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Abstract

For every binary sequence A� there is an in�nite binary sequence S

such that A �P
tt S and S is stochastic in the sense of Kolmogorov and

Loveland�

� Introduction

In the mid�����	s� Martin�L
of ��
� used the general theory of algorithms
to formulate the �rst successful de�nition of the randomness of individual
binary sequences� Subsequent de�nitions� using a variety of conceptual ap�
proaches� were introduced by Levin ����� Schnorr ���� ���� Chaitin ��� �� ���
Solovay ����� and Shen� ����� Each of these de�nitions was shown to be
equivalent to Martin�L
of	s� in the sense that a binary sequence R is al�
gorithmically random according to the given de�nition if and only if R is
algorithmically random according to Martin�L
of	s de�nition�

In the present note� all �sequences� are in�nite binary sequences� and the
term �random� means �algorithmically random in the sense of Martin�L
of��
A precise de�nition of algorithmic randomness appears in section ��
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One of the most useful and intuitive properties of random sequences is
their stochasticity� This is the fact that if a subsequence A of a random
sequence R is chosen according to an �admissible selection rule�� then the
limiting frequency of �	s in the subsequence A is exactly �

� � The broadest
class of admissible selection rules that has been studied in this context is
the class of Kolmogorov�Loveland selection rules ��
� ��� ��� ���� These al�
gorithmic rules �which are described in section �� are more general than
earlier selection rules proposed by von Mises �
��� Wald �
��� and Church ���
in two respects� First� given a sequence S� a Kolmogorov�Loveland selec�
tion rule may choose bits from S in whatever order arises from the rule	s
interaction with S� this order need not agree with the order of appearance
of these bits in S� Second� a Kolmogorov�Loveland selection rule is a partial
recursive rule that may succeed in choosing a sequence of distinct bits from
one sequence� yet fail to choose such a sequence from another�

It is easy to see that every random sequence R is Kolmogorov�Loveland
stochastic� This means that� for every sequence A of distinct bits of R that
is chosen according to a Kolmogorov�Loveland selection rule� the limiting
frequency of �	s in A is �

� � In the late ����	s� Shen� ���� proved that the con�
verse does not hold� thereby solving a problem that had been open for some
twenty years� �See ���� ��� ��� for more detailed histories of this problem
and the role of stochasticity in the foundations of probability theory�� Thus�
the random sequences form a proper subset of the set of all Kolmogorov�
Loveland stochastic sequences�

This note re�nes the method of Shen� ���� in order to establish a stronger�
more quantitative separation between randomness and Komogorov�Loveland
stochasticity�

Ku�cera ���� and G�acs ���� have proven that for every sequence A there
is a random sequence R such that A is Turing reducible to R� However� it
is well known that this does not hold for truth�table reducibility �Turing
reducibility with computable running time�� In fact� Juedes� Lathrop� and
Lutz ���� have noted that� in the sense of Baire category� almost every se�
quence A has the property that A is not reducible to any random sequence
in any computable running time�

In contrast with this fact� the main theorem of the present note �Theo�
rem 
��� states that� for every sequence A� there is a Kolmogorov�Loveland
stochastic sequence S such that A is feasibly reducible to S� In fact� A can be
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reduced to S by a polynomial�time truth�table reduction� The proof of this
result uses a relativization of a method of van Lambalgen �
�� and Shen� �����
together with a simple encoding of the sequence A into a �nearly uniform�
probability measure on the set of all sequences�

It follows immediately from the main theorem that there are sequences
S that are Kolmogorov�Loveland stochastic� but also strongly deep in the
sense of Bennett ���� Such sequences S are computationally �very far from
random� ��� ����

The main theorem also implies that the class RAND of all random oracles
cannot be replaced by the class KL�STOCH of all Kolmogorov�Loveland
stochastic oracles in some known characterizations of complexity classes�
As just one example� a �folklore� result states that P�RAND� � REC �
BPP� that is� that a recursive language is �P

T�reducible to some random
language if and only if it is probabilistically decidable with bounded error in
polynomial time ��� 
�� In contrast� the main theorem immediately implies
that P�KL�STOCH� contains every language� See �
� ��� �� �� for other
known characterizations using random oracles that� by the main theorem�
cannot be extended to Kolmogorov�Loveland stochastic oracles�

� Notation and Preliminaries

We write f�� �g� for the set of all ��nite� binary� strings� and we write jxj
for the length of a string x� The empty string� �� is the unique string of
length �� The standard enumeration of f�� �g� is the sequence s� � �� s� �
�� s� � �� s� � ��� � � �� ordered �rst by length and then lexicographically�

The complement of a language A is Ac � f�� �g��A� and the symmetric
di�erence of languages A and B is A�B � �A�B� � �B �A��

The Boolean value of a condition � is ����� � if � then � else ��

We work in the Cantor space C� consisting of all languages A � f�� �g��
We identify each language A with its characteristic sequence� which is the
�in�nite� binary� sequence A whose nth bit is ��sn � A�� for each n � N�
�The leftmost bit of A is the �th bit�� Relying on this identi�cation� we also
consider C to be the set of all sequences�






A string w is a pre�x of a sequence A� and we write w v A� if there is
a sequence B such that A � wB� For each string w � f�� �g�� the cylinder
generated by w is the set

Cw �
n
A � C

��� w v A
o
�

Note that C� � C�

Let D be a discrete domain such as N� f�� �g� � or N�f�� �g� � A function
f � D � R is computable if there is a total recursive function f � N�D � Q

such that� for all r � N and x � D� j �f�r� x� � f�x�j � ��r� A function
f � D � R is is lower semicomputable if there is a total recursive function
f � N �D � Q such that �i� for all r � N and x � D� �f�r� x� � �f�r � �� x��
and �ii� for all x � D� limr��

�f�r� x� � f�x�� A sequence ���� ��� � � �� of real
numbers converges computably to a limit � � R if there is a total recursive
functionm � N � N� called a modulus of convergence� such that� for all r � N

and i 	 m�r�� j�i��j � ��r� Similarly� a series
P�

n�� �n of nonnegative reals
�n is computably convergent if there is a total recursive function �modulus
of convergence� m � N � N such that� for all r � N�

P�
n�m�r� �n � ��r�

A bias sequence is a sequence �� � ���� ��� � � �� of real numbers �biases�
�i � ��� ��� A bias sequence �� determines the coin�toss probability measure

�
�� on Cantor space� which corresponds to a random experiment in which a

language A � C is chosen probabilistically as follows� For each string si� we
toss a special coin whose probability is �i of coming up heads� in which case
si � A� and �� �i of coming up tails� in which case si 
� A� The coin tosses
are independent of one another� In the special case where �� �

�
�
� �

�
� �

�
� � � � �

�
�

�
�� is the uniform probability measure on C�

As noted in the introduction� there are several equivalent de�nitions of
algorithmic randomness� The de�nition in terms of martingales� introduced
by Schnorr ����� is most convenient for our purposes here� Given a bias
sequence ��� a ���martingale is a function d � f�� �g� � ����� such that for
all w � f�� �g��

d�w� � ��� �jwj�d�w�� � �jwjd�w���

�The reader is referred to �
�� �� for discussion of this de�nition and its
motivation�� The success set of a ���martingale d is

S��d� �
n
A � C

��� ��k��
w v A� d�w� 	 k
o
�
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The unitary success set of a ���martingale d is

S��d� �
�

d�w���

Cw�

A sequence R � C is �algorithmically� ���random� and we write R �
RAND��

� if there is no lower semicomputable ���martingale d such that R �

S��d�� A sequence R � C is rec����random� and we write R � RAND��
�rec�� if

there is no computable ���martingale d such that R � S��d�� It is immediate
from the de�nitions that RAND��

� RAND��
�rec�� When the probability

measure is uniform� that is� �� �
�
�
� �

�
� � � � �

�
� we omit �� from the notation�

Thus RAND is the set of all random sequences� and RAND�rec� is the set
of all rec�random sequences�

It is a straightforward matter to relativize the computability or lower
semicomptability of a martingale d to an arbitrary oracle A � C� and thereby
to de�ne the class RANDA

��
� consisting of all sequences that are ���random

relative to A� and the class RANDA
��
�rec�� consisting of all sequences that are

rec����random relative to A�

The following property of rec����random sequences �relative to an oracle
A� is an easy extension of a special case of the resource�bounded Borel�
Cantelli lemma of �����

Lemma ���� Let A � C and let �� be a bias sequence that is computable
relative to A� Let d�� d�� d�� � � � be a sequence of ���martingales with the
following two properties�

�i� The function �n�w� �� dn�w� is computable relative to A�

�ii� The series
P�

n�� dn��� is computably convergent relative to A�

If R � RANDA
��
�rec�� then there are only �nitely many n for which R �

S��dn��

Proof� Assume the hypothesis� and let J �
n
n
��� R � S��dn�

o
� Let m � N �

N be a modulus for the convergence of
P�

n�� dn��� that is total recursive
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relative to A� and de�ne the function d � f�� �g� � ����� by

d�w� �
�X
r��

�r
�X

n�m��r�

dn�w��

It is easily checked that d is a ���martingale that is computable relative to
A� Since R � RANDA

��
�rec�� it follows that there is a constant c � N such

that� for all w v R� d�w� � �c�

Now let n� � J� Fix a pre�x w v R such that dn��w� 	 �� Then we have

�cdn��w� 	 �c 	 d�w� 	 �c
�X

n�m��c�

dn�w��

so n� � m��c�� Thus J is �nite� �

The notion of Kolmogorov�Loveland stochasticity was de�ned in ��
�
��� ��� ���� detailed discussions may be found in ���� ��� ���� A sequence is
Kolmogorov�Loveland stochastic if any subsequence chosen by a Kolmogorov�
Loveland selection rule possesses frequency stability� that is� if the propor�
tion of �	s in initial segments tends toward a limit of �

� � A Kolmogorov�

Loveland selection rule is a pair of partial recursive functions that� operat�
ing on the history of what has been observed� choose the index of the next
bit of the sequence to examine and determine �in advance of examination�
whether or not that bit will be included in the subsequence� The standard
intuition is described elegantly in �����

Let us imagine that the members of a sequence are written on
cards which lie on an �in�nitely long� table �we do not see what is
on a card unless we turn it�� The �selection rule� is an algorithm
that says which card must be turned next and whether it must
be turned only for information or �is to be� selected into the
subsequence�

We also make use of the following large deviation result�

Lemma ��� �Cherno� bound ������ Let p � ��� ��� let X�� � � � �Xn be inde�
pendent � ��valued random variables such that each P �Xi � �� � p� and let
S � X� � � � � �Xn� Then�
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�� For all � � 
 � �� P �S 	 �� � 
�np� � e�
��np
� �

�� For all � � 
 � �� P �S � ��� 
�np� � e�
��np
� �

� Result

In this section we prove that every sequence is feasibly reducible to some
Kolmogorov�Loveland stochastic sequence� Our proof makes essential use
of the following lemma� which is a straightforward relativization of Lemma
� of �����

Lemma ��� �Shen� ������ Let A � C� and let �� be a sequence of biases such
that

�i� �� is computable relative to A� and

�ii� �� converges computably to �
� relative to A�

Then RANDA
��
� KL�STOCHA�

Given a sequence A � C� the following construction de�nes a sequence
of biases ��A� a function FA � C� C� and some auxiliary notation�

Construction ���� We use the functions

l� q� r � N � N�

where
l�n� � jsnj � blog�n� ��c�

q�n� � ��
�
l�n� � 


��
�

and

r�n� �
n��X
m��

q�m��
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We also use the function

 � N � ��� ��

where


�n� �
�

l�n� � 

�

For A � C and i � N� de�ne the bias �Ai � ��� �� by

�Ai �
�

�

�
� � 

�n���sn � A��

�
�

where r�n� � i � r�n� � q�n�� and let

��A � ��A� � �
A
� � � � ���

�Note that the bit ��sn � A�� has been encoded into each of q�n� di�erent
positions in the bias sequence ��A�� For each A � C and n � N� de�ne the
random variable

�An � C� ��� ��

by

�An �S� �
�

q�n�

����
n
i � N

��� r�n� � i � r�n� � q�n� and si � S
o�����

where the argument S is chosen probabilistically according to the bias se�
quence ��A� Finally� for each A � C� de�ne the function

FA � C� C

by

FA�S� �
n
sn

��� �An �S� 	
�

�

�
� � 
�n�

�o
�

Although the probability distribution of the random variable �An depends
on the sequence A� the actual value �An �S� does not depend on A� Moreover�
we have the following�

Observation ���� For all A�S � C�

FA�S� �P
tt S�
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Proof� The bit ��sn � FA�S��� is easily computed from the q�n� bits

��sr�n� � S��� ��sr�n��� � S��� � � � � ��sr�n��q�n��� � S���

and q�n� is polynomial in jsnj� �

Intuitively� if S is chosen according to the bias sequence ��A� then we
expect �An �S� to be approximately �

����

�n�� if n � A� and approximately
�
� if n 
� A� Since �

� �
�
��� � 
�n�� � �

��� � 

�n��� we thus expect that ��sn �
FA�S��� will usually agree with ��sn � A��� The following lemma formalizes
this intuition�

Lemma ���� For all A � C and S � RANDA
��A

�rec��
���A� FA�S�

��� ���

Proof� Let A � C and S � RANDA
��A

�rec�� For convenience� we write �� �

��A� �n � �An � and F � FA� For each n � N� de�ne the event

En �
n
B � C

��� n � A� F �B�
o

and the function
dn � f�� �g� � ��� ���

by
dn�w� � P �En jCw��

where the conditional probability refers �as do all subsequent probabilities

in this proof� to the coin�toss probability measure �
��� It is routine to check

that each dn is a ���martingale� and that the function �n�w� �� dn�w� is
computable relative to A�

By the Cherno� bound �Lemma ����� for each sn � A� we have

P �sn 
� F �S�� � P
h
�n �

�

�

�
� � 
�n�

�i

� P
h
�n �

�

�

�
� � 

�n�

��
�� 
�n�

�i

� e�
��n��q�n�������n��

�

� e�
��n��q�n�

�

� �n� �����

�



Similarly� for each sn � Ac� we have

P �sn � F �S�� � P
h
�n 	

�

�

�
� � 
�n�

�i

� e�
��n��q�n�

�

� �n� �����

Hence� for each n � N�

dn��� � P �En� � �n� ���� � �n� �����

Since the series
�X
n��

h
�n� ���� � �n� ����

i

is computably convergent� it follows by Lemma ��� that the set

J �
n
sn

��� S � S��dn�
o
�

is �nite� Since the de�nition of dn implies that A�F �S� � J� this completes
the proof of the lemma� �

Our main result is now easily established�

Theorem ��� �Main Theorem�� For each A � C� there is a sequence S �
KL�STOCH such that A �P

tt S�

Proof� Let A � C� and let S � RANDA
��A
� By Lemma 
��� S � KL�STOCHA

� KL�STOCH� Also� since RANDA
��A

� RANDA
��A

�rec�� Lemma 
�� tells us

that jA� FA�S�j ��� whence A �P
tt F

A�S�� It follows by Observation 
�

that A �P

tt S� �

As noted in the introduction� Theorem 
�� exhibits a strong� quantitative
separation of RAND from KL�STOCH� since Juedes� Lathrop� and Lutz
���� have shown that only a meager �that is� negligibly small in the sense
of Baire category� set of sequences have the property of being reducible to
some random sequence in some computable running time�
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Bennett ��� has introduced the notion of computational depth� which
measures the �value� of information in terms of the amount of �compu�
tational work� that has been �added to its organization�� In the case of
in�nite binary sequences� Bennett has de�ned both strong depth and weak
depth� and shown that� in a technical� computational sense� strongly deep
sequences are �very far from random�� �See ��� ��� ��� for de�nitions and
discussion of computational depth��

The proof of Shen� ���� exhibits a sequence that is Kolmgorov�Loveland
stochastic and not random� That sequence� however� is random relative to
a computable probability measure and so is not even weakly deep in the
sense of Bennett� Nevertheless� we now note that a Kolmogorov�Loveland
stochastic sequence may be strongly deep�

Corollary ���� There exist Kolmogorov�Loveland stochastic sequences that
are strongly deep�

Proof� Let K be the diagonal halting problem� By Theorem 
��� let S be
a Kolmogorov�Loveland stochastic sequence such that K �P

tt S� Bennett ���
has shown that K is strongly deep and� by his deterministic slow growth
law� that strongly deep sequences are only �tt�reducible to sequences that
are themsleves strongly deep� �Proofs of these results also appear in ������
Hence� S is strongly deep� �
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