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1 Introduction

The two most important notions of fractal dimension are Hausdorff dimension, developed by Haus-
dorff [17], and packing dimension, developed by Tricot [63] and Sullivan [60]. Both dimensions
have the mathematical advantage of being defined from measures, and both have yielded exten-
sive applications in fractal geometry and dynamical systems. In 2000, Lutz [32] proved a simple
characterization of Hausdorff dimension in terms of gales, which are betting strategies that gener-
alize martingales. Imposing various computability and complexity constraints on these gales pro-
duces a spectrum of effective versions of Hausdorff dimension, including constructive, computable,
polynomial-space, polynomial- time, and finite-state dimensions. Work by several investigators has
already used these effective dimensions to shed light on a variety of topics in theoretical computer
science, including algorithmic information theory, computational complexity, prediction, and data
compression. Constructive dimension has also been discretized, assigning a dimension dim(z) to
each string z € {0,1}* in a way that arises naturally from Hausdorff and constructive dimensions
and gives the unexpected characterization K(z) = |z|dim(z) & O(1) of Kolmogorov complexity.
More recently, Athreya, Hitchcock, Lutz, and Mayordomo [3] proved that packing dimension —
previously thought to be much more complex than Hausdorff dimension [40] — admits a gale char-
acterization that is an exact dual of that of Hausdorff dimension. We survey these developments
and their implications for the theory of computing.

Portions of this work have been surveyed earlier by Mayordomo [41] and Terwijn [62]. An online
bibliography on effective fractal dimensions is maintained by Hitchcock [18].

2 Gales and Fractal Dimensions

Effective fractal dimensions were formulated by the following two steps.

1. Characterize classical fractal dimensions - which were originally defined in other terms - in
terms of certain betting strategies, called gales.

2. Impose computability or complexity constraints on these gales.

In this section we review the first of these steps.
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Notation. The Cantor space C is the set of all infinite binary sequences. The n-bit prefiz of a
sequence S € C is the binary string S[0..n — 1].

Definition. Let s € [0, 00).
1. An s-supergale is a function d : {0,1}* — [0, 00) that satisfies the condition
d(w) > 27%[d(w0) + d(wl)] (2.1)
for all w € {0,1}*.
2. An s-gale is an s-supergale that satisfies (2.1) with equality for all w € {0, 1}*.
3. A supermartingale is a 1-supergale.
4. A martingale is a 1-gale.

Martingales, introduced by Lévy [30] and Ville [64] have been used extensively by Schnorr
[48, 49, 50] and others in the investigation of randomness and by Lutz [34, 36] and others in the
development of resource-bounded measure.

Intuitively, we regard a supergale d as a strategy for betting on the successive bits of a sequence
S € C. More specifically d(w) is the amount of capital that d has after betting on the prefix w
of S. If s = 1, then the right-hand side of (2.1) is the conditional expectation of d(wb) given that
w has occurred (when b is a uniformly distributed binary random variable). Thus a martingale
models a gambler’s capital when the payoffs are fair. (The expected capital after the bet is the
actual capital before the bet.) In the case of an s-gale, if s < 1, the payoffs are less than fair; if
s > 1, the payoffs are more than fair.

We now define two criteria for the success of a gale or supergale.

Definition. Let d be an s-supergale, where s € [0, 00).

1. We say that d succeeds on a sequence S € C if

limsupd(S[0..n — 1]) = co. (2.2)

n—00

The success set of d is S*®°[d] = {S € C|d succeeds on S}.

2. We say that d succeeds strongly on a sequence S € C if

liminf d(S[0..n — 1]) = oo. (2.3)

n—o00
The strong success set of d is Sg[d] = {S € C|d succeeds strongly on S}.

We have written conditions (2.2) and (2.3) in a fashion that emphasizes their duality. Condition
(2.2) says simply that the set of values d(S[0..n — 1]) is unbounded, while condition (2.3) says that
d(S]0..n — 1]) = oo as n — oo.

Notation. Let X C C.
1. G(X) is the set of all s € [0,00) for which there exists an s-gale d such that X C S*°[d].

2. G5'T(X) is the set of all s € [0,00) for which there exists an s-gale d such that X C S%[d].

str



3. §(X) is the set of all s € [0, 00) for which there exists an s-supergale d such that X C S*°[d].
4. G¥r(X) is the set of all s € [0, 00) for which there exists an s-supergale d such that X C S%[d].

Note that s’ > s € G(X) implies that s" € G(X), and similarly for the classes G*"(X), G(X),
and G*"(X). The following fact is also clear.

Observation 2.1. For all X C C, G(X) = G(X) and G¥7(X) = G5 (X).

Each set X C C has a Hausdorff dimension dimy(X), defined by Hausdorff [17], and a packing
dimension dimp(X), defined independently by Tricot [63] and Sullivan [60]. These definitions
appear in many standard texts, e.g., [14, 13], but they are not used in the present survey, so we do
not reproduce them. For our purpose here, it suffices to use the following characterizations as the
definitions of the Hausdorff and packing dimensions in C.

Theorem 2.2 (Gale Characterizations of Fractal Dimensions). Let X C C.
1 (Lutz [32]). dimp(X) = inf G(X).
2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). dimp(X) = inf G5 (X).

Informally speaking, the above theorem says that the dimension of a set is the most hostile
environment (i.e., the most unfavorable payoff schedule, i.e., the infimum s) in which a single
betting strategy can achieve infinite winnings on every element of the set. The two dimensions
differ only in that “achieve infinite winnings” refers to success in the case of dimy and to strong
success in the case of dimp.

By Observation 2.1, we could equivalently use G (X) and Q\Str(X ) in Theorem 2.2.

The following obvious but useful fact shows how gales and supergales are affected by variation
of the parameter s.

Observation 2.3 (Lutz [33]). Let s,s" € [0,00), and let d,d' : {0,1}* — [0,00). Assume that
d(w)2~° vl = ¢ (w)2~5' v
for all w € {0,1}*. Then d is an s-gale if and only if d’ is an s'-gale, and similarly for supergales.

For example, Observation 2.3 implies that a function d : {0,1}* — [0,00) is an s-gale if and
only if the function d’ : {0,1}* — [0, 00) defined by d'(w) = 2(1=9)1*ld(w) is a martingale. We can
thus equivalently characterize the fractal dimensions dimy and dimp in terms of the highest rate
at which a single betting strategy (now a martingale) can win in a fair environment.

Well known (and easily, derived) properties of the fractal dimensions dimy and dimp include
the following. Each of the dimensions is monotone, i.e.,

X CY = dim(X) < dim(Y),

and countably stable, i.e.,

o
dim(| J X,,) = sup dim(X,,).
n—=0 neN

For every set X C C, we have

0 < dimp (X) < dimp(X) < 1.



If X is countable, then
dimy (X) = dimp (X) =0,

while
dimy (C) = dimp(C) = 1.

3 Constructive Fractal Dimensions

Our first effectivization of fractal dimensions is at the constructive level.

Definition. An s-supergale d is constructive if it is lower semicomputable, i.e., if there is a com-
putable function d : {0,1}* x N — Q such that

(a) for all w, ¢, d(w,t) < d(w,t + 1) < d(w), and
(b) for all w, limy_,u d(w,t) = d(w).

Martin-Lof [39] used constructive measure theory to give the first satisfactory definition of the
randomness of individual infinite binary sequences. This definition says precisely which infinite
binary sequences are random and which are not. The definition is probabilistically convincing in
that it requires each random sequence to pass every algorithmically implementable statistical test
of randomness. The definition is also robust in that subsequent definitions by Schnorr [48, 49, 50],
Levin [28], Chaitin [8], Solovay [55], and Shen’ [53, 54], using a variety of different approaches, all
define exactly the same sequences to be random. In fact it is most useful to regard the following
characterization as the definition of randomness for our purposes here.

Theorem 3.1 (Schnorr [48]). A sequence R € C is random if there is no constructive martingale
that succeeds on R.

We now define constructive versions of Hausdorff and packing dimension by requiring the gales
in the characterizations of Theorem 2.2 to be constructive.

Notation. For X C C, we define the sets Geonstr (X), G50 (X)), @\mnstr(X), and G5tT (X) just as

constr constr

the classes G(X), G5%(X), G(X), and G¥"(X) were defined in section 2, but with d now required
to be constructive.

We do not know whether the constructive analog of Observation 2.1 holds, but the following
theorem, which was proven independently by Hitchcock and Fenner, is sufficient for our purposes.

Theorem 3.2 (Hitchcock [23], Fenner [15]). For all X C C,

inf Geonstr = inf Geonstr

and

A~

inf gsglstr = inf gsglstr'
The constructive fractal dimensions are now defined as follows.
Definition. Let X C C.

1 (Lutz [33]). The constructive dimension of X is cdim(X) = inf Geonstr (X).



2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). The constructive strong dimension of X is
cDim(X) = inf G5 . (X).

constr

A brief remark on notation is appropriate here. In the fractal geometry literature, there are
two commonly used conventions for denoting the Hausdorff and packing dimensions of a set X.
One is to denote them by dimy(X) and dimp(X), respectively, as in section 2 above. The other
is to denote them by dim(X) and Dim(X), respectively, thereby avoiding subscripts. In denoting
effective versions of Hausdorff and packing dimensions, we follow the latter convention, as in the
use of cdim(X) and ¢Dim(X) above.

Observation 3.3. For every set X C C,

0 < dimpg(X) < dimp(X)
IN IN
edim(X) < cDimX < 1.

As noted in section 2, every countable set of sequences has Hausdorff and packing dimension
0. In contrast, even a singleton set, consisting of a single sequence, may have positive constructive
dimension, and this leads to the following useful definition.

Definition. Let S € C.
1 (Lutz [33]). The dimension of S is dim(S) = cdim({s}).

2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). The strong dimension of S is Dim(S) =
cDim({S}).

Although dim(S) and Dim(S) are constructive notions, it is convenient to omit “constructive”
from the terminology and notation.

The following theorem, which has no analog either in classical fractal dimension or in the other
effective fractal dimensions surveyed in this paper, says that the constructive dimension and strong
dimension of a set of sequences are completely determined by the dimensions and strong dimensions
of the individual sequences in the set.

Theorem 3.4. Let X C C.
1 (Lutz [33]). cdim(X) = supge y dim(S).
2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). cDim(X) = supgex Dim(S).

The above theorem says that the constructive fractal dimensions are absolutely stable in the
sense that for every indexed family {Xz‘z €1} of sets X; C C,

cdim(U X;) = sup cdim(X;)
i€T ez
and
cDim(U X;) = supcDim(Xj;).
ieT el
This is much stronger than the countable stability property of the classical fractal dimensions
mentioned in section 2.
The following correspondence principle says that, for “simple” sets X, the constructive dimen-
sion coincides with the classical Hausdorff dimension.



Theorem 3.5 (Hitchcock [20]). If X is an arbitrary union of I1Y (i.e., computably closed) subsets
of C, then
cdim(X) = dimyg(X).

An interesting open problem is to establish a similar correspondence principle for constructive
strong dimension and packing dimension. In any case, Theorems 3.4 and 3.5 give the following
pointwise characterization of the classical Hausdorff dimensions of “simple“ sets X.

Corollary 3.6. If X is an arbitrary union of 11 subsets of C, then

dimg(X) = sup dim(S).
SeX
It is clear from the definitions that every random sequence R has dimension 1. To further
explore the existence and nature of sequences of various dimensions, we define, for each a € [0, 1],

the level sets
DIM® = {S € C|dim(S) = a},

DIM?, = {S € C|Dim(S) = a}.

We also use the notations DIM <%, DIM=<?, etc., with the obvious meanings.
Theorem 3.7. Let a € [0,1].
1 (Lutz [33]). cdim(DIM®) = c¢dim(DIM<%) = dimy (DIM?%) = dimy (DIM<?%) = .

2. ¢Dim(DIM,

str

) = cDim(DIM$?) = dimp (DIME,) = dimp (DIM3S%) = a.

str str

The above theorem implies the existence of sequences with any given dimension or strong
dimension. The following theorem establishes the existence of sequences with any given dimension
and strong dimension.

Theorem 3.8 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). For any two real numbers
0 <a<p<1, there is a sequence S € C such that dim(S) = « and Dim(S) = 3.

What might such a sequence look like, and how simple can it be? to answer this question, we
recall the generalization of randomness to an arbitrary probability measure on C.

A probability measure on C is a function v : {0,1}* — [0,00) such that v(A\) = 1 and v(w) =
v(w0) + v(wl) for all w € {0,1}*. (Intuitively, v(w) is the probability that w C S when the
sequence S is “chosen according to v.”)

A bias is a real number § € [0, 1]. Intuitively, if we toss a 0/1-valued coin with bias /3, then
is the probability of the outcome 1. A bias sequence is a sequence 5 = (Po, B1, P2, -.) of biases. If

B is a bias sequence, then the B- coin-toss probability measure is the probability u® on C defined by

lw|-1

Ww) =TT Biw), (3.1)
1=0

where 3;(w) = (26; — 1)w[i] + (1 — 3;), i.e., Bi(w) = if w[i] then j; else 1 — f3;. That is, ,ug is the
probability that § € C,, when S € C is chosen according to a random experiment in which for
each 4, independently of all other j, the i bit of S is decided by tossing a 0/1-valued coin whose



probability of 1 is 8;. In the case where the biases (3; are all the same, i.e., 5 = (6,6,08,...) for
some 3 € [0,1], we write u? for u, and (3.1) simplifies to

uP (w) = (1 = pyFOw) gHte), (32)

where # (b, w) is the number of times the bit b appears in the string w. The uniform probability
measure on C is the probability measure p = /ﬁ, for which (3.2) simplifies to

plw) =271
for all w € {0,1}*.
Definition. Let v be a probability measure on C.
1. A v-martingale is a function d : {0,1}* — [0, 00) that satisfies the condition
d(w)v(w) = d(w0)v(w0) + d(wl)v(wl)
for all w € {0,1}*.
2. A v-martingale is constructive if it is lower semicomputable.

Note that a p-martingale is a martingale. If 5 is a bias sequence, then we call a ug—martingale
simply a S-martingale.

Definition (Schnorr [48]). If v is a probability measure on C, then a sequence R € C is v-random
if there is no constructive v-martingale that succeeds on R.

Given a bias sequence ﬁ , we say that a sequence R € C is ﬁ—mndom if it is ,ug -random. Note

that a sequence is random if and only if it is B-random, where § = (3,1 L),

29929929
Recall that the Shannon entropy of a bias 8 € [0,1] is

H(B) = Blog 5 + (1 = B)log 1=,

where we insist that Olog% =0.

Notation. Given a bias sequence E: (Bo,B1,y--.), n €N, and S € C, let

n—1

" 1

Hu(B) = —> H(B),
=0

H™(F) = liminf Hy(B),

HY(f) = limsupH,(B).

We call H~ (ﬁ) and H+(ﬁ) the lower and upper average entropies, respectively, of ﬁ

Theorem 3.9 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). If § € (0,31] and 3 is a
computable bias sequence with each f3; € [0, %], then for every sequence R € RANDA,

—,

dim(R) = H () and Dim(R) = H"(B).



Theorem 3.9 says that every sequence that is random with respect to a suitable bias sequence ﬁ
has the lower and upper average entropies of B as its dlmensmn and strong dimension, respectively.
Since there exist ﬁ random sequences in A when ﬁ is computable, this gives a powerful and
flexible method for constructing AJ sequences with given (A9-computable) dimensions and strong
dimensions.

Let X9 be the set of sequences S for which {n|S[n] = 1} is computably enumerable, and let I19
be the set of sequences S for which {n|S[n] = 0} is computably enumerable.

Theorem 3.10 (Lutz [33]). XY UTIY C DIMY,,. (This was actually proven in [33], though stated
in the weaker form X9 U C DIMO.)

By Theorems 3.9 and 3.10, sequences of positive dimension or strong dimension occur in A,
but no lower, in the arithmetical hierarchy.
We conclude this section by considering the arithmetical complexities of the level sets DIM®.

Theorem 3.11 (Hitchcock, Lutz, and Terwijn [26]). 1. The level set DIMO s T19.
2. If a € (0,1] is AY-computable, then the level set DIM® is 113, but not %3.

In contrast with DIM!, it is well known that the set of random sequences is TI.
The complexities of the level sets DIMS, are also considered in [26], but the statement of that
result is a bit more involved.

4 Discrete Dimension and Kolmogorov Complexity

We have now seen that the classical fractal dimensions can be constructivized, thereby defining the
dimensions and strong dimensions of individual infinite binary sequences. In [33] we pushed this a
step further by constructivizing and discretizing classical fractal dimension in order to define the
dimensions of individual finite binary strings.

Recall that the dimension of a sequence S is the infimum of all s > 0 for which there exists
a constructive s-supergale d such that the values of d(S[0..n — 1]) are unbounded as n — co. To
define the dimensions of finite strings, we modify this definition in three ways.

I. We replace gales by termgales, which are gale-like constructs with special requirements for
handling the terminations of strings.

II. We replace “unbounded as n — oo” by a finite threshold.
ITI. We make the definition universal by using an optimal constructive termgale.

We refer the reader to [33] for the details of this development. The result is that each binary string
x is assigned a discrete dimension dim(X) that “agrees” with the dimension and strong dimensions
in the following asymptotic sense.

Theorem 4.1. Let S € C.
1 (Lutz [33]). dim(S) = liminf,_,, dim(S[0..n — 1]).

2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). Dim(S) = limsup,,_,, dim(S[0..n — 1]).



It turns out that discrete dimension gives a new characterization of Kolmogorov complexity.
(See the text by Li and Vitanyi [31] for a thorough treatment of Kolmogorov complexity.)

Theorem 4.2 (Lutz [33]). There is a constant ¢ € N such that, for all xz € {0,1}*,
K(z) — |z|dim(z)| < c.

That is, the Kolmogorov complexity of a string is (to within a constant additive term) the
product of the string’s length and its dimension. This characterization of Kolmogorov complexity in
terms of a constructivized, discretized version of Hausdorff’s 1919 theory of dimension is reminiscent
of (and technically related to) the well-known characterization by Levin [28, 29] and Chaitin [8] of
Kolmogorov complexity in terms of constructivized discrete probability, i.e., the fact that there is
a constant ¢’ € N such that for all 2 € {0,1}*,

1
K(x)—1o <d,
(w) —log T3 | <
where m is an optimal constructive subprobability measure on {0, 1}*.
The following theorem is an immediate consequence of Theorems 4.1 and 4.2.

Theorem 4.3. Let S € C.

1 (Mayordomo [42]). dim(S) = lim inf,,_,e 25001

n

2 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). Dim(S) = limsup,,_,, K(S[0-n=1)),

n

Mayordomo’s proof of part 1 actually preceeded the formulation of discrete dimension. Several
proofs of this result are now known. Earlier results by Ryabko [44, 45, 46, 47], Staiger [57, 58, 56],
and Cai and Hartmanis [7] that relate martingales, supermartingales, and Kolmogorov complexity
to Hausdorff dimension (using fundamental work by Levin [65] and Schnorr [49, 51]) are discussed
by Lutz [33] and Staiger [59].

Theorems 4.2 and 4.3 justify the intuition that dim(z), dim(S), and Dim(S) are measures of
information density.

Generalizing the construction of Chaitin’s random real number © [8], Mayordomo [42] and,
independently, Tadaki [61] defined for each s € (0,1] and each infinite, computably enumerable set
A C{0,1}*, the real number

92:2{2‘%

where U is a universal self-delimiting Turing machine. Given Theorem 4.3, the following fact is
implicit in Tadaki’s paper.

7€ {0,1} and U(x) € A} :

Theorem 4.4. (Tadaki [61]) For each s € (0,1] and each infinite, computably enumerable set
A C{0,1}*, the (binary expansion of the) real number 0% satisfies dim(6%) = Dim(6%) = s.



5 Dimensions in Complexity Classes

One of the main reasons for effectivizing fractal dimensions is to impose useful internal dimension
structure on various complexity classes. This structure is a refinement of the internal measure
that resource-bounded measure (developed by Lutz [34, 36], surveyed by Lutz [35], Ambos-Spies
and Mayordomo [1], Buhrman and Torenvliet [5], and Lutz and Mayordomo [38], and extensively
documented by Hitchcock’s bibliography [19]) imposes on these classes.
A language, or decision problem, is a set A C {0,1}*. We usually identify a language A
with its characteristic sequence x4 € C defined by x4[n] = if s,, € A then 1 else 0, where
so=A,81 =0,89 =1,53 =00,... is the standard enumeration of {0,1}*. That is, we usually (but
not always) use A to denote both the set A C {0,1}* and the sequence A = x4 € C.
We use the following classes of functions as resource bounds.
all = {]f : {0,1}" — {0,1}"}
comp = {f € all|f is computable }
p ={f € all|f is computable in polynomial time }
p, = {f € all|f is computable in nlogm®™ time }
pspace = {f € all|f is computable in polynomial space }
p,space = {f € all|f is computable in p (logn)°® space }
A constructor is a function § : {0,1}* — {0,1}* that satisfies :JU;E(S(:E) for all z. The result
of a constructor § (i.e., the language constructed by J) is the unique language R(4) such that
0™(A\) C R(9) for all n € N. Intuitively,  constructs R(d) by starting with A and then iteratively
generating successively longer prefixes of R(d). We write R(A) for the set of languages R(J) such
that § is a constructor in A. The following facts are the reason for our interest in the above-defined
classes of functions.
R(all) = C.

comp) = DEC.

p) = E = DTIME(2linear),

p,) = EXP = DTIME(2polynomialy,

pspace) = ESPACE = DSPACE(2'iear),
R(p,space) = EXPSPACE = DSPACE(2polynomial),

Throughout this section, A denotes one of the resource bounds all, comp, p, p,, pspace, p,space
defined above. An s-supergale d is A-computable if there is a function d : {0,1}* x N — QnN[0, 00)
such that |d(w,r) — d(w)] < 27" for all w € {0,1}* and 7 € N and d € A (with r coded in unary
and the output coded in binary). For X C C, we then define the classes Ga(X), G2 (X), Ga(X),
and QASA“(X) just as the classes G(X), G5"(X), G(X), and G*(X) were defined in section 2, but
with d now required to be computable.

Definition (Lutz [32], Athreya, Hitchcock, Lutz, and Mayordomo [3]). Let X C C.
1. The A-dimension of X is

R(
R(
R(
R(

dima (X) = inf Ga (X).
2. The A-strong dimension of X is
Dima (X) = inf G (X).

3. The dimension of X in R(A) is
dim(X|R(A)) = dima (X N R(A)).
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4. The strong dimension of X in R(A) is
Dim(X|R(A)) = Dima (X N R(A)).

In parts 1 and 2 of the above definition, we could equivalently use the “hatted” sets G\A(X ) and
QASA“(X ) in place of their unhatted counterparts.

The polynomial-time dimensions dim,(X) and Dim,(X) are also called the feasible dimension
and the feasible strong dimension, respectively. The notation dim,(X) for the p-dimension is all
too similar to the notation dimp(X) for the classical packing dimension, but confusion is unlikely
because these dimensions typically arise in quite different contexts.

Note that the classical Hausdorff and packing dimensions can each now be written in three
different ways, i.e.,

dimp (X) = dimy,(X) = dim(X|C)

and
dimp (X') = Dim,y (X)) = Dim(X|C).

We are, of course, more interested in the effective fractal dimensions dima (X) and Dima (X),
where A C comp, and the structures they impose on the corresponding classes R(A). A critical
fact about these structures is that they do not “collapse” the classes R(A), even though the latter
is countable where A C comp.

Theorem 5.1 (Lutz [32]). dim(R(A)|R(A)) = dima(R(A)) = 1.
In fact, resource-bounded dimension refines resource-bounded measure in the sense that
dimA(X) <1l= /J,A(X) =0

and
dim(X|R(A)) < 1 = p(X|R(A)) =0.

Thus, for example, if dim(X|E) < 1, then X has measure 0 in E, i.e., X NE is a negligibly small
subset of E.

We now consider some particular complexity-theoretic topics from the standpoint of dimension.

For each s : N — N, let SIZE(s(n)) be the class of all languages A C {0,1}* such that, for
each n € N, A_,, is decided by a Boolean circuit consisting of at most s(n) gates. Shannon [52]
showed (essentially) that SIZE(aZ-) has measure 0 in C for all @ < 1, and Lutz [34] showed that
SIZE(a%) also has measure 0 in ESPACE for all & < 1. We now use resource-bounded dimension
to give a quantitative refinement of these results.

Theorem 5.2 (Lutz [32], Athreya, Hitchcock, Lutz, and Mayordomo [3]). For each a €
[0,1], the class X = SIZE(ax- %) satisfies dimpgpace (Xo) = Dimpgpace(Xo) = dim(X,|ESPACE) =
Dim(X,|ESPACE) = a.

It was shown by Juedes and Lutz [27] that every polynomial-time many-one degree has measure
0 in E. The following refinement of this result showed that the dimensions of such degrees are
unrestricted in E.

Theorem 5.3 (Ambos-Spies, Merkle, Reimann, and Stephan [2]). For every AY-computable
real number = € [0, 1], there ezists A € E such that

dim, (degP, (A)) = dim(deg?,(A)|E) = =.

11



This result was recently extended to the following.

Theorem 5.4 (Athreya, Hitchcock, Lutz, and Mayordomo [3]). For every pair of AY-
computable real numbers z,y with 0 <z <y < 1, there exists A € E such that

dimy (deg?, (4)) = dim(degl, (A)[E) =

and
Dim,(degt,(4)) = Dim(degh, (4)|E) = y.

We note that the proofs of Theorems 5.3 and 5.4 - especially the latter - are not straightforward
and involve an unusual variety of techniques.

The hypothesis p,(NP) # 0 (“NP does not have p-measure 0”) is known to have many
complexity-theoretic consequences not known to follow from more “traditional” hypotheses such
as P # NP or the separation of the polynomial-time hierarchy into infinitely many levels. The
hypothesis dim,(NP) > 0 is ostensibly weaker, but still very strong because

11p(NP) # 0 = dimy,(NP) = 1 = dim,,(NP) > 0 = P # NP.

In fact, the hypothesis dim,(NP) > 0 is now known to have the following consequence for the
difficulty of approximating MAX3SAT.

Theorem 5.5 (Hitchcock [21]). If dim,(NP) > 0, then for all e > 0 there exists a 6 > 0 such

that any 27’ _time approzimation algorithm for MAX3SAT has performance ratio less than %4— € on
a dense set of satisfiable instances.

A language A is autoreducible if there is a polynomial-time Turing reduction of A to itself that
never queries the oracle on its input. The language A is infinitely often autoreducible if there is
a polynomial-time oracle machine M that never queries the oracle on its input and, on oracle A,
satisfies the following two conditions.

(i) For infinitely many inputs 2, M“(z) correctly decides whether z € A.
(ii) For all other &, M“(x) outputs a special “undefined” symbol.

Let AR be the class of autoreducible languages, and let AR* be the class of infinitely often
autoreducible languages. The measure of AR in EXP is unknown and has bearing on the BPP
versus EXP problem [6]. The following dimension result at least puts a limit on how “small” AR
can be in EXP.

Observation 5.6 (Ambos-Spies, Merkle, Reimann, and Stephan [2]). dim(AR|EXP) = 1.

In a recent celebrated result, Ebert [11, 12] proved that AR has measure 1 in EXP, i.e., almost
every language in EXP is infinitely often autoreducible. Thus the complement EXP — AR"® has
measure 0 in EXP. The following result shows that this set, too, has dimension 1 in EXP.

Theorem 5.7 (Beigel, Fortnow, and Stephan [4]). dim(EXP — AR"*|EXP) = 1.
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6 Other Work

Effective fractal dimension is a very new research area, but it is growing rapidly, and there are
several developments that have not been discussed. We briefly mention a few of these here.

Many classes that occur naturally in computational complexity are parametrized in such a way
as to remain out of rearch of the resource-bounded dimensions defined in section 5. Hitchcock,
Lutz, and Mayordomo [25] have thus extended the resource-bounded dimension of section 5 by
introducing the notion of a scale according to which dimension may be measured. These scales are
slightly less general than the functions used for classical generalized dimension [17, 43] and take two
arguments instead of one, but every scale g defines for every set X of decision problems a g-scaled
dimension dim?(X) € [0,1]. The choice of which scale to use for a particular application is very
much like the choice of whether to plot data on a standard Cartesian graph or a log-log graph.
In fact, a very restricted family of scales appears to be adequate for analyzing many problems
in computational complexity. These scales are used in [25] to investigate Boolean circuit-size
complexity and resource-bounded Kolmogorov complexity. Hitchcock [24] uses scaled dimension to
investigate “small span” phenomena.

Fortnow and Lutz [16] gave precise quantitative bounds on the relationship between feasible
dimension and feasible predictability in the absolute loss model. Hitchcock [22] proved that, at any
level from feasible to classical, fractal dimension is precisely unpredictability in the logarithmic loss
model. This characterization has already been useful in proving some of the results surveyed here.

Dai, Lathrop, Lutz, and Mayordomo [10] have formulated finite-state-dimension and used it to
characterize finte-state compressibility. A dual characterization has been noted in [3].
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