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Abstract

The resource�bounded measures of complexity classes are shown
to be robust with respect to certain changes in the underlying proba�
bility measure� Speci�cally� for any real number � � �� any uniformly
polynomial�time computable sequence �� � ���� ��� ��� � � � � of real num�
bers �biases� �i � ��� 	 � �
� and any complexity class C �such as P�
NP� BPP� P�Poly� PH� PSPACE� etc�� that is closed under positive�
polynomial�time� truth�table reductions with queries of at most linear
length� it is shown that the following two conditions are equivalent�

�	� C has p�measure � �respectively� measure � in E� measure � in
E�� relative to the coin�toss probability measure given by the

sequence ���

��� C has p�measure � �respectively� measure � in E� measure � in
E�� relative to the uniform probability measure�

The proof introduces three techniques that may be useful in other
contexts� namely� �i� the transformation of an ecient martingale for
one probability measure into an ecient martingale for a �nearby�
probability measure� �ii� the construction of a positive bias reduction�
a truth�table reduction that encodes a positive� ecient� approximate
simulation of one bias sequence by another� and �iii� the use of such a
reduction to dilate an ecient martingale for the simulated probabil�
ity measure into an ecient martingale for the simulating probability
measure�
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� Introduction

In the �����s� the measure	theoretic study of complexity classes has yielded
a growing body of new� quantitative insights into various much	studied as	
pects of computational complexity� Bene
ts of this study to date include
improved bounds on the densities of hard languages ���� newly discovered
relationships among circuit	size complexity� pseudorandom generators� and
natural proofs ���� strong new hypotheses that may have su�cient explana	
tory power �in terms of provable� plausible consequences� to help unify our
present plethora of unsolved fundamental problems ���� ��� �� ��� ��� and
a new generalization of the completeness phenomenon that dramatically
enlarges the set of computational problems that are provably strongly in	
tractable ���� �� �� �� �� �� See ��� for a survey of these and related devel	
opments�

Intuitively� suppose that a language A � f�� �g� is chosen according to
a random experiment in which an independent toss of a fair coin is used
to decide whether each string is in A� Then classical Lebesgue measure
theory �described in ��� ��� for example� identi
es certain measure � sets
X of languages� for which the probability that A � X in this experiment
is �� E�ective measure theory� which says what it means for a set of de	
cidable languages to have measure � as a subset of the set of all such lan	
guages� has been investigated by Freidzon ��� Mehlhorn ���� and others�
The resource�bounded measure theory introduced by Lutz ��� is a power	
ful generalization of Lebesgue measure� Special cases of resource	bounded
measure include classical Lebesgue measure� a strengthened version of ef	
fective measure� and most importantly� measures in E � DTIME��linear��
E� � DTIME��polynomial�� and other complexity classes� The small subsets
of such a complexity class are then the measure � sets� the large subsets are
the measure � sets �complements of measure � sets�� We say that almost

every language in a complexity class C has a given property if the set of
languages in C that exhibit the property has measure � in C�

All work to date on the measure	theoretic structure of complexity classes
has employed the resource	bounded measure that is described brie�y and
intuitively above� This resource	bounded measure is based on the uniform

probability measure� corresponding to the fact that the coin tosses are fair
and independent in the above	described random experiment� The uniform
probability measure has been a natural and fruitful starting point for the
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investigation of resource	bounded measure �just as it was for the investi	
gation of classical measure�� but there are good reasons to also investigate
resource bounded measures that are based on other probability measures�
For example� the study of such alternative resource	bounded measures may
be expected to have the following bene
ts�

�i� The study will enable us to determine which results of resource	bounded
measure are particular to the uniform probability measure and which
are not� This� in turn� will provide some criteria for identifying con	
texts in which the uniform probability measure is� or is not� the natural
choice�

�ii� The study is likely to help us understand how the complexity of the
underlying probability measure interacts with other complexity pa	
rameters� especially in such areas as algorithmic information theory�
average case complexity� cryptography� and computational learning�
where the variety of probability measures already plays a major role�

�iii� The study will provide new tools for proving results concerning resource	
bounded measure based on the uniform probability measure�

The present paper initiates the study of resource	bounded measures that
are based on nonuniform probability measures�

Let C be the set of all languages A � f�� �g�� �The set C is often
called Cantor space�� Given a probability measure � on C �a term de
ned
precisely below�� section � of this paper describes the basic ideas of resource	
bounded �	measure� generalizing de
nitions and results from ���� ��� �� to
� in a natural way� In particular� section � speci
es what it means for a
set X � C to have p	�	measure � �written �p�X� � ��� p	�	measure �� �	
measure � in E �written ��XjE� � ��� �	measure � in E� �	measure � in E��
or �	measure � in E��

Most of the results in the present paper concern a restricted �but broad�
class of probability measures on C� namely� coin	toss probability measures
that are given by P	computable� strongly positive sequences of biases� These
probability measures are described intuitively in the following paragraphs
�and precisely in section ���

Given a sequence �� � ���� ��� ��� � � � � of real numbers �biases� �i � ��� ��
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the coin�toss probability measure �also call the product probability measure�

given by �� is the probability measure �
�� on C that corresponds to the

random experiment in which a language A � C is chosen probabilistically
as follows� For each string si in the standard enumeration s�� s�� s�� � � � of
f�� �g�� we toss a special coin� whose probability is �i of coming up heads�
in which case si � A� and � � �i of coming up tails� in which case si �� A�
The coin tosses are independent of one another�

In the special case where �� � ��� �� �� � � � �� i�e�� the biases in the sequence
�� are all �� we write �� for �

��� In particular� �
�
� is the uniform probability

measure� which� in the literature of resource	bounded measure� is denoted
simply by ��

A sequence �� � ���� ��� ��� � � � � of biases is strongly positive if there is
a real number � � � such that each �i � ��� � � �� The sequence �� is P	
computable �and we call it a P	sequences of biases� if there is a polynomial	
time algorithm that� on input �si� �

r�� computes a rational approximation
of �i to within ��r�

In section �� we prove the Summable Equivalence Theorem� which im	
plies that� if �� and �� are strongly positive P	sequences of biases that are
�close� to one another� in the sense that

P�
i�� j�i��ij 	�� then for every

set X � C�

���p�X� � ��� �
��
p�X� � ��

That is� the p	measure based on �� and the p	measure based on �� are in
absolute agreement as to which sets of languages are small�

In general� if �� and �� are not in some sense close to one another� then
the p	measures based on �� and �� need not agree in the above manner� For
example� if �� � � ��� �� � �� �� and

X� �
n
A � C

�� lim
n��

��njA � f�� �gnj � �
o
�

then a routine extension of the Weak Stochasticity Theorem of ��� shows

that ��p �X�� � �� while ��p�X�� � ��

Notwithstanding this example� many applications of resource	bounded
measure do not involve arbitrary sets X � C� but rather are concerned
with the measures of complexity classes and other closely related classes of
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languages� Many such classes of interest� including P� NP� co	NP� R� BPP�
AM� P�Poly� PH� PSPACE� etc�� are closed under positive� polynomial	time
truth	table reductions ��P

pos�tt	reductions�� and their intersections with E

are closed under �P
pos�tt	reductions with linear bounds on the lengths of the

queries � �P�lin
pos�tt	reductions��

The main theorem of this paper is the Bias Equivalence Theorem� This
result� proven in section �� says that� for every class C of languages that is
closed under�P�lin

pos�tt	reductions� the p	measure of C is somewhat robust with
respect to changes in the underlying probability measure� Speci
cally� if ��
and �� are strongly positive P	sequences of biases and C is a class of languages
that is closed under �P�lin

pos�tt	reductions� then the Bias Equivalence Theorem
says that

���p�C� � ��� �
��
p�C� � ��

To put the matter di�erently� for every strongly positive P	sequence �� of
biases and every class C that is closed under �P�lin

pos�tt	reductions�

�
��
p�C� � ��� �p�C� � ��

This result implies that most applications of resource	bounded measure to
date can be immediately generalized from the uniform probability measure
�in which they were developed� to arbitrary coin	toss probability measures
given by strongly positive P	sequences of biases�

The Bias Equivalence Theorem also o�ers the following new technique
for proving resource	bounded measure results� If C is a class that is closed
under �P�lin

pos�tt	reductions� then in order to prove that �p�C� � �� it su�ces

to prove that �
��
p�C� � � for some conveniently chosen strongly positive P	

sequence �� of biases� �The Bias Equivalence Theorem has already been put
to this use in the forthcoming paper �����

The plausibility and consequences of the hypothesis �p�NP� �� � are
subjects of recent and ongoing research ���� ��� �� ��� ��� �� ��� The Bias
Equivalence Theorem immediately implies that the following three state	
ments are equivalent�

�H�� �p�NP� �� ��

�H�� For every strongly positive P	sequence �� of biases� �
��
p�NP� �� ��
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�H�� There exists a strongly positive P	sequence �� of biases such that

�
��
p�NP� �� ��

The statements �H�� and �H�� are thus new� equivalent formulations of the
hypothesis �H���

The proof of the Bias Equivalence Theorem uses three main tools� The

rst is the Summable Equivalence Theorem� which we have already dis	
cussed� The second is the Martingale Dilation Theorem� which is proven
in section �� This result concerns martingales �de
ned in section ��� which
are the betting algorithms on which resource	bounded measure is based�
Roughly speaking� the Martingale Dilation Theorem gives a method of trans	
forming ��dilating�� a martingale for one coin	toss probability measure into
a martingale for another� perhaps very di�erent� coin	toss probability mea	
sure� provided that the former measure is obtained from the latter via an
�orderly� truth	table reduction�

The third tool used in the proof of our main theorem is the Positive Bias
Reduction Theorem� which is presented in section �� If �� and �� are two
strongly positive sequences of biases that are exactly P	computable �with
no approximation�� then the positive bias reduction of �� to �� is a truth	table

reduction �in fact� an orderly �P�lin
pos�tt	reduction� that uses the sequence ��

to �approximately simulate� the sequence ��� It is especially crucial for
our main result that this reduction is e�cient and positive� �The circuits
constructed by the truth	table reduction contain AND gates and OR gates�
but no NOT gates��

The Summable Equivalence Theorem� the Martingale Dilation Theorem�
and the Positive Bias Reduction Theorem are only developed and used here
as tools to prove our main result� Nevertheless� these three results are of
independent interest� and are likely to be useful in future investigations�

� Preliminaries

In this paper� N denotes the set of all nonnegative integers� Z denotes the
set of all integers� Z� denotes the set of all positive integers� Q denotes the
set of all rational numbers� and R denotes the set of all real numbers�
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We write f�� �g� for the set of all �
nite� binary� strings� and we write
jxj for the length of a string x� The empty string� 
� is the unique string of
length �� The standard enumeration of f�� �g� is the sequence s� � 
� s� �
�� s� � �� s� � ��� � � � � ordered 
rst by length and then lexicographically� For
x� y � f�� �g�� we write x 	 y if x precedes y in this standard enumeration�
For n � N� f�� �gn denotes the set of all strings of length n� and f�� �g�n

denotes the set of all strings of length at most n�

If x is a string or an �in
nite� binary� sequence� and if � � i � j 	 jxj�
then x�i��j is the string consisting of the ith through jth bits of x� In
particular� x����i� � is the i	bit pre�x of x� We write x�i for x�i��i� the ith

bit of x� �Note that the leftmost bit of x is x��� the �th bit of x��

If w is a string and x is a string or sequence� then we write w v x if w
is a pre
x of x� i�e�� if there is a string or sequence y such that x � wy�

The Boolean value of a condition � is ��� � if � then � else ��

In this paper we use both the binary logarithm log� � log� � and the
natural logarithm ln� � loge ��

Many of the functions in this paper are real	valued functions on discrete
domains� These typically have the form

f � Nd 	 f�� �g� �
 R� �����

where d � N� �If d � �� we interpret this to mean that f � f�� �g� �
 R��
Such a function f is de
ned to be p	computable if there is a function

�f � N 	 Nd 	 f�� �g� �
 Q �����

with the following two properties�

�i� For all r� k�� � � � � kd � N and w � f�� �g��

j �f�r� k�� � � � � kd� w�� f�k�� � � � � kd� w�j � ��r�

�ii� There is an algorithm that� on input �r� k�� � � � � kd� w�� computes the
value �f�r� k�� � � � � kd� w� in �r � k� � � � �� kd � jwj�O��� time�

Similarly� f is de
ned to be p�	computable if there is a function �f as in �����
that satis
es condition �i� above and the following condition�
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�ii�� There is an algorithm that� on input �r� k�� � � � � kd� w�� computes the

value �f�r� k�� � � � � kd� w� in �log�r�k������kd�jwj�
O���

time�

In this paper� functions of the form ����� always have the form

f � Nd 	 f�� �g� �
 �����

or the form
f � Nd 	 f�� �g� �
 ��� ��

If such a function is p	computable or p�	computable� then we assume with	
out loss of generality that the approximating function �f of ����� actually has
the form

�f � N 	 Nd 	 f�� �g� �
 Q � �����

or the form
�f � N 	 Nd 	 f�� �g� �
 Q � ��� ��

respectively�

� Resource�Bounded ��Measure

In this section� we develop basic elements of resource	boundedmeasure based
on an arbitrary �Borel� probability measure �� The ideas here generalize the
corresponding ideas of �ordinary� resource	bounded measure �based on the
uniform probability measure �� in a straightforward and natural way� so
our presentation is relatively brief� The reader is referred to ���� �� for
additional discussion�

We work in the Cantor space C� consisting of all languages A � f�� �g��
We identify each language A with its characteristic sequence� which is the
in
nite binary sequence �A de
ned by

�A�n � ��sn � A

for each n � N� Relying on this identi
cation� we also consider C to be the
set of all in
nite binary sequences�

For each string w � f�� �g�� the cylinder generated by w is the set

Cw � fA � C j w v �Ag �
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Note that C� � C�

We 
rst review the well	known notion of a �Borel� probability measure
on C�

De�nition� A probability measure on C is a function

� � f�� �g� �
 ��� �

such that ��
� � �� and for all w � f�� �g��

��w� � ��w�� � ��w���

Intuitively� ��w� is the probability that A � Cw when we �choose a
language A � C according to the probability measure ��� We sometimes
write ��Cw� for ��w��

Examples�

�� The uniform probability measure � is de
ned by

��w� � ��jwj

for all w � f�� �g��

�� A sequence of biases is a sequence �� � ���� ��� ��� � � � �� where each
�i � ��� �� Given a sequence of biases ��� the ��	coin�toss probability

measure �also called the ��	product probability measure� is the proba	

bility measure �
�� de
ned by

�
���w� �

jwj��Y
i��

���� �i� � ��� w�i� � �i � w�i�

for all w � f�� �g��

�� If � � �� � �� � �� � � � � � then we write �� for �
��� In this case� we

have the simpler formula

���w� � ��� ������w� � �����w��

where ��b� w� denotes the number of b�s in w� Note that �
�
� � ��
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Intuitively� �
���w� is the probability that w v A when the language

A � f�� �g� is chosen probabilistically according to the following random
experiment� For each string si in the standard enumeration s�� s�� s�� � � �

of f�� �g�� we �independently of all other strings� toss a special coin� whose
probability is �i of coming up heads� in which case si � A� and � � �i of
coming up tails� in which case si �� A�

De�nition� A probability measure � on C is positive if� for all w � f�� �g��
��w� � ��

De�nition� If � is a positive probability measure and u� v � f�� �g�� then
the conditional �	measure of u given v is

��ujv� �

���
��

� if u v v
��u�
��v� if v v u

� otherwise�

Note that ��ujv� is the conditional probability that A � Cu� given that
A � Cv� when A � C is chosen according to the probability measure ��

Most of this paper concerns the following special type of probability
measure�

De�nition� A probability measure � onC is strongly positive if �� is positive
and� there is a constant � � � such that� for all w � f�� �g� and b � f�� �g�
��wbjw� � ��

De�nition� A sequence of biases �� � ���� ��� ��� � � � � is strongly positive if
there is a constant � � � such that� for all i � N� �i � ��� � � ��

If �� is a sequence of biases� then the following two observations are clear�

�� �
�� is positive if and only if �i � ��� �� for all i � N�
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�� If �
�� is positive� then for each w � f�� �g��

�
���w�jw� � �� �jwj

and
�
���w�jw� � �jwj�

It follows immediately from these two things that the probability measure

�
�� is strongly positive if and only if the sequence of biases �� is strongly

positive�

In this paper� we are primarily interested in strongly positive probability
measures � that are p	computable in the sense de
ned in section ��

We next review the well	known notion of a martingale over a probability
measure �� Computable martingales were used by Schnorr ���� ��� ��� ��
in his investigations of randomness� and have more recently been used by
Lutz ��� in the development of resource	bounded measure�

De�nition� Let � be a probability measure on C� Then a �	martingale is a
function d � f�� �g� �
 ����� such that� for all w � f�� �g��

d�w���w� � d�w����w�� � d�w����w��� �����

If �� is a sequence of biases� then a �
��	martingale is simply called a ��	

martingale� A �	martingale is even more simply called a martingale� �That
is� when the probability measure is not speci
ed� it is assumed to be the
uniform probability measure ���

Intuitively� a �	martingale d is a �strategy for betting� on the successive
bits of �the characteristic sequence of� a language A � C� The real number
��
� is regarded as the amount of money that the strategy starts with� The
real number ��w� is the amount of money that the strategy has after betting
on a pre
x w of �A� The identity ����� ensures that the betting is �fair�
in the sense that� if A is chosen according to the probability measure ��
then the expected amount of money is constant as the betting proceeds�
�See ���� ��� ��� ��� ��� ��� ��� �� for further discussion�� Of course� the
�objective� of a strategy is to win a lot of money�
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De�nition� A �	martingale d succeeds on a language A � C if

lim sup
n���

d��A����n� �� ���

The success set of a �	martingale d is the set

S��d � fA � C j d succeeds on Ag �

We are especially interested in martingales that are computable within
some resource bound� �Recall that the p	computability and p�	computability
of real valued functions were de
ned in section ���

De�nition� Let � be a probability measure on C�

�� A p	�	martingale is a �	martingale that is p	computable�

�� A p�	�	martingale is a �	martingale that is p�	computable�

A p	�
��	martingale is called a p	��	martingale� a p	�	martingale is called

a p	martingale� and similarly for p��

We now come to the fundamental ideas of resource	bounded �	measure�

De�nition� Let � be a probability measure on C� and let X � C�

�� X has p	�	measure �� and we write �p�X� � �� if there is a p	�	
martingale d such that X � S��d�

�� X has p	�	measure �� and we write �p�X� � �� if �p�X
c� � �� where

Xc � C�X�

The conditions �p��X� � � and �p��X� � � are de
ned analogously�

De�nition� Let � be a probability measure on C� and let X � C�

�� X has �	measure � in E� and we write ��XjE� � �� if �p�X �E� � ��
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�� X has �	measure � in E� and we write ��XjE� � �� if ��XcjE� � ��

�� X has �	measure � in E�� and we write ��XjE�� � �� if �p��X�E�� � ��

�� X has �	measure � in E�� and we write ��XjE�� � �� if ��XcjE�� � ��

Just as in the uniform case ���� the resource bounds p and p� of the
above de
nitions are only two possible values of a very general parameter�
Other choices of this parameter yield classical �	measure ��� constructive
�	measure �as used in algorithmic information theory ���� ���� �	measure in
the set REC� consisting of all decidable languages� �	measure in ESPACE�
etc�

The rest of this section is devoted to a very brief presentation of some
of the fundamental theorems of resource	bounded �	measure� One of the
main objectives of these results is to justify the intuition that a set with

��measure � in E contains only a �negligibly small� part of E �with respect
to ��� For the purpose of this paper� it su�ces to present these results for p	
�	measure and �	measure in E� We note� however� that all these results hold
a fortiori for p�	�	measure� rec	�	measure� classical �	measure� �	measure
in E�� �	measure in ESPACE� etc�

We 
rst note that �	measure � sets exhibit the set	theoretic behavior of
small sets�

De�nition� Let X�X��X��X�� � � � � C�

�� X is a p	union of the p	�	measure � setsX��X��X�� � � � ifX � �k��Xk

and there is a sequence d�� d�� d�� � � � of �	martingales with the follow	
ing two properties�

�i� For each k � N� Xk � S��dk�

�ii� The function �k�w� �
 dk�w� is p	computable�

�� X is a p	union of the sets X��X��X�� � � � of �	measure � in E if
X � ��k��Xk and there is a sequence d�� d�� d�� � � � of �	martingales
with the following two properties�

�i� For each k � N� Xk � E � S��dk�
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�ii� The function �k�w� �
 dk�w� is p	computable�

Lemma ���� Let � be a probability measure on C� and let I be either the
collection of all p	�	measure � subsets of C� or the collection of all subsets
of C that have �	measure � in E� Then I has the following three closure
properties�

�� If X � Y � I� then X � I�

�� If X is a 
nite union of elements of I� then X � I

�� If X is a p	union of elements of I� then X � I�

Proof �sketch�� Assume that X is a p	union of the p	�	measure � sets
X�� X��X�� � � � � and let d�� d�� d�� � � � be as in the de
nition of this condition�
Without loss of generality� assume that dk�
� � � for each k � N� It su�ces
to show that �p�X� � �� �The remaining parts of the lemma are obvious or
follow directly from this�� De
ne

d � f�� �g� �
 �����

dk�w� �

�X
k��

dk�w�

�k � dk�
�
�

Its is easily checked that d is a p	�	martingale and that X � S��d� so
�p�X� � �� �

We next note that� if � is strongly positive and p	computable� then every
singleton subset of E has p	�	measure ��

Lemma ���� If � is a strongly positive� p	computable probability measure
on C� then for every A � E�

�p�fAg� � ��fAgjE� � ��

Proof �sketch�� Assume the hypothesis� and 
x � � � such that� for all
w � f�� �g� and b � f�� �g� ��wbjw� � �� De
ne

d � f�� �g� �
 �����

��



d�
� � �

d�wb� �
d�w�

��wbjw�
� ��sjwj � A�

It is easily checked that d is a p	�	martingale and that� for all n � N�
d��A����n� �� � ��� ���n� whence A � S��d� ��

Note that� for A � E� the �point	mass� probability measure

A � f�� �g� �
 ��� �

A�w� �

�
� if w v �A
� if w �v �A

is p	computable� and fAg does not have p	A	measure �� Thus� the strong
positivity hypothesis cannot be removed from Lemma ����

We now come to the most crucial issue in the development of resource	
bounded measure� If a set X has �	measure � in E� then we want to say
that X contains only a �negligible small� part of E� In particular� then� it
is critical that E itself not have �	measure � in E� The following theorem
establishes this and more�

Theorem ���� Let � be a probability measure on C� and let w � f�� �g��
If ��w� � �� then Cw does not have �	measure � in E�

Proof �sketch�� Assume the hypothesis� and let d be a p	�	martingale� It
su�ces to show that Cw � E �� S��d�

Since d is p	computable� there is a function �d � N	f�� �g� �
 Q � �����
with the following two properties�

�i� For all r � N and w � f�� �g�� j �d�r� w� � d�w�j � ��r�

�ii� There is an algorithm that computes �d�r� w� in time polynomial in
r � jwj�

De
ne a language A recursively as follows� First� for � � i 	 jwj� ��si � A �
w�i� Next assume that the string xi � �A����i� � has been de
ned� where
i � jwj� Then

��si � A � �� �d�i� �� xi�� � �d�i� �� xi���

��



With the language A so de
ned� it is easy to check that A � Cw �E� It
is also routine to check that� for all i � jwj�

d�xi��� � �d�i� �� xi��� � ���i���

� min
n
�d�i� �� xi��� �d�i� �� xi��

o
� ���i���

� min fd�xi��� d�xi��g� ��i

� d�xi� � ��i�

It follows inductively that� for all n � jwj�

d�xn� � d�w� �
n��X
i�jwj

��i

	 d�w� �

�X
i�jwj

��i � d�w� � ���jwj�

This implies that

lim sup
n���

d��A����n� �� � d�w� � ���jwj 	��

whence A �� S��d� �

As in the case of the uniform probability measure ���� more quantitative
results on resource	bounded �	measure can be obtained by considering the
unitary success set

S��d �
�
w

d�w� � �

Cw

and the initial value d�
� of a p	�	martingale d� For example� generalizing
the arguments in ��� in a straightforward manner� this approach yields a
Measure Conservation Theorem for �	measure �a quantitative extension of
Theorem ��� � and a uniform� resource	bounded extension of the classical

rst Borel	Cantelli lemma� As these results are not used in the present
paper� we refrain from elaborating here�

� Summable Equivalence

If two probability measures onC are su�ciently �close� to one another� then
the Summable Equivalence Theorem says that the two probability measures

��



are in absolute agreement as to which sets of languages have p	measure �
and which do not� In this section� we de
ne this notion of �close� and prove
this result�

De�nition� Let � be a positive probability measure on C� let A � f�� �g��
and let i � N� Then the ith conditional �	probability along A is

�A�i� �ji� � ���A����i j �A����i � ���

De�nition� Two positive probability measures � and � � on C are summably
equivalent� and we write � t � �� if for every A � f�� �g��

�X
i��

j�A�i� �ji� � � �A�i� �ji�j 	��

It is clear that summable equivalence is an equivalence relation on the
collection of all positive probability measures on C� The following fact is
also easily veri
ed�

Lemma ���� Let � and � � be positive probability measures on C� If � t � ��
then � is strongly positive if and only if � � is strongly positive�

The following de
nition gives the most obvious way to transform a mar	
tingale for one probability measure into a martingale for another�

De�nition� Let � and � � be probability measures on C with � � positive�
and let d be a �	martingale� Then the canonical adjustment of d to � � is the
� �	martingale d� de
ned by

d��w� �
��w�

� ��w�
d�w�

for all w � f�� �g��

It is trivial to check that the above function d� is indeed a � �	martingale�
The following lemma shows that� for strongly positive probability measures�

��



summable equivalence is a su�cient condition for d� to succeed whenever d
succeeds�

Lemma ���� Let � and � � be strongly positive probability measures on C�
let d be a �	martingale� and let d� be the canonical adjustment of d to � �� If
� t � �� then S��d � S��d��

Proof� Assume the hypothesis� and let A � S��d� For each i � N� let

�i � �A�i� �ji�� � �i � � �A�i� �ji�� �i � �i � � �i�

The hypothesis � t � � says that
P�

i�� j�ij 	 �� In particular� this implies
that �i �
 � as i �
�� so we have the Taylor approximation

ln
�i

� �i
� ln�� �

�i

� �i
� �

�i

� �i
� o�

�i

� �i
�

as i �
 �� Thus j ln �i
��i
j is asymptotically equivalent to j�ij

��i
as i �
 ��

Since � � is strongly positive� it follows that
P�

i�� j ln
�i
��i
j 	 �� Thus� if we

let wk � �A����k � �� then there is a positive constant c such that� for all
k � N�

c �

k��X
i��

�� ln
�i

� �i
� � � ln

k��Y
i��

�i

� �i
� � ln

��wk�

� ��wk�
�

whence

d��wk� �
��wk�

� ��wk�
d�wk� � e�cd�wk��

Since A � S��d� we thus have

lim sup
k���

d��wk� � lim sup
k���

e�cd�wk� ���

so A � S��d�� �

The following useful result is now easily established�

Theorem ��� �Summable Equivalence Theorem�� If � and � � are strongly
positive� p	computable probability measures on C such that � t � �� then
for every set X � C�

�p�X� � ��� � �p�X� � ��

��



Proof� Assume the hypothesis� and assume that �p�X� � �� By symmetry�
it su�ces to show that � �p�X� � �� Since �p�X� � �� there is a p	computable
�	martingale d such that X � S��d� Let d� be the canonical adjustment of
d to � �� Since d� �� and � � are all p	computable� it is easy to see that d� is
p	computable� Since � t � �� Lemma ��� tells us that

X � S��d � S��d��

Thus � �p�X� � �� �

� Exact Computation

It is sometimes useful or convenient to work with probability measures that
are rational	valued and e�ciently computable in an exact sense� with no
approximation� This section presents two very easy results identifying situ	
ations in which such probability measures are available�

De�nition� A probability measure � on C is exactly p�computable if � �
f�� �g� �
 Q � ��� � and there is an algorithm that computes ��w� in time
polynomial in jwj�

Lemma ���� For every strongly positive� p	computable probability measure
� on C� there is an exactly p	computable probability measure � � on C such
that � t � ��

Proof� Let � be a p	computable probability measure onC� and 
x a function
�� � N	f�� �g� �
 Q � ��� � that testi
es to the p	computability of �� Since
� is strongly positive� there is a constant c � N such that� for all w � f�� �g��
��cjwj � ��w� � �� ��cjwj� Fix such a c and� for all w � f�� �g�� de
ne

� ��w�jw� � min

�
��

�����c� ��jwj � �� w��

�����c � ��jwj � �� w�

�
�

� ��w�jw� � �� � ��w�jw��

� ��w� �

jwj��Y
i��

� ��w����i
��w����i � ���

��



It is clear that � � is an exactly p	computable probability measure on C�

Now let w � f�� �g� and b � f�� �g� For convenience� let

� � �����cjwj��

� � ����c���jwj���

a� � ��wb��

a� � ��w��

Note that

�����c � ��jwj � �� w� � ��w�� � � ��w�� � � ��

It is clear by inspection that � ��wbjw� can be written in the form

� ��wbjw� �
a��
a��
�

where
ja�� � a�j � � and ja�� � a�j � ��

We thus have

ja��a� � a�a
�
�j � ja��a� � a�a�j� ja�a� � a�a

�
�j

� ja�� � a�j� ja�� � a�j

� ���

whence

j� ��wbjw� � ��wbjw�j �

����a��a�� �
a�

a�

����
�

ja��a� � a�a
�
�j

a�a
�
�

� �����

� ��jwj�

For all A � f�� �g�� then� we have

�X
i��

���A�i� �
��i�� � �A�i� �

��i��� � �X
i��

��i � ��

so � t � �� �

��



For some purposes �including those of this paper�� the requirement of
p	computability is too weak� because it allows ��w� to be computed �or
approximated� in time polynomial in jwj� which is exponential in the length
of the last string decided by w when we regard w as a pre
x of a language A�
In such situations� the following sort of requirement is often more useful� �We
only give the de
nitions for sequences of biases� i�e�� coin	toss probability
measures� because this su�ces for our purposes in this paper� It is clearly a
routine matter to generalize further��

De�nition�

�� A P�sequence of biases is a sequence �� � ���� ��� ��� � � � � of biases
�i � ��� � for which there is a function

�� � N 	 N �
 Q � ��� �

with the following two properties�

�i� For all i� r � N� j���i� r�� �ij � ��r�

�ii� There is an algorithm that� for all i� r � N� computes ���i� r� in
time polynomial in jsij�r �i�e�� in time polynomial in log�i����
r��

�� A P�exact sequence of biases is a sequence �� � ���� ��� ��� � � � � of �ra	
tional� biases �i � Q � ��� � such that the function i ��
 �i is com	
putable in time polynomial in jsij�

De�nition� If �� and �� are sequences of biases� then �� and �� are summably
equivalent� and we write �� t ��� if

P�
i�� j�i � �ij 	��

It is clear that �� t �� if and only if ��� t �
���

Lemma ���� For every P	sequence of biases ��� there is a P	exact sequence
of biases ��� such that �� t ����

Proof� Let �� be a strongly positive P	sequence of biases� and let �� � N 	
N �
 Q � ��� � be a function that testi
es to this fact� For each i � N� let

��i �
���i� �jsij��

��



and let ��� � ����� �
�
�� �

�
�� � � � �� Then ��� is a P	exact sequence of biases� and

�X
i��

j�i � ��ij �

�X
i��

���jsij

�
�X
i��

��� log�i���

�

�X
i��

�

�i� ���
	��

so �� t ���� �

� Martingale Dilation

In this section we show that certain truth	table reductions can be used to
dilate martingales for one probability measure into martingales for another�
perhaps dissimilar� probability measure on C� We 
rst present some ter	
minology and notation on truth	table reductions� �Most of this notation is
standard ���� but some is specialized to our purposes��

A truth�table reduction �brie�y� a �tt	reduction� is an ordered pair �f� g�
of total recursive functions such that for each x � f�� �g�� there exists n�x� �
Z� such that the following two conditions hold�

�i� f�x� is �the standard encoding of� an n�x�	tuple �f��x�� � � � � fn�x��x��
of strings fi�x� � f�� �g

�� which are called the queries of the reduction
�f� g� on input x� We use the notationQ�f�g��x� � ff��x�� � � � � fn�x��x�g
for the set of such queries�

�ii� g�x� is �the standard encoding of� an n�x�	input� �	output Boolean
circuit� called the truth table of the reduction �f� g� on input x� We
identify g�x� with the Boolean function computed by this circuit� i�e��

g�x� � f�� �gn�x� �
 f�� �g �

A truth	table reduction �f� g� induces the function

F�f�g� � C �
 C

��



F�f�g��A� �
�
x � f�� �g� j g�x�

	
��f��x� � A � � � ��fn�x��x� � A



� �
�
�

If A and B are languages and �f� g� is a �tt	reduction� then �f� g� reduces
B to A� and we write

B �tt A via �f� g��

if B � F�f�g��A�� More generally� if A and B are languages� then B is truth�
table reducible �brie�y� �tt	reducible� to A� and we write B �tt A� if there
exists a �tt	reduction �f� g� such that B �tt A via �f� g��

If �f� g� is a �tt	reduction� then the function F�f�g� � C �
 C de
ned
above induces a corresponding function

F�f�g� � f�� �g
� �
 f�� �g� C

de
ned as follows� �It is standard practice to use the same notation for
these two functions� and no confusion will result from this practice here��
Intuitively� if A � C and w v A� then F�f�g��w� is the largest pre
x of
F�f�g��A� such that w answers all queries in this pre
x� Formally� let w �
f�� �g�� and let

Aw �
�
si
�� � � i 	 jwj and w�i � �

�
�

If Q�f�g��x� � fs�� � � � sjwj��g for all x � f�� �g�� then

F�f�g��w� � F�f�g��Aw��

Otherwise�
F�f�g��w� � �F�f�g��Aw�����m� ��

where m is the greatest nonnegative integer such that

m���
i��

Q�f�g��si� �
�
s�� � � � � sjwj��

�

Now let �f� g� be a �tt	reduction� and let z � f�� �g�� Then the inverse
image of the cylinder Cz under the reduction �f� g� is

F��
�f�g��Cz� �

�
A � C j F�f�g��A� � Cz

�
�

�
A � C j z v F�f�g��A�

�
�

��



We can write this set in the form

F��
�f�g��Cz� �

�
w�I

Cw�

where I is the set of all strings w � f�� �g� with the following properties�

�i� z v F�f�g��w��

�ii� If w� is a proper pre
x of w� then z �v F�f�g��w
���

Moreover� the cylinders Cw in this union are disjoint� so if � is a probability
measure on C� then

��F��
�f�g��Cz�� �

X
w�I

��w��

The following well	known fact is easily veri
ed�

Lemma ���� If � is a probability measure onC and �f� g� is a �tt	reduction�
then the function

��f�g� � f�� �g� �
 ��� �

��f�g��z� � ��F��
�f�g��Cz��

is also a probability measure on C�

The probability measure ��f�g� of Lemma ��� is called the probability

measure induced by � and �f� g��

In this paper� we only use the following special type of �tt	reduction�

De�nition� A �tt	reduction �f� g� is orderly if� for all x� y� u� v � f�� �g�� if
x 	 y� u � Q�f�g��x�� and v � Q�f�g��y�� then u 	 v� That is� if x precedes y
�in the standard ordering of f�� �g��� then every query of �f� g� on input x
precedes every query of �f� g� on input y�

The following is an obvious property of orderly �tt	reductions�

��



Lemma ���� If � is a coin	toss probability measure on C and �f� g� is an
orderly �tt	reduction� then ��f�g� is also a coin	toss probability measure on
C�

Note that� if �f� g� is an orderly �tt	reduction� then F�f�g��w� � f�� �g�

for all w � f�� �g�� Note also that the length of F�f�g��w� depends only
upon the length of w �i�e�� jwj � jw�j implies that jF�f�g��w�j � jF�f�g��w

��j��

Finally� note that for each m � N there exists l � N such that jF�f�g���
l�j �

m�

De�nition� Let �f� g� be an orderly �tt	reduction�

�� An �f� g�	step is a positive integer l such that F�f�g���
l��� �� F�f�g���

l��

�� For k � N� we let step�k� be the least �f� g�	step l such that l � k�

The following construction is crucial to the proof of our main theorem�

De�nition� Let � be a positive probability measure on C� let �f� g� be an
orderly �tt	reduction� and let d be a ��f�g�	martingale� Then the �f� g�	
dilation of d is the function

�f� g�bd � f�� �g� �
 �����

�f� g�bd�w� �
X

u�f���gl�k

d�F�f�g��wu����wujw��

where k � jwj and l � step�k��

In other words� �f� g�bd�w� is the conditional �	expected value of d�F�f�g��w
����

given that w v w� and jw�j � step�jwj�� We do not include the probability
measure � in the notation �f� g�bd because � �being positive� is implicit in
d�

Intuitively� the function �f� g�bd is a strategy for betting on a language
A� assuming that d itself is a strategy for betting on the language F�f�g��A��
The following theorem makes this intuition precise�

��



Theorem ��� �Martingale Dilation Theorem�� Assume that � is a positive
coin	toss probability measure on C� �f� g� is an orderly �tt	reduction� and d

is a ��f�g�	martingale� Then �f� g�bd is a �	martingale� Moreover� for every
language A � f�� �g�� if d succeeds on F�f�g��A�� then �f� g�bd succeeds on
A�

A very special case of the above result �for strictly increasing�P
m	reductions

under the uniform probability measure� was developed by Ambos	Spies� Ter	
wijn� and Zheng ��� and made explicit by Juedes and Lutz ��� Our use of
martingale dilation in the present paper is very di�erent from the simple
padding arguments of ��� ��

The following two technical lemmas are used in the proof of Theorem
����

Lemma ���� Assume that � is a positive coin	toss probability measure on
C and �f� g� is an orderly �tt	reduction� Let F � F�f�g�� let w � f�� �g��
and assume that k � jwj is an �f� g�	step� Let l � step�k � ��� Then� for
b � f�� �g�

��f�g��F �w�bjF �w�� �
X

u � f�� �gl�k

F �wu� � F �w�b

��wujw��

Proof� Assume the hypothesis� Then

��f�g��F �w�b� �
X

w� � f�� �gk

F �w�� � F �w�

X
u � f�� �gl�k

F �w�u� � F �w��b

��w�u�

�
X

w� � f�� �gk

F �w�� � F �w�

��w��
X

u � f�� �gl�k

F �w�u� � F �w��b

��w�ujw���

Now� since � is a coin	toss probabilitymeasure� we have ��w�ujw�� � ��wujw�
for each w� � f�� �gk such that F �w�� � F �w�� Also� since �f� g� is orderly�
the conditions F �w�u� � F �w��b and F �wu� � F �w�b are equivalent for each
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u � f�� �gl�k � Hence�

��f�g��F �w�b� �
X

w� � f�� �gk

F �w�� � F �w�

��w��
X

u � f�� �gl�k

F �wu� � F �w�b

��wujw�

� ��f�g��F �w��
X

u � f�� �gl�k

F �wu� � F �w�b

��wujw��

�

Lemma ���� Assume that � is a positive coin	toss probability measure on
C and �f� g� is an orderly �tt	reduction� Let F � F�f�g�� and assume that d

is a ��f�g�	martingale� Let w � f�� �g�� assume that k � jwj is an �f� g�	step�
and let l � step�k � ��� Then

d�F �w�� �
X

u�f���gl�k

d�F �wu����wujw��

Proof� Assume the hypothesis� Since d is a ��f�g�	martingale and ��f�g��F �w��
is positive� we have

d�F �w�� �
�X

b��

d�F �w�b���f�g��F �w�bjF �w���

It follows by Lemma ��� that

d�F �w�� �
�X

b��

d�F �w�b�
X

u � f�� �gl�k

F �wu� � F �w�b

��wujw�

�
�X

b��

X
u � f�� �gl�k

F �wu� � F �w�b

d�F �wu����wujw�

�
X

u�f���gl�k

d�F �wu����wujw��

�

��



Proof of Theorem ���� Assume the hypothesis� and let F � F�f�g��

To see that �f� g�bd is a �	martingale� let w � f�� �g�� let k � jwj� and
let l � step�k � ��� We have two cases�

Case I� step�k� � l� Then

�X
b��

�f� g�bd�wb���wb� �

�X
b��

X
u�f���gl�k��

d�F �wbu����wbujwb���wb�

�

�X
b��

X
u�f���gl�k��

d�F �wbu����wbu�

�
X

u�f���gl�k

d�F �wu����wu�

� �f� g�bd�w���w��

Case II� step�k� 	 l� Then k is an �f� g�	step� so �f� g�bd�w� � d�F �w���
whence by Lemma ���

�f� g�bd�w���w� �
X

u�f���gl�k

d�F �wu����wu��

Calculating as in Case I� it follows that

�f� g�bd�w���w� �

�X
b��

�f� g�bd�wb���wb��
This completes the proof that �f� g�bd is a �	martingale�

To complete the proof� let A � f�� �g�� and assume that d succeeds
on F �A�� For each n � N� let wn � �A����ln � �� where ln is the unique
�f� g�	step such that jF ��ln�j � n� Then� for all n � N�

�f� g�bd�wn� � d�F �wn�� � d��F �A�����n� ���

so

lim sup
k���

�f� g�bd��A����k � �� � lim sup
n���

�f� g�bd�wn�

� lim sup
n���

d��F �A�����n� ��

� ��

Thus �f� g�bd succeeds on A� �

��



� Positive Bias Reduction

In this section� we de
ne and analyze a positive truth	table reduction that
encodes an e�cient� approximate simulation of one sequence of biases by
another�

Intuitively� if �� and �� are strongly positive sequences of biases� then the
positive reduction of �� to �� is a �tt	reduction �f� g� that �tries to simulate�
the sequence �� with the sequence �� by causing ��� to be the probability dis	

tribution induced by �
�� and �f� g�� In general� this objective will only be ap	

proximately achieved� in the sense that the probability distribution induced

by �
�� and �f� g� will actually be a probability distribution ���

�
� where ��� is a

sequence of biases such that ��� t ��� This situation is depicted schematically
in Figure �� where the broken arrow indicates that �f� g� �tries� to reduce
�� to ��� while the solid arrow indicates that �f� g� actually reduces ��� to ���

Figure �� Schematic depiction of positive bias reduction

The reduction �f� g� is constructed precisely as follows�

Construction ��� �Positive Bias Reduction�� Let �� and �� be strongly
positive sequences of biases� Let

� � inf f�i� �� �i� �i� �� �i j i � Ng �

c � d
�� log e

log��� ���
e�

For each x � f�� �g� and � � n 	 �cjxj� let q�x� n� � xy� where y is the
nth element of f�� �gcjxj� and let j�x� n� be the index of the string q�x� n��
i�e�� sj�x� n� � q�x� n�� Then the positive bias reduction of �� to �� is the

��



begin

input x � si�
n �� ��
g�x� �� �� �� ��i��� � ��
k �� ��
while ��i�k� 	 �i � �i� ���� do

begin

h�x� k� �� �� �� �i�k��� �� ��
l �� ��
while ��i�k� � �i�k�l�� ��i�k� � �i�k�l� � �i do

begin

h�x� k� l � �� �� h�x� k� l� AND vn�
�i�k�l � �� �� �i�k�l� � �j�x�n��

l �� l � ��
n �� n� ��
end �

l�x� k� �� l�
h�x� k� �� h�x� k� l�x� k���
�i�k �� �i�k�l�x� k���
g�x� k � �� �� g�x� k� OR h�x� k��
��i�k � �� �� ��i�k� � �i�k � ��i�k� � �i�k�
k �� k � �
end �

k�x� �� k�
n�x� �� n�
f�x� �� �q�x� ��� � � � � q�x� n�x� � ����
g�x� �� g�x� n�x���
��i �� �i�k�x��
end �

Figure �� Construction of positive bias reduction

ordered pair �f� g� of functions de
ned by the procedure in Figure �� �For
convenience� the procedure de
nes additional parameters that are useful in
the subsequent analysis��

The following general remarks will be helpful in understanding Construc	
tion ����

��



�a� The boldface variables v��v�� � � � denote Boolean inputs to the Boolean
function g�x� being constructed� The Boolean function g�x� is an OR
of k�x� Boolean functions h�x� k�� i�e��

g�x� �

k�x����
k��

h�x� k��

The Boolean functions g�x� ��� g�x� ��� � � � are preliminary approxima	
tions of the Boolean function g�x�� In particular�

g�x� k� �

k���
k��

h�x� j�

for all � � k � k�x�� Thus g�x� �� is the constant	� Boolean function�

�b� The Boolean function h�x� k� is an AND of l�x� k� consecutive input
variables� The subscript n is incremented globally so that no input
variable appears more than once in g�x�� Just as g�x� k� is the kth

�partial OR� of g�x�� h�x� k� l� is the lth �partial AND� of h�x� k��
Thus h�x� k� �� is the constant	� Boolean function�

�c� The input variables v�� v�� � � � of g correspond to the respective queries
q�x� ��� q�x� ��� � � � of f � If A � F�f�g��B�� then we have ��x � A �
g�x��v� � � � vn�x����� where each vn � ��q�x� n� � B� If B is chosen

according to the sequence of biases ��� then �j�x�n� is the probability
that vn � �� �i�k is the probability that h�x� k� � �� and ��i is the
probability that g�x� � �� The while	loops ensure that �i��i����� �
��i � �i�

The following lemmas provide some quantitative analysis of the behavior
of Construction ����

Lemma ���� In Construction ���� for all x � f�� �g� and � � k � k�x��

l�x� k� � � �
cjxj

� log e
�

Proof� Fix such x and k� and let l� � l�x� k�� If l� � �� the result is trivial�
so assume that l� � �� Then� by the minimality of l��

��i�k� � �i�k�l
� � �� � �i�

��



so
�i�k�l

� � �� � �i � ��i�k� � �i� �����

so
�i� ���� 	 �i�k�l

� � �� � ��� ��l
����

It follows that
�� log�i� �� � �l� � �� log��� ���

whence

l� � ��
� log�i� ��

log��� ��

� ��
�jxj

log��� ���

� � �
cjxj

� log e
�

�

Lemma ���� In the Construction ���� for all x � f�� �g�� and � � k �
k�x�� ��

�i � ��i�k� � ��� ���k�

Proof� Fix such x and k with k 	 k�x� � �� and let l� � l�x� h�� Then
�i�k�l

� � �� � �i � ��i�k�� so �i�k � � � �i�k�l
� � �� � � � ��i � ��i�k��� whence

�i � ��i�k � ��

�i � ��i�k�
�

�i � ���i�k� � �i�k � ��i�k� � �i�k�

�i � ��i�k�

�
�� ��i�k�� �i�k��� ��i�k��

�i � ��i�k�

	 �� � � ��� ��i�k��

� �� � � ��� �i�

� �� ���

The lemma now follows immediately by induction� �

Lemma ���� In Construction ���� for all x � f�� �g��

k�x� � � �
cjxj

� log e

��



Proof� Fix x � f�� �g�� By Lemma ��� and the minimality of k�x��

�i � ��� ���k�x��� � ��i�k�x�� �� 	 �i � �i� �����

so
��� ���k�x�� � � �i� �����

so

k�x� 	 ��
� log�i� ��

log��� ���
� � �

cjxj

� log e
�

�

Lemma ���� In Construction ���� for all x � f�� �g��

n�x� � �cjxj�

Proof� Let x � f�� �g�� Then

n�x� �

k�x���X
k��

l�x� k��

so by Lemmas ���� ���� and the bound � � t � et�

n�x� �


� �

cjxj

� log e

��

� e
cjxj
log e � �cjxj�

�

De�nition� Let �f� g� be a �tt	reduction�

�� �f� g� is positive �brie�y� a �pos�tt	reduction� if� for all A�B � f�� �g��
A � B impliesF�f�g��A� � F�f�g��B��

�� �f� g� is polynomial�time computable �brie�y� a �P
tt	reduction� if the

functions f and g are computable in polynomial time�

�� �f� g� is polynomial�time computable with linear�bounded queries �brie�y�

a �P�lin
tt 	reduction� if �f� g� is a �P

tt	reduction and there is a constant
c � N such that� for all x � f�� �g�� Q�f�g��x� � f�� �g�c���jxj��

��



Of course� a �P�lin
pos�tt	reduction is a �tt	reduction with all the above prop	

erties�

The following result presents the properties of the positive bias reduction
that are used in the proof of our main theorem�

Theorem ��� �Positive Bias Reduction Theorem�� Let �� and �� be strongly
positive� P	exact sequences of biases� and let �f� g� be the positive bias re	

duction of �� to ��� Then �f� g� is an orderly �P�lin
pos�tt	reduction� and the

probability measure induced by �
�� and �f� g� is a coin	toss probability mea	

sure �
��� � where �� t ����

Proof� Assume the hypothesis� By inspection and Lemma ���� the pair
�f� g� is an orderly �P�lin

pos�tt	reduction� �Lemma ��� also ensures that f�x� is
well	de
ned�� The reduction is also positive� since only AND�s and OR�s are

used in the construction of g�x�� Thus �f� g� is an orderly �P�lin
pos�tt	reduction�

By remark �c� following Construction ���� the probability measure in	

duced by �
�� and �f� g� is the coin	toss probability measure �

��� � where
��� � ����� �

�
�� � � � � is de
ned in the construction� Moreover�

�X
i��

j�i � ��ij �
�X
i��

�i� ���� 	��

so �� t ���� �

� Equivalence for Complexity Classes

Many important complexity classes� including P� NP� co	NP� R� BPP� AM�
P�Poly� PH� PSPACE� etc�� are known to be closed under�P

pos�tt	reductions�

hence certainly under �P�lin
pos�tt	reductions� The following theorem� which is

the main result of this paper� says that the p	measure of such a class is some	
what insensitive to certain changes in the underlying probability measure�
The proof is now easy� given the machinery of the preceding sections�

��



Theorem 	�� �Bias Equivalence Theorem�� Assume that �� and �� are
strongly positive P	sequences of biases� and let C be a class of languages
that is closed under �P�lin

pos�tt	reductions� Then

���p�C� � ��� �
��
p�C� � ��

Proof� Assume the hypothesis� and assume that ���p�C� � �� By symmetry�

it su�ces to show that �
��
p�C� � ��

The proof follows the scheme depicted in Figure �� By Lemma ����
there exist P	exact sequences ��� and ��� such that �� t ��� and �� t ���� Let
�f� g� be the positive bias reduction of ��� to ���� Then� by the Positive Bias

Reduction Theorem �Theorem ����� �f� g� is an orderly �P�lin
pos�tt	reduction�

and the probability measure induced by �
�� and �f� g� is ���

��
� where ��� t �����

Figure �� Scheme of proof of Bias Equivalence Theorem

Since �� t ��� t ���� and ���p�C� � �� the Summable Equivalence Theorem
�Theorem ���� tells us that there is a p	����	martingale d such that C � S��d�
By the Martingale Dilation Theorem �Theorem ����� the function �f� g�bd
is then a ���	martingale� In fact� it easily checked that �f� g�bd is a p	���	
martingale�

Now let A � C� Then� since C is closed under �P�lin
pos�tt	reductions�

F�f�g��A� � C � S��d� It follows by the Martingale Dilation Theorem

that A � S���f� g�bd� Thus C � S���f� g�bd� Since �f� g�bd is a p	���	

martingale� this shows that �
���

p �C� � �� Finally� since �� t ���� it follows by

the Summable Equivalence Theorem that �
��
p�X� � ��

�

��



It is clear that the Bias Equivalence Theorem remains true if the resource
bound on the measure is relaxed� That is� the analogs of Theorem ��� for p�	
measure� pspace	measure� rec	measure� constructive measure� and classical
measure all immediately follow� We conclude by noting that the analogs of
Theorem ��� for measure in E and measure in E� also immediately follow�

Corollary 	��� Under the hypothesis of Theorem ����

����CjE� � ��� �
���CjE� � �

and
����CjE�� � ��� �

���CjE�� � ��

Proof� If C is closed under �P�lin
pos�tt	reductions� then so are the classes C �E

and C � E�� �

	 Conclusion

Our main result� the Bias Equivalence Theorem� says that every strongly
positive� P	computable� coin	toss probability measure � is equivalent to the
uniform probability measure �� in the sense that

�p�C� � ��� �p�C� � �

for all classes C � �� where � is a family that contains P� NP� co	NP� R� BPP�
P�Poly� PH and many other classes of interest� It would be illuminating to
learn more about which probability measures are� and which probability
measures are not� equivalent to � in this sense�

It would also be of interest to know whether the Summable Equivalence
Theorem can be strengthened� Speci
cally� say that two sequences of biases
�� and �� are square�summably equivalent� and write �� t� ��� if

P�
i����i �

�i�
� 	 �� A classical theorem of Kakutani �� says that� if �� and �� are

strongly positive sequences of biases such that �� t� ��� then for every set
C � C� X has �classical� ��	measure � if and only if X has ��	measure �� A
constructive improvement of this theorem by Vovk ��� says that� if �� and
�� are strongly positive� computable sequences of biases such that �� t� ���

��



then for every set X � C� X has constructive ��	measure � if and only if
X has constructive ��	measure �� �The Kakutani and Vovk theorems are
more general than this� but for the sake of brevity� we restrict the present
discussion to coin	toss probability measures�� The Summable Equivalence
Theorem is stronger than these results in one sense� but weaker in another�
It is stronger in that it holds for p	measure� but it is weaker in that it
requires the stronger hypothesis that �� t ��� We thus ask whether there is
a �square	summable equivalence theorem� for p	measure� That is� if �� and
�� are strongly positive� p	computable sequences of biases such that �� t� ���
is it necessarily the case that� for every set X � C� X has p	��	measure � if
and only if X has p	��	measure � 
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