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Abstract

This paper investigates the notion of resource-bounded
genericity developed by Ambos-Spies, Fleischhack, and
Huwig. Ambos-Spies, Neis, and Terwijn have recently
shown that every language that is #(n)-random over the
uniform probability measure is #(n)-generic. It is shown
here that, in fact, every language that is #(n)-random over
any strongly positive, ¢(n)-computable probability measure
is t(n)-generic. Roughly speaking, this implies that, when
genericity is used to prove a resource-bounded measure re-
sult, the result is not specific to the underlying probability
measure.
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1 Introduction

In the 1990’s, the development and application of resource-bounded
measure — a complexity-theoretic generalization of classical Lebesgue
measure developed by Lutz [14] — has shed new light on some of the
most central questions in computational complexity. Progress that
has resulted from the use of resource-bounded measure — by now
the work of many investigators — has been surveyed in [15, 4].

Recently, Ambos-Spies, Neis, and Terwijn [6] have observed that
the notion of time-bounded genericity developed by Ambos-Spies,
Fleischhack, and Huwig [3] interacts informatively with resource-
bounded measure. In fact, this notion of genericity, which (like
its recursion-theoretic precursors) was originally formulated as a
uniform method for carrying out all diagonalization strategies of
a certain strength, provides a new method for proving results on
resource-bounded measure. This method, first discovered and ap-
plied by Ambos-Spies, Neis, and Terwijn [6] has since been applied
by Ambos-Spies [1, 2] and Ambos-Spies and Mayordomo [4]. Time-
bounded genericity has also been characterized as a kind of strong
immunity property by Balcdzar and Mayordomo [8]. Recently, a
strengthened version of genericity, called balanced genericity, has
been shown by Ambos-Spies, Mayordomo, Wang, and Zheng [5] to
give an exact characterization of time-bounded Church stochastic-
ity. The reader is referred to the surveys [2, 4, 10] for discussions of
these developments, and of the relationship between this notion of
genericity and some other kinds of genericity that have been used
in computational complexity. (In this paper, the term “genericity”
is reserved for the notion developed by Ambos-Spies, Fleischhack,
and Huwig [3].)

The crux of the relationship between genericity and resource-
bounded measure is the pair of facts, proven by Ambos-Spies, Neis,
and Terwijn [6], that, for fixed k& € N, the n*-generic languages form
a measure | subset of the complexity class E = DTIME(2linear),



and the 20°6™"_generic languages form a measure 1 subset of B, =
DTIME(2pelynemial) = To put the matter differently, almost every
language in E is n*-generic, which is written

i (GEN(M)| E) =1, (1)
and almost every language in Fs is Z(IOg”)k—generic, which is written
p (GEN(2Uoen")| B, ) = 1. (2)

This pair of facts is also the crux of the method for using genericity
to prove resource-bounded measure results. For example, if one
wants to prove that a certain set X of languages has measure 0 in
E (written p (X‘ E) = 0), it suffices by (1) to prove that, for some

fixed k € N, X NE does not contain any n*-generic language.

As it turns out, facts (1) and (2) both follow from a single,
tight relationship between time-bounded genericity and the time-
bounded randomness concepts investigated by Schnorr [17, 18, 19,
20] some 25 years ago. Specifically, Ambos-Spies, Neis, and Terwijn
[6] showed that, for every time bound ¢ : N — N, every ¢(n)-random
language is t(n)-generic, i.e.,

RAND(t(n)) € GEN(t(n)). (3)

(Note: The actual statement in [6] is that RAND(#(n)) € GEN(t(n)),
where #(n) is enough larger that ¢(n) to handle some computational
simulation tasks. It was then shown in [4] that, with a more careful
formulation of these classes, the argument in [6] can be made to
achieve (3).) Facts (1) and (2) follow immediately from (3) and the

k

known facts [14, 7] that almost every language in E is n*-random,

and almost every language in E, is 2(egn)* random.

Ambos-Spies, Neis, and Terwijn [6] also pointed out that inclu-
sion (3) is proper, i.e.,

RAND(1(n)) ZGEN(t(n)) (4)
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for t(n) > n® In fact, they noted that the genericity method is
weaker than direct measure or randomness arguments, in the sense
that there are sets of interest in computational complexity that have
measure 0 in E, but that cannot be proven to have measure 0 in E
by this genericity method.

All the results mentioned thus far involve resource-bounded mea-
sure and randomness over the uniform probability measure p on the
set C of all languages. This corresponds to the random experiment
in which a language A C {0,1}" is chosen by using an independent
toss of a fair coin to decide membership of each string in A.

In this paper, we investigate the relationship between time-
bounded genericity and time-bounded randomness (and measure)
over more general probability measures on C. Probability measures
other than the uniform probability measure occur naturally in ap-
plications, were incorporated by Schnorr [17, 19] into the theory of
resource-bounded randomness, and have recently been incorporated
by Lutz and Breutzmann [9] into resource-bounded measure.

In our main theorem, we generalize (3) by proving that, for every
time bound ¢ : N — N, every language that is #(n)-random over
any strongly positive t(n)-time computable probability measure v
on C is t(n)-generic. That is,

RAND, ((n)) € GEN(t(n)) (5)

holds for every such probability measure v. Thus, not only is #(n)-
genericity weaker than #(n) randomness over the uniform probabil-
ity measure (as indicated by (4)), but it is simultaneously weaker
than all t(n)-randomness notions over strongly positive, ¢(n)-com-
putable probability measures.

Just as (5) is stronger than (3), so are the consequences of (5)
for measure in complexity classes stronger than (1) and (2). We

show in this paper that, for every positive, p-computable probability

k

measure v on C, the languages that are n*-random over v form a



v-measure 1 subset of E. It follows by (5) that, for every strongly
positive, p-computable probability measure v on C,

V(GEN(n")[E) =1, (6)

i.e., v-almost every language in E is n*-generic. Similarly, we show
that, for every strongly positive, po-computable probability measure
v on C,

y(GEN(205")[1,) = 1, (7)
i.e., v-almost every language in E; is Z(IOg”)k—generic.

What do these results say about the genericity method for prov-
ing theorems on measure in complexity classes? Viewed from the
standpoint of the uniform probability measure (or any other par-
ticular strongly positive, p-computable probability measure), these
results say that the genericity method is much weaker than direct
martingale arguments. However, viewed from the standpoint of
strongly positive, p-computable probability measures in general, (6)
and (7) say that the genericity method is very powerful. For exam-
ple, (6) says that, if we can prove that no element of X N E is
n*-generic, then it follows that X has v-measure 0 in E for every
strongly positive, p-computable probability measure v on C.

This paper is largely self-contained. In section 2, we intro-
duce notation and review the notion of genericity developed by
Ambos-Spies, Fleischhack, and Huwig [3]. In section 3, we re-
view the notion of time-bounded randomness developed by Schnorr
[17, 18, 19, 20], prove our main theorem on time-bounded gener-
icity and time-bounded randomness over feasible probability mea-
sures, and derive and discuss the consequences of this theorem for
resource-bounded measure. In section 4 we make a brief closing
remark.

In order to simplify the exposition of the main ideas, we do
not state our results in the strongest possible form in this volume.
The technical paper [13] gives a more thorough treatment of these
matters.



2 Preliminaries

2.1 Notation

We write {0,1}" for the set of all (finite, binary) strings, and we
write |w| for the length of a string w. The empty string, A, is the
unique string of length 0. The standard enumeration of {0,1}" is
the sequence sy = A,s1 = 0,85, = 1,53 = 00,..., ordered first by
length and then lexicographically. For w € {0,1}" and 0 < n < |w],
w[n] denotes the n'® bit of w. (The leftmost bit of w is w[0].)

The Boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0.

We work in the Cantor space C, consisting of all languages
A C {0,1}". We identify each language A with its characteristic
sequence, which is the (infinite, binary) sequence A whose n'® bit is

[s. € A] for each n € N. (The leftmost bit of A is the 0 bit.)

Relying on this identification, we also consider C to be the set
of all sequences.

A string w is a prefiz of a sequence A, and we write w C A,
if there is a sequence B such that A = wB. We write A[0..n — 1]
for the n-bit prefix of A. For each string w € {0,1}", the eylinder
generated by w is the set

cw:{Aec\ng}.

Note that C, = C.

2.2 Genericity

We briefly review the notion of time-bounded genericity introduced
by Ambos-Spies, Fleishhack, and Huwig [3]. For more motivation



and discussion, and for comparisons with other notions of generic-

ity that have been used in computational complexity, the reader is
referred to [2, 4, 10].

A condition is a set €' C {0,1}7, i.e., a language. A language
A C {0,1}" meets a condition C if some prefix of (the characteristic
sequence of ) A is an element of C'. A condition C is dense along a
language A C {0,1}" if A has infinitely many prefixes w for which
{w0,wl} NC # 0. A condition C is dense if it is dense along every
language.

Definition (Ambos-Spies, Fleischhack, and Huwig [3]). Let C be
a class of conditions. A language A C {0,1}" is C-generic, and we
write A € GEN(C), if A meets every condition in C that is dense
along A.

We are primarily interested in C-genericity when C is a time
complexity class.

Definition (Ambos-Spies, Fleischhack, and Huwig [3]) Let ¢t : N —
N. A language A C {0,1}" is ¢(n)-generic if A is DTIME(¢(n))-

generic.

We close this section with a single expository example, due to
Ambos-Spies, Neis, and Terwijn [6]. If C is a class of languages,
recall that a language A C {0,1}" is C-bi-immune if neither A nor
A = {0,1}" — A contains an infinite element of C. If ¢t : N —
N, then we say that A is ¢(n)-bi-immune if A is DTIME(#(n))-bi-

immune.

Example (Ambos-Spies, Neis, and Terwijn [6]) If ¢ > 2, then every
n°-generic language is 2°*-bi-immune.

Proof. Let ¢ > 2, and let A C {0,1}" be n°-generic. To see that A
is 2¢"-bi-immune, let B be an infinite element of DTIME(27"), and



let b € {0,1}. Define the condition
C = {wb ‘ w e {0,1}" and s}, € B}.

The predicate “s,| € B” is decidable in O(2°Fl1l) = O(|w|®) time,
so C' € DTIME(n®). Also, for all D C {0,1}" and s,, € B, D[0...n —
1]b € C. Since A is infinite, this implies that C is dense. Since A
is n°-generic it follows that A meets C'. Since this holds for b = 0,
B cannot be a subset of A. Since it holds for b =1, B cannot be a
subset of A°. O

3 Genericity and r-Randomness

In this section, we prove our main result, that every language that is
t(n)-random over a strongly positive, t(n)-computable probability
measure is (n)-generic. We also briefly discuss the implications
of this result for the use of resource-bounded genericity in proving
theorems about resource-bounded measure.

3.1 Randomness over Feasible Probability Mea-
sures

Before proving our main result, we review the notion of time-bounded
randomness over a given probability measure as developed by Schnorr
[17, 19]. More complete expositions of the ideas reviewed here may

be found in [19, 21, 4].

We first recall the well-known notion of a (Borel) probability
measure on C.

Definition. A probability measure on C is a function

v:{0,1}" — [0,1]
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such that #(A) = 1, and for all w € {0,1}",
v(w) = v(wl) + v(wl).

Intuitively, v(w) is the probability that A € C,, when we “choose
a language A € C according to the probability measure v.” We
sometimes write v(C,,) for v(w).

Examples.

1. A sequence of biases is a sequence B = (o, 1, B2, . ..), where
each 3; € [0,1]. Given a sequence of biases B, the g—com-
toss probability measure (also called the g—product probability
measure) is the probability measure ,uﬁ defined by

lw|—1

pow) =TT (1= 50+ (1= wfi)) + i - wli)
for all w € {0,1}". If 3=y = 31 = B2 = ..., then we write

1P for ,uﬁ. In this case, we have the simpler formula
P (w) = (1= GyFO . gHm),

where #(b, w) denotes the number of 0’s in w. If 5 = 1 here,

then we have the uniform probability measure u = ,u%, which

is defined by

p(w) =271
for all w € {0,1}". (We always reserve the symbol u for the
meanings assigned in this example.)

2. The function v defined by the recursion
v(A) = 1
v(0) = v(1)=0.5

B 0.7v(wa) ifa#b
v(wab) = { 0.3v(wa) ifa=5b
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(for w € {0,1}" and a,b € {0,1}) is also a probability measure
on C.

Intuitively, ,uﬁ(w) is the probability that w = A when the lan-
guage A C {0,1}" is chosen probabilistically according to the follow-
ing random experiment. For each string s; in the standard enumer-
ation sq, Sy, S2,... of {0,1}", we (independently of all other strings)
toss a special coin, whose probability is ; of coming up heads, in
which case s; € A, and 1 — 3; of coming up tails, in which case
s; € A. The probability measure v above is a simple example of a
probability measure that does not correspond to independent coin
tosses in this way.

Definition. A probability measure v on C is positive if, for all
w e {0,1}7, v(w) > 0.

Definition. If v is a positive probability measure and u,v € {0,1}7,
then the conditional v-measure of u given v is

1 Hfulow
v(ulv) = Zi(%)l ifvC u
0 otherwise.

That is, v(u|v) is the conditional probability that A € C,,, given
that A € C,, when A € C is chosen according to the probability
measure v.

In this paper, we are especially concerned with the following
special type of probability measure.

Definition. A probability measure v on C is strongly positive if v is
positive and there is a constant § > 0 such that, for all w € {0,1}"
and b € {0,1}, v(wblw) > é. (Equivalently, for all such w and b,
v(wblw) € [6,1 —6].)

The following relation between probability measures is useful in
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many contexts.

Definition. If v and p are probability measures on C, then v
dominates p if there is a real number a > 0 such that, for all
w € {0,1}", v(w) = ap(w).

Construction 3.1. Given a sequence pg, p1, p2, ... of probability
measures on C, define functions f,p: {0,1}" — R by

|l

flw) = 247 ai(w),
) = L

ﬁ(w()) = f(w())—l—r|w|_|_1,
plwl) = plw) = (o).

k41
where 1, = 24 for each k € N.

Lemma 3.2. If pg, p1, p2, ... are probability measures on C, then p
is a probability measure on C that dominates each of the probability
measures p;.

Proof (sketch). A routine induction shows that, for all w € {0,1}",
plw) = f(w) + . (8)

In particular, this implies that each p(w) > 0. Since Con-
struction 3.1 immediately implies that p(A) = 1 and each p(w) =
p(w0) + p(wl), it follows that p is a probability measure on C. To
see that p dominates each p;, fix ¢« € N. Then (8) implies that, for
all w € {0,1}* with |w| > ¢,

plw) 2 f(w) = 47 pifw).
It follows readily from this that p dominates p;. O

To ensure clarity, we restrict attention to probability measures
with rational values that are exactly computable within a specified
time bound.
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Definition. Let ¢ : N — IN. A probability measure v on C is
t(n)-exact if
v = (0.1 — QN1

and there is an algorithm that, for all w € {0,1}”, computes v(w)
in O(t(|w])) steps.

Examples (revisited). The uniform probability measure x is clearly
t(n)-exact for ¢(n) > n, as is the probability measure u?, pro-
vided that € QN [0,1]. In contrast, even if the biases in the
sequence B = (Bo, P, ...) are all rational, ,uﬁ will fail to be #(n)-
exact if the computation of ; from ¢ is too difficult (or impossible).
The probability measure v of the preceding example is (n)-exact
for t(n) > n.

Definition. A probability measure v on C is p-exact if v is n*-

exact for some k € N. A probability measure v on C is py-ezact if
v is 208" _exact for some k € N.

We next review the well-known notion of a martingale over
a probability measure v. Computable martingales were used by
Schnorr [17, 18, 19, 20] in his investigations of randomness, and
have more recently been used by Lutz [14] in the development of
resource-bounded measure.

Definition. If v is a probability measure on C, then a v-martingale
is a function d : {0,1}" — [0, 00) such that, for all w € {0,1}",

d(w)v(w) = d(w0)v(w0) + d(wl)v(wl). 9)

A p-martingale is even more simply called a martingale. (That is,
when the probability measure is not specified, it is assumed to be
the uniform probability measure p.)

Intuitively, a v-martingale d is a “strategy for betting” on the
successive bits of (the characteristic sequence of ) a language A € C.
The real number v(\) is regarded as the amount of money that
the strategy starts with. The real number v(w) is the amount of
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money that the strategy has after betting on a prefix w of y4. The
identity (9) ensures that the betting is “fair” in the sense that, if A
is chosen according to the probability measure v, then the expected
amount of money is constant as the betting proceeds. Of course,
the “objective” of a strategy is to win a lot of money.

Definition. A v-martingale d succeeds on a language A € C if

Q.

lim sup d(A[0...n — 1])

n—oo

If d is any v-martingale satisfying d(A) > 0, then (9) implies
that the function p defined by

for all w € {0,1}* is a probability measure on {0,1}". In fact, for
positive v, it is easy to see (and has long been known [21]) that the
set of all y-martingales is precisely the set of all functions d of the

form

d:ozﬁ,
v

where a € [0,00) and p is a probability measure on C. It simplifies
our presentation to use this idea in the following definition.

Definition. Let v be a positive probability measure on C, and let
t: N — N. A v-martingale d is t(n)-exact if the function

p=dv (10)

is a t(n)-exact probability measure on C. A v-martingale is p-exact
if it is n*-exact for some k € N, and is py-ezact if it is 200" _exact
for some k € N.
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Remarks.

1. If v is positive, we usually write equation 10 in the more sug-
gestive form

d="L.
14

2. In any case, (9) ensures that every f(n)-exact martingale d

satisfies d(\) = 1.

3. The above definition does not require a #(n)-exact martingale
to itself be computable in O(#(n)) time. For example, if v is
a positive, uncomputable probability measure on C, then the
martingale d = £, i.e.,

1
d(w) = 2|w|1/(w)7

is t(n)-exact for all ¢{(n) > n, but d is certainly not com-
putable. Essentially, in defining the time complexity of a v-
martingale d = £, we only consider the time complexity of p,
which we think of as the “strategy” of the martingale d. The
probability measure v is the “environment” of d, and we do
not “charge” d for the complexity of its environment. In any
event, this issue does not concern us here, because the prob-
ability measures v in our results are themselves #(n)-exact.

Time-bounded randomness is defined as follows.

Definition. Let v be a probability measure on C, and let £ : N —
N. A language A € C is t(n)-random over v, or t(n)-v-random, and
we write A € RAND, (#(n)), if there is no #(n)-exact v-martingale
that succeeds on A.

Definition. Let v be a probability measure on C. A language A €
C is p-random over v, or p-v-random, and we write A € RAND, (p),
if A is n*-random for all & € N.
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The notion of ¢(n)-v-randomness is not robust. Its exact mean-
ing — like the meaning of O(t(n))-time computation — is sensitive
to details of the underlying model of computation. The meaning of
time-bounded randomness is also sensitive to details of the defini-
tion, such as whether the martingale may be approximated or must
be computed exactly, and how the complexity of the probability
measure v is taken into account. Fortunately, these sensitivities are
less than the notion’s sensitivity to small changes in the time bound
t(n), so the notion of p-v-randomness is robust. That is, for each
p-exact probability measure v, the class RAND, (p) is the same for
all reasonable choices of the underlying computational model and

all reasonable variants of the definition of RAND, (¢(n)).

When the probability measure is p, the uniform probability mea-
sure, we usually omit it from the above notation and terminology,
referring simply to the class RAND,(#(n)), consisting of all #(n)-
random languages, and the set RAND(p), consisting of all p-random
languages.

3.2 v-Random Languages are Generic

Ambos-Spies, Neis, and Terwijn [6] have shown that every language
that is ¢(n)-random over the uniform probability measure is #(n)-
generic. The following theorem extends this result to arbitrary,
strongly positive, s(n)-exact probability measures on C.

Theorem 3.3. Let s,¢: N — N. If v is a strongly positive, s(n)-
exact probability measure on C, then every (s(n)+t(n))-v-random
language is ¢(n)-generic.

Proof. Assume the hypothesis, fix 6 > 0 such that v(wblw) > ¢
for all w € {0,1}* and b € {0,1}, and let A be a language that
is (s(n) 4 t(n))-random over v. To see that A is #(n)-generic, let
C be a t(n)-condition that is dense along A. Define a probability
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measure p on C by

1 if wb g C and wb € C
plwblw) =14 0 if wb € ' and wb ¢ C

v(wb|w) otherwise

for all w € {0,1}* and b € {0,1}, and let d = 2. Then p is an
(s(n)+1t(n))-exact probability measure, so d is an (s(n)+1(n))-exact
v-martingale. Since A is (s(n)+1(n))-random over v, it follows that
d does not succeed on A.

Since (' is dense along A, the set
S ={wbC A|we{0,1}7,b€{0,1}, and wh € C or wh € C}
is infinite. We can partition S into the three sets
Soi = {wbes\wbgc},
S = {wbes\wzgzc},
S o= {wbe S|wbe Cand whe '}

We have two cases.

CASE 1. Sig # 0. Then we immediately have that A meets
the condition C.

CASE 2. Sip = 0. Then for every prefix wb of A, p(wb|w) >
v(wb|w), so
b
v(w)v(wbw)
Thus the values of the v-martingale d are psoitive and nonde-
creasing along A. Also, for every wb € Spy,

p(w)p(wb|w) d(w) d(w)
d(wb) = _ > Lt S\l
o v(w)v(wblw) — v(wblw) T 1—6 > (L4 6)d(w)
Since d does not succeed on A, it follows that the set Sp;

must be finite. Since S is infinite and Sig = 0, this implies
that Sy; # 0, whence A meets the condition C'.
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Since A meets C' in either case, it follows that A is #(n)-generic.
O

Corollary 3.4. let t : N — N. If v is a strongly positive, t(n)-
exact probability measure on C, then every ¢(n)-v-random language
is t(n)-generic.

Proof. This follows immediately from Theorem 3.3 with s(n) =
t(n). 0

Fix a time bound ¢(n) > n?. For the uniform probability mea-
sure, in addition to proving that RAND(#(n)) € GEN(¢(n)), Ambos-
Spies, Neis, and Terwijn [6] proved that this inclusion is proper, by
establishing the existence of sparse #(n)-generic languages. It is
easy to see that any language A that is (n)-random over a strongly
positive, t(n)-exact probability measure v on C must satisfy the
condition

5§Iiminfwﬁlimsupwﬁl—5 (11)
n—co n4+1 n—00 n4+1

for every witness ¢ > 0 to the strong positivity of v, where #(1,w)
is the number of 1’s in the string w. Since no sparse language
can satisfy inequality (11), the existence of a sparse t(n)-generic
language also shows that there are t(n)-generic languages that are
not t(n)-random over any strongly positive, t(n)-exact probability

measure. Thus the converses of Theorem 3.3 and Corollary 3.4 do

not hold.

For each rational bias 5 € Q N (0,1), let RANDg(t(n)) =
RAND 5(t(n)), where 1" is the coin-toss probability measure de-
fined in section 3.1. It is well-known (and easy to see) that every

A € RANDg(t(n)) satisfies the condition

m #(1, A[0..n]) _ 3
In particular, this implies that, for all a, 5 € QN (0,1),
a# 3 = RAND,({(n)) N RANDs(t(n)) = 0. (12)
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By Theorem 3.3 and the existence of sparse ¢(n)-generic lan-
guages,
U RAND,(1(n)) ZGEN(t(n)),
BeQN(0,1)
and the union on the left is disjoint by (12). In this sense, #(n)-

genericity is much weaker then ¢(n)-randomness over the uniform
probability measure.

3.3 Genericity and v-Measure

In order to discuss the implications of Theorem 3.3 for resource-
bounded measure proofs, we briefly review the notions of resource-
bounded measure and measure in complexity classes, developed by
Lutz [14] over the uniform probability measure, and recently ex-
tended by Breutzmann and Lutz [9] to more general probability
measures. The reader is referred to [15, 4, 9] for more complete
discussions of this material.

Definition. Let v be a p-exact probability measure on C, and let
X CC.

1. X has p-v-measure 0, and we write v,(X) = 0, if there is a
p-exact v-martingale d that succeeds on every element of X.

2. X has p-v-measure 1, and we write v,(X) =1, if v,(X¢) = 0,
where X° = C — X.

3. X has v-measure 0 in E, and we write v(X|E) = 0, if v,(X N
E)=0.

4. X has v-measure 1 in E, and we write v(X|E) = 1, if v(X°|E)
= 0. In this case, we say that X contains v-almost every
element of E.
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The conditions v, (X) = 0, vp,(X) = 1, v(X]|Ey) = 0, and
v(X|E2) = 1 are defined analogously for ps-exact probability mea-
sures v on C. As usual, when the probability measure v is not
mentioned, it is assumed to be the uniform probability measure.
For example, a set X has measure 0 in E if u(X|E) = 0.

Building on ideas from [14], Breutzmann and Lutz [9] prove
theorems justifying the intuition that a set with v-measure 0 n
E contains only a negligibly small part of E (with respect to v),
and similarly for Ey. Of particular importance is the fact that no
cylinder C,, has measure 0 in E or in Es.

The significance of Theorem 3.3 for resource-bounded measure
lies in the following result on the abundance of random languages
in E and Ey. (This result generalizes results for the uniform prob-
ability measure presented by Lutz [14] and Ambos-Spies, Terwijn,
and Zheng [7]; see also [4].)

Theorem 3.5. Let v be a positive probability measure on C.

1. If v is p-exact, then for all £ € N

v(RAND, (n*)|E) = 1.

2. If v is pg-exact, then for all £ € N,

Z/(RANDy(p)|E2) — Z/(RANDV(Q(lOgn)k)|E2) =1.
Proof (sketch).

1. Assume the hypothesis, and fix £ € N. Using efficient univer-
sal computation, we can construct an enumeration pg, p1, p2, - - .
of all n*-exact probability measures on C such that the prob-
ability measure p of Construction 3.1 is p-exact. Then the

v-martingale d = g is also p-exact. Let A € RAND, (n*)e.
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k

Then there is an n*-exact v-martingale d that succeeds on

A. Since d is n*-exact, we can write d = £ for some 1 € N.
The probability measure p dominates p;, so there is a constant
a > 0 such that, for all w € {0,1}", J(w) > ad(w). Since d
succeeds on A, it follows that d succeeds on A. The language
A € RAND, (n*)¢ is arbitrary here, so this proves 1.

2. This is analogous to 1, noting also that RANDU(Z(IOg”)Z)) -
RAND, (p). O
We now have the following consequences of Theorem 3.3.

Corollary 3.6. For every strongly positive, p-exact probability
measure v on C, and for every positive integer k,

v(GEN(n®)|E) = 1.

Proof. Let v and k be as given. Fix a positive integer [ such that
v is an n'-exact probability measure on C, and let m = max{k, [}.
Then, by Theorem 3.3, with s(n) = n' and t(n) = n*,

RAND, (n™) = RAND, (n' + n*) C GEN(n"),
so the present corollary follows from Theorem 3.5. O

Corollary 3.7. For every strongly positive, ps-exact probability
measure v on C, and for every postive integer k,

V(GEN(p)|Ey) = v(GEN(20°5")|B,) = 1.

Proof. The proof is analogous to that of Corollary 3.6, noting also
that GEN(20°¢")*) C GEN(p). O
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In the special case where v is the uniform probability measure
p on C, Corollaries 3.6 and 3.7 say that

H(GEN(n*)[E) = 1 (13)

and

H(GEN(p)[Es) = pu(GEN(205"")[E,) = 1, (14)

respectively. These facts were proven by Ambos-Spies, Neis, and
Terwijn [6], who also pointed out that they give a new method for
proving results in resource-bounded measure. For example, to prove
that a set X of languages has measure 0 in E (i.e., u(X|E) = 0),
it is sufficient by (13) to prove that X N E contains no n*-generic
language. Ambos-Spies, Neis, and Terwijn [6] used this method to
prove a new result on resource-bounded measure, namely, the Small
Span Theorem for <t'_  -reductions. (This extended the Small Span
Theorems for <! -reductions and <'_;-reductions proven by Juedes
and Lutz [11] and Lindner [12], respectively.) Ambos-Spies, Neis,
and Terwijn [4], Ambos-Spies [1], and Ambos-Spies and Mayordomo
[4] have also used this method to reprove a number of previously
known results on resource-bounded measure.

To date, every such genericity proof of a resource-bounded mea-
sure result corresponds directly to a martingale proof with the same
combinatorial content. The genericity method has not yet led to the
discovery of a resource-bounded measure result that had not been
(or could not just as easily have been) proven directly by a martin-
gale construction. Nevertheless, time-bounded genericity is a very
new method that gives an elegant, alternative mode of thinking
about resource-bounded measure, so it may very well lead to such
discoveries.

Ambos-Spies, Neis, and Terwijn [6] have also pointed out that
there are limitations on this genericity method. For example, if a set
X of languages contains no n*-random language, but X NE contains
an n'-generic language for every [ € N, then p(X|E) = 0, but this
fact cannot be proven by the above genericity method. The result
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by Lutz and Mayordomo [16], stating that every weakly <P, . -hard
languages H for E (a < 1) is exponentially dense (i.e., there exists
¢ > 0 such that, for all sufficiently large n, it contains at least 2"
of the strings of length < n) is an example of a resource-bounded
measure result that does not have this sort of genericity proof for
precisely this reason.

As pointed out by Ambos-Spies, Neis, and Terwijn [6], this weak-
ness of the genericity method becomes a strength when one adopts
the view that the method does not merely give alternative proofs of
measure results, but rather gives proofs of stronger results. Corol-
laries 3.6 and 3.7 add considerable force to this argument, becasue
they give us specific consequences that are obtained by proving such
a result. For example, if a set X of languages contains no n*-generic
language, then Corollary 3.6 tells us that X has v-measure 0 in E
for every strongly positive, p-exact probability measure v on C.

4 Conclusion

We have shown that the time-bounded genericity method is very
powerful in the sense that it allows one to simultaneously prove
resource-bounded measure results over all strongly positive, p-com-
putable probability measures on C. It would be interesting to know
whether this strong positivity condition can be relaxed.
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