � � �
�
here�

then we have the uniform probability measure � � �
�

� � which
is de�ned by

��w� � ��jwj

for all w � f�� �g�
 �We always reserve the symbol � for the
meanings assigned in this example
�

�
 The function � de�ned by the recursion

���� � �

���� � ���� � ���

��wab� �

�
�����wa� if a �� b

��
��wa� if a � b

�



�for w � f�� �g� and a� b � f�� �g� is also a probability measure
on C


Intuitively� �
���w� is the probability that w v A when the lan�

guage A � f�� �g� is chosen probabilistically according to the follow�
ing random experiment
 For each string si in the standard enumer�
ation s�� s�� s�� � � � of f�� �g

�� we �independently of all other strings�
toss a special coin� whose probability is �i of coming up heads� in
which case si � A� and � � �i of coming up tails� in which case
si �� A
 The probability measure � above is a simple example of a
probability measure that does not correspond to independent coin
tosses in this way


De�nition� A probability measure � on C is positive if� for all
w � f�� �g�� ��w� 	 �


De�nition� If � is a positive probability measure and u� v � f�� �g��
then the conditional ��measure of u given v is

��ujv� �

�������
� if u v v
��u�
��v�

if v v u

� otherwise


That is� ��ujv� is the conditional probability that A � Cu� given
that A � Cv� when A � C is chosen according to the probability
measure �


In this paper� we are especially concerned with the following
special type of probability measure


De�nition� A probability measure � on C is strongly positive if � is
positive and there is a constant 
 	 � such that� for all w � f�� �g�

and b � f�� �g� ��wbjw� � 

 �Equivalently� for all such w and b�
��wbjw� � �
� �� 
	
�

The following relation between probability measures is useful in

��



many contexts


De�nition� If � and � are probability measures on C� then �

dominates � if there is a real number � 	 � such that� for all
w � f�� �g�� ��w� � ���w�


Construction ���� Given a sequence ��� ��� ��� ��� of probability
measures on C� de�ne functions f� e� � f�� �g� � R by

f�w� �
jwjX
i��

���i����i�w��

e���� � ��e��w�� � f�w�� � rjwj���e��w�� � e��w�� e��w���
where rk � �k����

	k��
for each k � N


Lemma ���� If ��� ��� ��� ��� are probability measures on C� then e�
is a probability measure onC that dominates each of the probability
measures �i


Proof �sketch�
 A routine induction shows that� for all w � f�� �g��

e��w� � f�w� � rjwj� ���

In particular� this implies that each e��w� � �
 Since Con�
struction 

� immediately implies that e���� � � and each e��w� �e��w�� � e��w��� it follows that e� is a probability measure on C
 To
see that e� dominates each �i� �x i � N
 Then ��� implies that� for
all w � f�� �g� with jwj � i�

e��w� � f�w� � ���i����i�w��

It follows readily from this that e� dominates �i
 �

To ensure clarity� we restrict attention to probability measures
with rational values that are exactly computable within a speci�ed
time bound


��



De�nition� Let t � N � N
 A probability measure � on C is
t�n��exact if

� � f�� �g� � Q � ��� �	

and there is an algorithm that� for all w � f�� �g�� computes ��w�
in O�t�jwj�� steps


Examples �revisited�
 The uniform probability measure � is clearly
t�n��exact for t�n� � n� as is the probability measure ��� pro�
vided that � � Q � ��� �	
 In contrast� even if the biases in the

sequence �� � ���� ��� ���� are all rational� �
�� will fail to be t�n��

exact if the computation of �i from i is too di�cult �or impossible�

The probability measure � of the preceding example is t�n��exact
for t�n� � n


De�nition� A probability measure � on C is p�exact if � is nk�
exact for some k � N
 A probability measure � on C is p��exact if
� is ��logn�

k

�exact for some k � N


We next review the well�known notion of a martingale over
a probability measure �
 Computable martingales were used by
Schnorr ���� ��� ��� ��	 in his investigations of randomness� and
have more recently been used by Lutz ���	 in the development of
resource�bounded measure


De�nition� If � is a probability measure on C� then a ��martingale

is a function d � f�� �g� �� ����� such that� for all w � f�� �g��

d�w���w� � d�w����w�� � d�w����w��� ���

A ��martingale is even more simply called a martingale
 �That is�
when the probability measure is not speci�ed� it is assumed to be
the uniform probability measure �
�

Intuitively� a ��martingale d is a �strategy for betting� on the
successive bits of �the characteristic sequence of� a language A � C

The real number ���� is regarded as the amount of money that
the strategy starts with
 The real number ��w� is the amount of

��



money that the strategy has after betting on a pre�x w of 
A
 The
identity ��� ensures that the betting is �fair� in the sense that� if A
is chosen according to the probability measure �� then the expected
amount of money is constant as the betting proceeds
 Of course�
the �objective� of a strategy is to win a lot of money


De�nition� A ��martingale d succeeds on a language A � C if

lim sup
n��

d�A�����n� �	� ���

If d is any ��martingale satisfying d��� 	 �� then ��� implies
that the function � de�ned by

��w� �
d�w���w�

d���

for all w � f�� �g� is a probability measure on f�� �g�
 In fact� for
positive �� it is easy to see �and has long been known ���	� that the
set of all ��martingales is precisely the set of all functions d of the
form

d � �
�

�
�

where � � ����� and � is a probability measure on C
 It simpli�es
our presentation to use this idea in the following de�nition


De�nition� Let � be a positive probability measure on C� and let
t � N� N
 A ��martingale d is t�n��exact if the function

� � d� ����

is a t�n��exact probability measure on C
 A ��martingale is p�exact
if it is nk�exact for some k � N� and is p��exact if it is ��logn�

k

�exact
for some k � N


�




Remarks�

�
 If � is positive� we usually write equation �� in the more sug�
gestive form

d �
�

�
�

�
 In any case� ��� ensures that every t�n��exact martingale d

satis�es d��� � �




 The above de�nition does not require a t�n��exact martingale
to itself be computable in O�t�n�� time
 For example� if � is
a positive� uncomputable probability measure on C� then the
martingale d � �

�
� i
e
�

d�w� �
�

�jwj��w�
�

is t�n��exact for all t�n� � n� but d is certainly not com�
putable
 Essentially� in de�ning the time complexity of a ��
martingale d � �

�
� we only consider the time complexity of ��

which we think of as the �strategy� of the martingale d
 The
probability measure � is the �environment� of d� and we do
not �charge� d for the complexity of its environment
 In any
event� this issue does not concern us here� because the prob�
ability measures � in our results are themselves t�n��exact


Time�bounded randomness is de�ned as follows


De�nition� Let � be a probability measure on C� and let t � N�
N
 A language A � C is t�n��random over �� or t�n����random� and
we write A � RAND��t�n��� if there is no t�n��exact ��martingale
that succeeds on A


De�nition� Let � be a probability measure on C
 A language A �
C is p�random over �� or p���random� and we write A � RAND��p��
if A is nk�random for all k � N


��



The notion of t�n����randomness is not robust
 Its exact mean�
ing � like the meaning of O�t�n���time computation � is sensitive
to details of the underlying model of computation
 The meaning of
time�bounded randomness is also sensitive to details of the de�ni�
tion� such as whether the martingale may be approximated or must
be computed exactly� and how the complexity of the probability
measure � is taken into account
 Fortunately� these sensitivities are
less than the notion�s sensitivity to small changes in the time bound
t�n�� so the notion of p���randomness is robust
 That is� for each
p�exact probability measure �� the class RAND��p� is the same for
all reasonable choices of the underlying computational model and
all reasonable variants of the de�nition of RAND��t�n��


When the probability measure is �� the uniform probability mea�
sure� we usually omit it from the above notation and terminology�
referring simply to the class RAND��t�n��� consisting of all t�n��
random languages� and the set RAND�p�� consisting of all p�random
languages


��� ��Random Languages are Generic

Ambos�Spies� Neis� and Terwijn ��	 have shown that every language
that is t�n��random over the uniform probability measure is t�n��
generic
 The following theorem extends this result to arbitrary�
strongly positive� s�n��exact probability measures on C


Theorem ���� Let s� t � N� N
 If � is a strongly positive� s�n��
exact probability measure on C� then every �s�n�� t�n�����random
language is t�n��generic


Proof� Assume the hypothesis� �x 
 	 � such that ��wbjw� � 


for all w � f�� �g� and b � f�� �g� and let A be a language that
is �s�n� � t�n���random over �
 To see that A is t�n��generic� let
C be a t�n��condition that is dense along A
 De�ne a probability

��



measure � on C by

��wbjw� �

�����
� if wb �� C and wb � C

� if wb � C and wb �� C

��wbjw� otherwise

for all w � f�� �g� and b � f�� �g� and let d � �

�

 Then � is an

�s�n��t�n���exact probability measure� so d is an �s�n��t�n���exact
��martingale
 Since A is �s�n��t�n���random over �� it follows that
d does not succeed on A


Since C is dense along A� the set

S �
n
wb v A

��� w � f�� �g� � b � f�� �g� and wb � C or wb � C
o

is in�nite
 We can partition S into the three sets

S�� �
n
wb � S

��� wb �� C
o
�

S�� �
n
wb � S

��� wb �� C
o
�

S�� �
n
wb � S

��� wb � C and wb � C
o

We have two cases


Case �� S�� �� 	
 Then we immediately have that A meets
the condition C


Case �� S�� � 	
 Then for every pre�x wb of A� ��wbjw� �
��wbjw�� so

d�wb� �
��w���wbjw�

��w���wbjw�
� d�w�

Thus the values of the ��martingale d are psoitive and nonde�
creasing along A
 Also� for every wb � S���

d�wb� �
��w���wbjw�

��w���wbjw�
�

d�w�

��wbjw�
�

d�w�

�� 

	 �� � 
�d�w��

Since d does not succeed on A� it follows that the set S��
must be �nite
 Since S is in�nite and S�� � 	� this implies
that S�� �� 	� whence A meets the condition C


��



Since A meets C in either case� it follows that A is t�n��generic

�

Corollary ���� let t � N � N
 If � is a strongly positive� t�n��
exact probability measure on C� then every t�n����random language
is t�n��generic


Proof� This follows immediately from Theorem 


 with s�n� �
t�n�
 �

Fix a time bound t�n� � n�
 For the uniform probability mea�
sure� in addition to proving that RAND�t�n�� � GEN�t�n��� Ambos�
Spies� Neis� and Terwijn ��	 proved that this inclusion is proper� by
establishing the existence of sparse t�n��generic languages
 It is
easy to see that any language A that is t�n��random over a strongly
positive� t�n��exact probability measure � on C must satisfy the
condition


 � lim inf
n��

���� A����n	�

n� �
� lim sup

n��

���� A����n	�

n� �
� �� 
 ����

for every witness 
 	 � to the strong positivity of �� where ���� w�
is the number of ��s in the string w
 Since no sparse language
can satisfy inequality ����� the existence of a sparse t�n��generic
language also shows that there are t�n��generic languages that are
not t�n��random over any strongly positive� t�n��exact probability
measure
 Thus the converses of Theorem 


 and Corollary 

� do
not hold


For each rational bias � � Q � ��� ��� let RAND��t�n�� �
RAND�� �t�n��� where �� is the coin�toss probability measure de�
�ned in section 

�
 It is well�known �and easy to see� that every
A � RAND��t�n�� satis�es the condition

lim
n��

���� A����n	�

n� �
� �

In particular� this implies that� for all �� � � Q � ��� ���

� �� � �� RAND��t�n�� � RAND��t�n�� � 	� ����

��



By Theorem 


 and the existence of sparse t�n��generic lan�
guages� �

��Q ������

RAND��t�n��
�
��GEN�t�n���

and the union on the left is disjoint by ����
 In this sense� t�n��
genericity is much weaker then t�n��randomness over the uniform
probability measure


��� Genericity and ��Measure

In order to discuss the implications of Theorem 


 for resource�
bounded measure proofs� we brie�y review the notions of resource�
bounded measure and measure in complexity classes� developed by
Lutz ���	 over the uniform probability measure� and recently ex�
tended by Breutzmann and Lutz ��	 to more general probability
measures
 The reader is referred to ���� �� �	 for more complete
discussions of this material


De�nition� Let � be a p�exact probability measure on C� and let
X � C


�
 X has p���measure �� and we write �p�X� � �� if there is a
p�exact ��martingale d that succeeds on every element of X


�
 X has p���measure �� and we write �p�X� � �� if �p�Xc� � ��
where Xc � C �X




 X has ��measure � in E� and we write ��XjE� � �� if �p�X �
E� � �


�
 X has ��measure � in E� and we write ��XjE� � �� if ��XcjE�
� �
 In this case� we say that X contains ��almost every

element of E


��



The conditions �p��X� � �� �p��X� � �� ��XjE�� � �� and
��XjE�� � � are de�ned analogously for p��exact probability mea�
sures � on C
 As usual� when the probability measure � is not
mentioned� it is assumed to be the uniform probability measure

For example� a set X has measure � in E if ��XjE� � �


Building on ideas from ���	� Breutzmann and Lutz ��	 prove
theorems justifying the intuition that a set with ��measure � in

E contains only a negligibly small part of E �with respect to ���
and similarly for E�
 Of particular importance is the fact that no
cylinder Cw has measure � in E or in E�


The signi�cance of Theorem 


 for resource�bounded measure
lies in the following result on the abundance of random languages
in E and E�
 �This result generalizes results for the uniform prob�
ability measure presented by Lutz ���	 and Ambos�Spies� Terwijn�
and Zheng ��	� see also ��	
�

Theorem ���� Let � be a positive probability measure on C


�
 If � is p�exact� then for all k � N

��RAND��n
k�jE� � ��

�
 If � is p��exact� then for all k � N�

��RAND��p�jE�� � ��RAND���
�logn�k�jE�� � ��

Proof �sketch�


�
 Assume the hypothesis� and �x k � N
 Using e�cient univer�
sal computation� we can construct an enumeration ��� ��� ��� � � �
of all nk�exact probability measures on C such that the prob�
ability measure e� of Construction 

� is p�exact
 Then the

��martingale ed � e�
�
is also p�exact
 Let A � RAND��nk�c


��



Then there is an nk�exact ��martingale d that succeeds on
A
 Since d is nk�exact� we can write d � �i

�
for some i � N


The probability measure e� dominates �i� so there is a constant
� 	 � such that� for all w � f�� �g�� ed�w� � �d�w�
 Since d
succeeds on A� it follows that ed succeeds on A
 The language
A � RAND��nk�c is arbitrary here� so this proves �


�
 This is analogous to �� noting also that RAND����logn�
�

� �
RAND��p�
 �

We now have the following consequences of Theorem 





Corollary ���� For every strongly positive� p�exact probability
measure � on C� and for every positive integer k�

��GEN�nk�jE� � ��

Proof� Let � and k be as given
 Fix a positive integer l such that
� is an nl�exact probability measure on C� and let m � maxfk� lg

Then� by Theorem 


� with s�n� � nl and t�n� � nk�

RAND��n
m� � RAND��n

l � nk� � GEN�nk��

so the present corollary follows from Theorem 

�
 �

Corollary ���� For every strongly positive� p��exact probability
measure � on C� and for every postive integer k�

��GEN�p�jE�� � ��GEN���logn�
k

�jE�� � ��

Proof� The proof is analogous to that of Corollary 

�� noting also
that GEN���logn�

�

� � GEN�p�
 �

��



In the special case where � is the uniform probability measure
� on C� Corollaries 

� and 

� say that

��GEN�nk�jE� � � ��
�

and
��GEN�p�jE�� � ��GEN���logn�

k

�jE�� � �� ����

respectively
 These facts were proven by Ambos�Spies� Neis� and
Terwijn ��	� who also pointed out that they give a new method for
proving results in resource�bounded measure
 For example� to prove
that a set X of languages has measure � in E �i
e
� ��XjE� � ���
it is su�cient by ��
� to prove that X � E contains no nk�generic
language
 Ambos�Spies� Neis� and Terwijn ��	 used this method to
prove a new result on resource�bounded measure� namely� the Small
Span Theorem for �P

k�tt�reductions
 �This extended the Small Span
Theorems for �P

m�reductions and �
P
��tt�reductions proven by Juedes

and Lutz ���	 and Lindner ���	� respectively
� Ambos�Spies� Neis�
and Terwijn ��	� Ambos�Spies ��	� and Ambos�Spies and Mayordomo
��	 have also used this method to reprove a number of previously
known results on resource�bounded measure


To date� every such genericity proof of a resource�bounded mea�
sure result corresponds directly to a martingale proof with the same
combinatorial content
 The genericity method has not yet led to the
discovery of a resource�bounded measure result that had not been
�or could not just as easily have been� proven directly by a martin�
gale construction
 Nevertheless� time�bounded genericity is a very
new method that gives an elegant� alternative mode of thinking
about resource�bounded measure� so it may very well lead to such
discoveries


Ambos�Spies� Neis� and Terwijn ��	 have also pointed out that
there are limitations on this genericity method
 For example� if a set
X of languages contains no nk�random language� but X�E contains
an nl�generic language for every l � N� then ��XjE� � �� but this
fact cannot be proven by the above genericity method
 The result

��



by Lutz and Mayordomo ���	� stating that every weakly�P
n��tt�hard

languages H for E �� � �� is exponentially dense �i
e
� there exists
� 	 � such that� for all su�ciently large n� it contains at least �n

�

of the strings of length � n� is an example of a resource�bounded
measure result that does not have this sort of genericity proof for
precisely this reason


As pointed out by Ambos�Spies� Neis� and Terwijn ��	� this weak�
ness of the genericity method becomes a strength when one adopts
the view that the method does not merely give alternative proofs of
measure results� but rather gives proofs of stronger results
 Corol�
laries 

� and 

� add considerable force to this argument� becasue
they give us speci�c consequences that are obtained by proving such
a result
 For example� if a set X of languages contains no nk�generic
language� then Corollary 

� tells us that X has ��measure � in E
for every strongly positive� p�exact probability measure � on C


� Conclusion

We have shown that the time�bounded genericity method is very
powerful in the sense that it allows one to simultaneously prove
resource�bounded measure results over all strongly positive� p�com�
putable probability measures on C
 It would be interesting to know
whether this strong positivity condition can be relaxed
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