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Abstract

For every binary sequence A, there is an infinite binary sequence S
such that A <E S and S is stochastic in the sense of Kolmogorov and
Loveland.

1 Introduction

In the mid-1960’s, Martin-Lof [23] used the general theory of algorithms
to formulate the first successful definition of the randomness of individual
binary sequences. Subsequent definitions, using a variety of conceptual ap-
proaches, were introduced by Levin [17], Schnorr [24, 25|, Chaitin [6, 7, 8],
Solovay [28], and Shen’ [26]. Each of these definitions was shown to be
equivalent to Martin-Lof’s, in the sense that a binary sequence R is al-
gorithmically random according to the given definition if and only if R is
algorithmically random according to Martin-Lof’s definition.

In the present note, all “sequences” are infinite binary sequences, and the
term “random” means “algorithmically random in the sense of Martin-Lof”.
A precise definition of algorithmic randomness appears in section 2.
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One of the most useful and intuitive properties of random sequences is
their stochasticity. This is the fact that if a subsequence A of a random
sequence R is chosen according to an “admissible selection rule”, then the
limiting frequency of 1’s in the subsequence A is exactly % The broadest
class of admissible selection rules that has been studied in this context is
the class of Kolmogorov—Loveland selection rules [13, 14, 19, 20]. These al-
gorithmic rules (which are described in section 2) are more general than
earlier selection rules proposed by von Mises [31], Wald [32], and Church [9]
in two respects. First, given a sequence S, a Kolmogorov—Loveland selec-
tion rule may choose bits from S in whatever order arises from the rule’s
interaction with S; this order need not agree with the order of appearance
of these bits in S. Second, a Kolmogorov—-Loveland selection rule is a partial
recursive rule that may succeed in choosing a sequence of distinct bits from
one sequence, yet fail to choose such a sequence from another.

It is easy to see that every random sequence R is Kolmogorov—Loveland
stochastic. This means that, for every sequence A of distinct bits of R that
is chosen according to a Kolmogorov-Loveland selection rule, the limiting
frequency of 1’s in A is 5. In the late 1980’s, Shen’ [27] proved that the con-
verse does not hold, thereby solving a problem that had been open for some
twenty years. (See [15, 29, 18] for more detailed histories of this problem
and the role of stochasticity in the foundations of probability theory.) Thus,
the random sequences form a proper subset of the set of all Kolmogorov—

Loveland stochastic sequences.

This note refines the method of Shen’ [27] in order to establish a stronger,
more quantitative separation between randomness and Komogorov—Loveland
stochasticity.

Kucera [16] and Gécs [10] have proven that for every sequence A there
is a random sequence R such that A is Turing reducible to R. However, it
is well known that this does not hold for truth-table reducibility (Turing
reducibility with computable running time). In fact, Juedes, Lathrop, and
Lutz [12] have noted that, in the sense of Baire category, almost every se-
quence A has the property that A is not reducible to any random sequence
in any computable running time.

In contrast with this fact, the main theorem of the present note (Theo-
rem 3.5) states that, for every sequence A, there is a Kolmogorov-Loveland
stochastic sequence S such that A is feasibly reducible to S. In fact, A can be



reduced to S by a polynomial-time truth-table reduction. The proof of this
result uses a relativization of a method of van Lambalgen [30] and Shen’ [27],
together with a simple encoding of the sequence A into a “nearly uniform”
probability measure on the set of all sequences.

It follows immediately from the main theorem that there are sequences
S that are Kolmogorov-Loveland stochastic, but also strongly deep in the
sense of Bennett [1]. Such sequences S are computationally “very far from
random” [1, 12].

The main theorem also implies that the class RAND of all random oracles
cannot be replaced by the class KL-STOCH of all Kolmogorov—Loveland
stochastic oracles in some known characterizations of complexity classes.
As just one example, a “folklore” result states that P(RAND) N REC =
BPP, that is, that a recursive language is <t-reducible to some random
language if and only if it is probabilistically decidable with bounded error in
polynomial time [1, 3]. In contrast, the main theorem immediately implies
that P(KL-STOCH) contains every language. See [3, 22, 2, 4] for other
known characterizations using random oracles that, by the main theorem,
cannot be extended to Kolmogorov—Loveland stochastic oracles.

2 Notation and Preliminaries

We write {0,1}* for the set of all (finite, binary) strings, and we write |z
for the length of a string . The empty string, A, is the unique string of
length 0. The standard enumeration of {0,1}* is the sequence sy = A, s; =
0,50 = 1,53 =00,..., ordered first by length and then lexicographically.

The complement of a language A is A° = {0,1}* — A, and the symmetric
difference of languages A and Bis AAB=(A—-B)U (B — A).

The Boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0.

We work in the Cantor space C, consisting of all languages A C {0, 1}*.
We identify each language A with its characteristic sequence, which is the
(infinite, binary) sequence A whose n'" bit is [s, € A] for each n € N.
(The leftmost bit of A is the 0'" bit.) Relying on this identification, we also
consider C to be the set of all sequences.



A string w is a prefiz of a sequence A, and we write w C A, if there is
a sequence B such that A = wB. For each string w € {0,1}*, the cylinder
generated by w is the set

Cw:{AeC‘ng}.
Note that C, = C.

Let D be a discrete domain such as N, {0,1}*, or Nx {0,1}*. A function
f D — Ris computable if there is a total recursive function f : Nx D — Q
such that, for all r € N and z € D, |f(r,z) — f(z)] < 27". A function
f D — Risis lower semicomputable if there is a total recursive function
f:Nx D — Qsuch that (i) forall » e Nand z € D, f(r,z) < f(r + 1, z),
and (7i) for all z € D, lim,_,, f(r,m) = f(z). A sequence (0,31, ...) of real
numbers converges computably to a limit § € R if there is a total recursive
function m : N — N, called a modulus of convergence, such that, for allr € N
and i > m(r), |B;—0] < 27". Similarly, a series Y ° ; o, of nonnegative reals
ay, i computably convergent if there is a total recursive function (modulus
of convergence) m : N — N such that, for all » € N, Zzo:mm o <277,

A bias sequence is a sequence f§ = (Bo, B1, - - .) of real numbers (biases)
Gi € [0,1]. A bias sequence ﬁ determines the coin-toss probability measure
1® on Cantor space, which corresponds to a random experiment in which a
language A € C is chosen probabilistically as follows. For each string s;, we
toss a special coin whose probability is §; of coming up heads, in which case
s; € A, and 1 — §; of coming up tails, in which case s; € A. The coin tosses
are independent of one another. In the special case where ﬁ = (%, %, %, .. ) ,
18 is the uniform probability measure on C.

As noted in the introduction, there are several equivalent definitions of
algorithmic randomness. The definition in terms of martingales, introduced
by Schnorr [24], is most convenient for our purposes here. Given a bias
sequence 3, a ﬁ—martz’ngale is a function d : {0,1}* — [0, 00) such that for
all w e {0,1}*,

d(w) = (1 = Bjy))d(w0) + By d(wl).
(The reader is referred to [30, 5] for discussion of this definition and its

motivation.) The success set of a B-martingale d is

§%d] = {A eC ‘ (VE)Bw C A) d(w) > k}



The unitary success set of a ﬁ—martingale d is

= |J Cuw
d(w)>1

A sequence R € C is (algorithmically) ﬁ—mndam, and we write R €
RAND > 5 if there is no lower semicomputable S-martingale d such that R €

S*[d]. A sequence R € C is rec-3-random, and we write R € RANDB—(rec), if

there is no computable ﬁ—martingale d such that R € S*°[d]. It is immediate
from the definitions that RAND; C RANDg(rec). When the probability

measure is uniform, that is, G = (%, %, .. ) , we omit 3 from the notation.

Thus RAND is the set of all random sequences, and RAND(rec) is the set
of all rec-random sequences.

It is a straightforward matter to relativize the computability or lower
semicomptability of a martlngale d to an arbitrary oracle A € C, and thereby
to define the class RANDa, consisting of all sequences that are ﬂ random

relative to A, and the class RAND i (rec), consisting of all sequences that are

rec—ﬁ—mndam relative to A.

The following property of rec—ﬁ—random sequences (relative to an oracle
A) is an easy extension of a special case of the resource-bounded Borel-
Cantelli lemma of [21].

Lemma 2.1. Let A € C and let ﬁ be a bias sequence that is computable
relative to A. Let dy,di,ds,... be a sequence of B-martingales with the
following two properties:

(i) The function (n,w) — dp(w) is computable relative to A.

(i) The series > 7, dp()) is computably convergent relative to A.

If R e RANDg(rec), then there are only finitely many n for which R €
Stdy]-

Proof. Assume the hypothesis, and let J = {n ‘ R e Sl[dn]} .Let m: N —

N be a modulus for the convergence of Y °°  dy()) that is total recursive



relative to A, and define the function d : {0,1}* — [0, 00) by

dw) =" 2" dy(w).
r=0

n=m(2r)

It is easily checked that d is a ﬁ—martingale that is computable relative to
A. Since R € RANDg(rec), it follows that there is a constant ¢ € N such

that, for all w C R, d(w) < 2°.

Now let ng € J. Fix a prefix w C R such that d,,(w) > 1. Then we have

2d,, (w) > 2° > d(w) > 2° i dy (w),

n=m(2c)

so ng < m(2c). Thus J is finite. O

The notion of Kolmogorov—Loveland stochasticity was defined in [13,
14, 19, 20]; detailed discussions may be found in [29, 15, 18]. A sequence is
Kolmogorov-Loveland stochastic if any subsequence chosen by a Kolmogorov—
Loveland selection rule possesses frequency stability, that is, if the propor-
tion of 1’s in initial segments tends toward a limit of % A Kolmogorov—-
Loveland selection rule is a pair of partial recursive functions that, operat-
ing on the history of what has been observed, choose the index of the next
bit of the sequence to examine and determine (in advance of examination)
whether or not that bit will be included in the subsequence. The standard
intuition is described elegantly in [27]:

Let us imagine that the members of a sequence are written on
cards which lie on an (infinitely long) table (we do not see what is
on a card unless we turn it). The [selection rule] is an algorithm
that says which card must be turned next and whether it must
be turned only for information or [is to be] selected into the
subsequence.

We also make use of the following large deviation result.

Lemma 2.2 (Chernoff bound [11]). Let p € [0,1], let X3,..., X, be inde-
pendent 0/1-valued random variables such that each P[X; = 1] = p, and let
S=X1+ -+ X,. Then:
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I. Forall 0 <e<1,P[S>(1+¢€np <e 3 .

752np

2. Forall0 <e<1,P[S<(l—¢enp|<e 2 .

3 Result

In this section we prove that every sequence is feasibly reducible to some
Kolmogorov—-Loveland stochastic sequence. Our proof makes essential use
of the following lemma, which is a straightforward relativization of Lemma
2 of [27].

Lemma 3.1 (Shen’ [27]). Let A € C, and let £ be a sequence of biases such
that

-

(i) B is computable relative to A, and

ii ﬁ converges computably to + relative to A.
g y 103

Then RANDg C KL-STOCH#.

Given a sequence A € C, the following construction defines a sequence
of biases 54, a function F4 : C — C, and some auxiliary notation.

Construction 3.2. We use the functions

l,q,7r : N =N,
where
I(n) = |sn| = [log(n + 1)],
a(n) = 12(1(n) +3) .

and

n—1

r(n) =) q(m).
m=0



We also use the function

where

For A € C and i € N, define the bias 3/* € [0,1] by

1
B =5 (1+ 3em)sn € A1),
where 7(n) <i < r(n)+ q(n), and let
ﬁA = (/B(I)Llalgfla .- )

(Note that the bit [s, € A] has been encoded into each of ¢(n) different
positions in the bias sequence 54.) For each A € C and n € N, define the

random variable
pn:C—1[0,1]

by

p(s) = s

e {z‘EN

r(n) <i<r(n)+q(n) and s; € S}

?

where the argument S is chosen probabilistically according to the bias se-
quence . Finally, for each A € C, define the function

FA.C = C

by

FAS) = {su | pil(9) 2

(1 + e(n)) }

Although the probability distribution of the random variable p2 depends
on the sequence A, the actual value p? (S) does not depend on A. Moreover,
we have the following.

DN =

Observation 3.3. For all A,S € C,

FA8) <k 8.



Proof. The bit [s, € F4(S)] is easily computed from the ¢(n) bits
[[Sr(n) € S]]a [[Sr(n)—l—l € S]]a S [[Sr(n)-l—q(n)—l € S]],

and ¢(n) is polynomial in |sp|. O

Intuitively, if S is chosen according to the bias sequence ﬁA, then we
expect p:(S) to be approximately (14 3e(n)) if n € A, and approximately
Tifn ¢ A Since 3 < 1(1+€(n)) < 3(1+ 3€(n)), we thus expect that [s,, €
FA(S)] will usually agree with [s, € A]. The following lemma formalizes
this intuition.

Lemma 3.4. For all A€ C and S € RAND?A (rec),

MAF%a}an

Proof. Let A € Cand S € RAND?A (rec). For convenience, we write 3 =
ﬁA, pn = pa, and F = FA. For each n € N, define the event
@:{BeCMeAAFw&
and the function
dy, :{0,1}* — [0,1],

by
dp(w) = P(E, | Cu),

where the conditional probability refers (as do all subsequent probabilities

in this proof) to the coin-toss probability measure x?. It is routine to check
that each d,, is a [-martingale, and that the function (n,w) — d,(w) is
computable relative to A.

By the Chernoff bound (Lemma 2.2), for each s, € A, we have

Plsn g F(S)] = Plon<g(1+em)]

1
_etm)®q(n) (1+3¢(n))
< e a
_e(m)?q(n)
< e 1
< (n+1)73



Similarly, for each s, € A°, we have

Pls, € F(S)]

P[pn > %(1 + e(n))]

_e(m)2q(n)
6

IN N

(n+1)72

Hence, for each n € N,

Since the series

S [+ 1) S et 1) 7]

n=0

is computably convergent, it follows by Lemma 2.1 that the set

J:{sn

is finite. Since the definition of d,, implies that AA F(S) C J, this completes
the proof of the lemma. |

Sesl[dn]}.

Our main result is now easily established.

Theorem 3.5 (Main Theorem). For each A € C, there is a sequence S €
KL-STOCH such that A <[} S.

Proof. Let A € C,and let S € RAND;}A. By Lemma 3.1, § € KL-STOCH#
C KL-STOCH. Also, since RAND;;A C RAND;}A (rec), Lemma 3.4 tells us

that |[A A FA(S)| < oo, whence A <E F4(S). It follows by Observation 3.3
that A <f; S. O

As noted in the introduction, Theorem 3.5 exhibits a strong, quantitative
separation of RAND from KL-STOCH, since Juedes, Lathrop, and Lutz
[12] have shown that only a meager (that is, negligibly small in the sense
of Baire category) set of sequences have the property of being reducible to
some random sequence in some computable running time.
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Bennett [1] has introduced the notion of computational depth, which
measures the “value” of information in terms of the amount of “compu-
tational work” that has been “added to its organization”. In the case of
infinite binary sequences, Bennett has defined both strong depth and weak
depth, and shown that, in a technical, computational sense, strongly deep
sequences are “very far from random”. (See [1, 18, 12] for definitions and
discussion of computational depth.)

The proof of Shen’ [27] exhibits a sequence that is Kolmgorov—Loveland
stochastic and not random. That sequence, however, is random relative to
a computable probability measure and so is not even weakly deep in the
sense of Bennett. Nevertheless, we now note that a Kolmogorov—Loveland
stochastic sequence may be strongly deep.

Corollary 3.6. There exist Kolmogorov-Loveland stochastic sequences that
are strongly deep.

Proof. Let K be the diagonal halting problem. By Theorem 3.5, let S be
a Kolmogorov-Loveland stochastic sequence such that K <f S. Bennett [1]
has shown that K is strongly deep and, by his deterministic slow growth
law, that strongly deep sequences are only < -reducible to sequences that
are themsleves strongly deep. (Proofs of these results also appear in [12].)
Hence, S is strongly deep. a
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