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Abstract. Consider the problem of calculating the fractal dimension of
a set X consisting of all infinite sequences S over a finite alphabet Σ
that satisfy some given condition P on the asymptotic frequencies with
which various symbols from Σ appear in S. Solutions to this problem
are known in cases where
(i) the fractal dimension is classical (Hausdorff or packing dimension),

or
(ii) the fractal dimension is effective (even finite-state) and the condition

P completely specifies an empirical distribution π over Σ, i.e., a
limiting frequency of occurrence for every symbol in Σ.

In this paper we show how to calculate the finite-state dimension (equiv-
alently, the finite-state compressibility) of such a set X when the con-
dition P only imposes partial constraints on the limiting frequencies of
symbols. Our results automatically extend to less restrictive effective
fractal dimensions (e.g., polynomial-time, computable, and constructive
dimensions), and they have the classical results (i) as immediate corollar-
ies. Our methods are nevertheless elementary and, in most cases, simpler
than those by which the classical results were obtained.
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1 Introduction

The most fundamental statistics used in the analysis of data for purposes of com-
pression or prediction are the empirical frequencies with which various symbols
appear. When every symbol has a frequency that is known and stable throughout
the data, the problems of compression and prediction are well understood, with
the main insights now over a half-century old [15, 16, 5]. However, when only
partial constraints on the empirical frequencies–e.g., the relative frequencies of
some of the symbols–are known, these problems become more challenging.

This paper shows how to calculate the finite-state dimension (equivalently,
the compressibility or predictability by finite-state machines [6, 14]) of a set X
of infinite sequences over a finite alphabet Σ when membership of a sequence
S in X is determined by some given condition P on the asymptotic frequencies
with which various symbols from Σ appear in S. Our results hold even when P
only imposes partial constraints on the limiting frequencies of symbols, and they
automatically extend to less restrictive effective dimensions, such as polynomial-
time, computable, and constructive dimensions. In order to explain our results
and their significance, we briefly review four lines of research that are precursors
of our work.

1.1 Classical fractal dimensions

In 1919, Hausdorff [13] developed a rigorous way of assigning a dimension to ev-
ery subset of an arbitrary metric space. His definition agrees with the intuitive
notion of dimension for “smooth” sets (e.g., smooth curves have dimension 1;
smooth surfaces have dimension 2), but assigns non-integer dimensions to some
more exotic sets, and hence came to be called a “fractal” dimension. In 1949,
Eggleston [7], building on work of Besicovitch [3] and Good [10], proved that,
for any probability measure π on a finite alphabet Σ, the set of all sequences
in which each symbol a ∈ Σ has asymptotic frequency π(a) has Hausdorff di-
mension H|Σ|(π), the Shannon entropy of π, normalized to range over [0, 1].
In retrospect, Hausdorff dimension is an information-theoretic concept [27], but
these developments essentially all took place prior to Shannon’s development of
information theory [28].

In the early 1980’s, another fractal dimension called packing dimension, was
introduced [30, 29]. Packing dimension agrees with Hausdorff on “regular” sets,
but is larger on some sets [9].

1.2 Shannon information theory

In 1948, Shannon [28] developed a probabilistic theory of information (Shannon
entropy) that has been enormously productive and is the setting in which most
work on compression and prediction has been carried out [5].



1.3 Effective fractal dimensions

In 2000, Lutz [18, 19] proved a new characterization of Hausdorff dimension in
terms of betting strategies and used this characterization to formulate effective
fractal dimensions ranging from polynomial-time and polynomial-space dimen-
sions to computable and constructive dimensions. Pushing this effort further,
finite-state dimension was introduced the following year [6], and is now known
to characterize the compressibility [6] and predictability [14] of sequences over
finite alphabets. In [1], packing dimension was shown to have a betting-strategy
characterization that is exactly dual to that of Hausdorff dimension, thereby
giving dual “strong dimensions” at each of the levels of effectivity for which
dimensions had been defined. Each of the papers mentioned here extended the
above-mentioned result of Eggleston to the effective dimension(s) introduced.
Hence, as indicated in our first paragraph, the compression and prediction prob-
lems are well understood, even at the finite-state level, when a set X of sequences
is defined in terms of given, well-defined, asymptotic frequencies of all symbols.

1.4 Classical dimensions of saturated sets

In 2002, Barreira, Saussol, and Schmeling [2] considered the classical fractal
dimensions of sets of sequences defined in terms of conditions placing (typically
partial) constraints on the frequencies and relative frequencies of symbols. The
example by which they introduced their work was the set X of all sequences over
the alphabet {0, 1, 2, 3} in which there are asymptotically five times as many 0’s
as 1’s. (No constraint is placed on the frequency of any individual symbol.) Using
sophisticated techniques (multifractal analysis and ergodic theory), they showed
how to compute the classical Hausdorff dimensions of sets of this kind. As it turns
out, Volkmann [31] and his student Cajar [4] had previously defined a set X of
sequences to be saturated if membership in it is completely determined by the
asymptotic behaviors (not necessarily convergent) of the frequencies of symbols
and investigated the Hausdorff dimensions of many saturated sets. Olsen [21–24]
and Olsen and Winter [25, 26] also used multifractal analysis to study such sets.

1.5 Our results

We show how to calculate the finite-state dimensions of saturated sets. We give
a pointwise characterization of the dimensions of such sets, and we prove a
general correspondence principle stating that, if X is any saturated set, then
the finite-state dimension of X is exactly its classical Hausdorff dimension, and
the finite-state strong dimension of X is exactly its classical packing dimension.
We also give completely elementary methods (no multifractal analysis or ergodic
theory) for computing the finite-state dimensions of various types of saturated
sets. By our correspondence principle, this yields elementary proofs that these
results also hold for classical fractal dimensions and less restrictive effective
fractal dimensions.



The rest of this paper is organized as follows. Section 2 lists the basic defini-
tions and conventions we use in this paper. Section 3 reviews the definitions of
Hausdorff dimension, packing dimension, finite-state dimension, and finite-state
strong dimension. We give a few example of calculating the dimensions of exotic
saturated sets in Section 4. In Section 5, we discuss finite-state dimensions of
saturated sets in detail and give insight into why a maximum entropy principle
holds.

2 Preliminaries

Let m ≥ 2 be an integer. We work with the m-ary alphabet Σm = {0, 1, . . . ,m−
1}. Σ∗

m is the set of all (finite) strings on Σm including the empty string λ.
Cm = Σ∞

m is the of all (infinite) m-ary sequences. C = C2 is the Cantor space.
∆(Σm) is the set of all probability measures on Σm.

Let i be an integer such that 0 ≤ i ≤ m − 1. The symbol counting function
#i : (Cm ∪ Σ∗

m) × N → N is defined such that for every string or sequence S
and n ∈ N, #i(S, n) is the number of occurrences of i in the first n bits of S.
The symbol frequency function πi : (Cm ∪Σ∗

m)×N→ [0, 1] is defined such that
πi(S, n) = #i(S, n)/n. The empirical measure function ~π : (Cm ∪ Σ∗

m) × N →
∆(Σm) is defined such that ~π(S, n) = (π0(S, n), . . . , πm−1(S, n)). Intuitively, ~π
extracts empirical probability measures from the first n bits of a string or a
sequence based on the actual frequencies of digits.

3 The Four Dimensions

Hausdorff dimension and packing dimension are important tools in mathematics
used to study the size of sets and the properties of dynamic systems. All count-
able sets have 0 for both of these dimensions. In order to study relative size of
countable sets from the eyes of computers with different resources, Lutz gener-
alized Hausdorff dimension to effective dimensions by using his gale characteri-
zation of Hausdorff dimension [18]. Athreya, Hitchcock, Lutz, and Mayordomo
then gave a dual gale characterization of packing dimension, with which, they
generalized packing dimension to effective strong dimensions [1]. We first review
the definitions related to gales. Note that Σm is an alphabet with m symbols
and m ≥ 2.

Definition. Let s ∈ [0,∞). An s-supergale is a function d : Σ∗
m → [0,∞) such

that for all w ∈ Σ∗
m msd(w) ≥ ∑

a∈Σm
d(wa). The success set of an s-supergale

d is S∞[d] = {S ∈ C | lim sup
n→∞

d(S[0..n − 1]) = ∞}. The strong success set of d

is S∞str[d] = {S ∈ C | lim inf
n→∞

d(S[0..n− 1]) = ∞}.

Now we conveniently give the gale characterizations of Hausdorff and packing
dimensions as definitions. Please refer to Falconer [8] for classical definitions.



Definition. ([18, 1]). Let X ⊆ Cm. The Hausdorff dimension of X is

dimH(X) = inf {s ∈ [0,∞) | X ⊆ S∞[d] for some s-supergale d } .

The packing dimension of X is

dimP(X) = inf {s ∈ [0,∞) | X ⊆ S∞str[d] for some s-supergale d} .

Finite-state dimension and strong dimension are finite-state counterparts of
classical Hausdorff dimension [13] and packing dimension [20, 29] introduced by
Dai, Lathrop, Lutz, and Mayordomo [6] and Athreya, Hitchcock, Lutz, and May-
ordomo [1] in the Cantor space C. Finite-state dimensions are defined by using
the gale characterizations of the Hausdorff dimension [18] and the packing dimen-
sion [1] and restricting the gales to the ones whose underlying betting strategies
can be carried out by finite-state gamblers. In this section, we give the definitions
of the finite-state dimensions for space Cm and review their basic properties.
Now, we define finite-state gamblers on alphabet Σm.

Definition. ([6]) A finite-state gambler (FSG) is a 5-tuple G = (Q,Σm, δ, ~β, q0)
such that Q is a non-empty finite set of states; Σm is the input alphabet; δ :
Q × Σm → Q is the state transition function; ~β : Q → ∆(Σm) is the betting
function; q0 ∈ Q is the initial state.

The extended transition function δ∗ : Q×Σ∗
m → Q is defined such that

δ∗(q, wa) =

{
q if w = a = λ,

δ(δ∗(q, w), a) if w 6= λ.

We use δ for δ∗ and δ(w) for δ(q0, w) for convenience.
The betting function βi : Q → ∆(Σm) specifies the bets the FSG places on

each input symbol in Σm with respect to a state q ∈ Q.

Definition. ([6]). Let G = (Q,Σm, δ, ~β, q0) be an FSG. The s-gale of G is the
function dG : Σ∗

m → [0,∞) defined by the recursion

dG(wb) =

{
1 if w = b = λ,

msdG(w)βi(δ(w))(b) if b 6= λ,

for all w ∈ Σ∗
m and b ∈ Σm ∪ {λ}. For s ∈ [0,∞), a function d : Σ∗

m → [0,∞) is
a finite-state s-gale if it is the s-gale of some finite-state gambler.

Note that in the original definition of a finite-state gambler the range of the
betting function ~β is ∆({0, 1})∩Q2 [6, 1]. In the following observation, we show
that allowing the range of ~β to have irrational probability measures does not
change the notions of finite-state dimension and strong dimension.

Observation 3.1 Let G = (Q,Σm, δ, ~β, q0) be an FSG. For each ε > 0, there
exists an FSG G = (Q,Σm, δ, ~β′, q0) with ~β′ : Q → ∆(Σm) ∩ Qm such that for
all s ∈ [0,∞), S∞[d(s)

G ] ⊆ S∞[d(s+ε)
G′ ] and S∞str[d

(s)
G ] ⊆ S∞str[d

(s+ε)
G′ ].



In this paper, we allow the finite-state gamblers to place irrational bets.

Definition. ([6, 1]). Let X ⊆ Cm. The finite-state dimension of X is

dimFS(X) = inf {s ∈ [0,∞) | X ⊆ S∞[d] for some finite-state s-gale d}

and the finite-state strong dimension of X is

DimFS(X) = inf {s ∈ [0,∞) | X ⊆ S∞str[d] for some finite-state s-gale d} .

We will use the following basic properties of the Hausdorff, packing, finite-
state, strong finite-state dimensions.

Theorem 3.2. ([6, 1]). Let X, Y, Xi ⊆ Σ∞
m for i ∈ N.

1. 0 ≤ dimH(X) ≤ dimFS(X) ≤ 1, 0 ≤ dimP(X) ≤ DimFS(X) ≤ 1.
2. dimH(X) ≤ dimP(X), dimFS(X) ≤ DimFS(X).
3. If X ⊆ Y , then the dimension of X is at most that same dimension of Y .
4. dimFS(X ∪ Y ) = max{dimFS(X), dimFS(Y )} and DimFS(X ∪ Y ) = max
{DimFS(X), DimFS(Y )}.

5. dimH (
⋃∞

i=0 Xi) = supi∈N dimH(Xi), dimP(
⋃∞

i=0 Xi) = supi∈N dimP(Xi).

4 Relative Frequencies of Digits

As we have mentioned in Section 1, Besicovitch in 1934 and Eggleston in 1949
proved the following two identities respectively.

Theorem 4.1. dimH(FREQ≤β) = H2((β, 1 − β)) [3] and dimH(FREQβ) =
H2((β, 1− β)) [7].

In this section, we will calculate the finite-state dimension of some more ex-
otic sets that contain m-adic sequences that satisfy certain conditions placed on
the frequencies of digits. The proofs in this section use straightforward construc-
tions of finite-state gamblers. Both the constructions and analysis use completely
elementary techniques.

Let Hβ,m(α) = −(α logm α + βα logm βα + (1− α− βα) logm
1−α−βα

m−2 ). Let

α∗(x) =

{
1
m x < 1

1

1+x+(m−2)x
x

x+1
otherwise.

Note that

Hβ,m(α∗(β)) = sup
α∈[0, 1

1+β ]

Hβ,m(α) =





1 if β < 1,

logm(m− 2 + 1+β

β
β

β+1
) otherwise.



Theorem 4.2. Let β′ ≥ β ≥ 0. Let

X =
{

S

∣∣∣∣ lim inf
n→∞

π1(S, n)
π0(S, n)

≥ β and lim sup
n→∞

π1(S, n)
π0(S, n)

≥ β′
}

.

Then dimH(X) = dimFS(X) = Hβ′,m(α∗(β′)) and dimP(X) = DimFS(X) =
Hβ,m(α∗(β)).

Corollary 4.3 (Theorem 2 [2]). Let β ≥ 0. Let

X =
{

S

∣∣∣∣ lim
n→∞

π1(S, n)
π0(S, n)

= β

}
.

Let β′ = max{β, 1/β}. Then

dimH(X) = Hβ,m(α∗(β′)) = logm

(
m− 2 +

1 + β′

β
β′

β′+1

)

Note that dimP(X), dimFS(X), and DimFS(X) all takes the value of dimH(X),
which were not proven in [2].

Proof. We prove the case where β′ = β. The other case is similar. Let Y ={
S

∣∣∣ lim inf
n→∞

π1(S,n)
π0(S,n) ≥ β

}
. Let

Z =

{
S

∣∣∣∣∣
lim

n→∞
π0(S, n) = α∗(β), lim

n→∞
π1(S, n) = βα∗(β),

and (∀i > 1) lim
n→∞

πi(S, n) = 1−α∗(β)−βα∗(β)
m−2

}
.

By Eggleston’s theorem, dimH(Z) = Hβ,m(α∗(β)). Since Z ⊆ X ⊆ Y , it follows
immediately from Theorem 4.2 that dimH(X) = Hβ,m(α∗(β)).

5 Saturated Sets and Maximum Entropy Principle

In Section 4, we calculated the finite-state dimensions of many sets defined using
properties on asymptotic frequencies of digits. They are all saturated sets. Now
we formally define saturated sets and investigate their collective properties.

Let Πn(S) = {~π(S, m) | m ≥ n} for all n ∈ N. Let Π̄n(S) = Πn(S), i.e.,
Π̄n(S) is the closure of Πn(S). Define Π : Cm → P(∆(Σm)) such that for all
S ∈ Cm, Π(S) =

⋂
n∈N Π̄n(S).

Definition. Let X ⊆ Cm. We say that X is saturated if for all S, S′ ∈ Cm,

Π(S) = Π(S′) ⇒ [S ∈ X ⇐⇒ S′ ∈ X].

When we determine an upper bound on the finite-state dimensions of a set
X ⊆ Cm, it is in general not possible to use a single probability measure as the
betting strategy even when X is saturated. However, when certain conditions



are true, a simple 1-state finite-state gambler may win on a huge set of sequences
with different empirical digit distribution probability measures.

In the following, we formalize such a condition and reveal some relationship
between betting and the Kullback-Leibler distance (relative entropy) [5]. Note
that m-dimensional Kullback-Leibler distance Dm(~β ‖ ~α) is defined as

Dm(~β ‖ ~α) = E~β logm

~β

~α
.

Definition. Let ~α, ~β ∈ ∆(Σm). We say that ~α ε-dominates ~β, denoted as ~α >>ε

~β, if Hm(~α) ≥ Hm(~β) +Dm(~β ‖ ~α)− ε. We say that ~α dominates ~β, denoted as
~α >> ~β, if ~α >>0 ~β.

Note that Hm(~β)+Dm(~β ‖ ~α) = E~β logm
1
~β

+E~β logm

~β
~α = E~β logm

1
~α , where

E~β logm

~β
~α =

∑m−1
i=0 βi logm

βi

αi
. It is very easy to see that the uniform probability

measure dominates all probability measures.

Observation 5.1 Let ~α = ( 1
m , . . . , 1

m ). Let ~β ∈ ∆(Σm). Then ~α >> ~β.

Here, we give a few interesting properties of the domination relation.

Theorem 5.2. Let ~α = (α0, . . . , αk−1) ∈ ∆(Σk). Let ~β = (β0, . . . , βk−1) ∈
∆(Σk) be such that βj = 1, where j = arg max{α0, . . . , αk−1}. Then ~α >> ~β

and Hk(~β) = 0.

Theorem 5.3. Let ~α, ~β ∈ ∆(Σk), ε ≥ 0, and r ∈ [0, 1]. If ~α >>ε ~β, then
~α >>ε r~α + (1− r)~β.

Theorem 5.4. Let ~µ = ( 1
m , . . . , 1

m ) ∈ ∆(Σm) be the uniform probability mea-
sure. Let ~β ∈ ∆(Σm). Let s ∈ [0, 1]. Let ~α = s~µ + (1− s)~β. Then ~α >> ~β.

The following theorem relates the domination relation to finite-state dimen-
sions.

Theorem 5.5. Let ~α ∈ ∆(Σk) and X ⊆ Σ∞
k .

1. If ~α >>ε ~π(S, n) for infinitely many n for every ε > 0 and every S ∈ X,
then dimFS(X) ≤ Hk(~α).

2. If ~α >>ε ~π(S, n) for all but finitely many n for every ε > 0 and every S ∈ X,
then DimFS(X) ≤ Hk(~α).

Theorem 5.5 tells us that if we can find a single dominating probability
measure for X ⊆ Cm, then a simple 1-state FSG may be used to assess the
dimension of X. However, in the following, we will see that the domination
relationship is not even transitive.

Theorem 5.6. Domination relation defined above is not transitive.



Fix ~α ∈ ∆(Σm) with Hm(~α) 6= 1, the hyperplane H in Rm defined by
Hm(~α) =

∑m−1
i=0 xi logm

1
αi

divides the simplex ∆(Σm) into two halves A and B

with A ∩B ⊆ H. Suppose ( 1
m , . . . , 1

m ) ∈ B, then A = {~β ∈ ∆(Σm) | ~α >> ~β}.
So it is not always possible to find a single probability measure that dominates

all the empirical probability measures of sequences in X ⊆ Cm. Nevertheless,
we take advantage of the compactness of ∆(Σm) and give a general solution for
finding the dimensions of X ⊆ Cm, when X is saturated. The following theorem
is our pointwise maximum entropy principle for saturated sets. It says that the
dimension of a saturated set is the maximum pointwise asymptotic entropy of
the empirical digit distribution measure.

Theorem 5.7. Let X ⊆ Cm be saturated. Let H = supS∈X lim inf
n→∞

Hm(~π(S, n))

and P = supS∈X lim sup
n→∞

Hm(~π(S, n)). Then dimFS(X) = dimH(X) = H and

DimFS(X) = dimP(X) = P .

This theorem automatically gives a solution for finding an upper bounds for
dimensions of arbitrary X.

Corollary 5.8 Let X ⊆ Cm and let H and P be defined as in Theorem 5.7.
Then dimFS(X) ≤ H and DimFS(X) ≤ P .

In the following, we derive the dimensions of a few interesting saturated sets
using Theorem 5.7. We will give more examples in the full version of this paper.

Let Hα,m = logm[α−α( 1−α
m−1 )α−1].

Theorem 5.9. Let α, ᾱ ∈ [0, 1] such that 1/m < α ≤ ᾱ and let M
α,ᾱ
k =

{S ∈ Σ∞
m | lim inf

n→∞
πk(S, n) = α and lim sup

n→∞
πk(S, n) = ᾱ}. Then dimH(Mα,ᾱ

k ) =

Hᾱ,m and dimP(Mα,ᾱ
k ) = Hα,m.

Proof. It is easy to check that M
α,ᾱ
k is saturated, that Hᾱ,m = infα∈[α,ᾱ] Hα,m,

and that Hα,m = supα∈[α,ᾱ] Hα,m. The theorem follows from Theorem 5.7.

Corollary 5.10 Let α, ᾱ ∈ [0, 1] such that α ≤ ᾱ and let M
α,ᾱ
k = {S ∈

Cm | lim inf
n→∞

πk(S, n) = α and lim sup
n→∞

πk(S, n) = ᾱ}. Then dimH(Mα,ᾱ
k ) =

infα∈[α,ᾱ] Hα,m = min(Hα,m,Hᾱ,m) and

dimP(Mα,ᾱ
k ) = sup

α∈[α,ᾱ]

Hα,m =

{
1 α ≤ 1/m ≤ ᾱ,

max(Hα,m,Hᾱ,m) otherwise.

Proof. If α ≤ 1/m ≤ ᾱ, then for some S ∈ M
α,ᾱ
k , lim sup

n→∞
Hm(~π(S, n)) = 1.

Corollary 5.11 (Theorem 7 [2]). Let αk, ᾱk ∈ [0, 1] for k ∈ Σm. Let MR =⋂m−1
k=0 M

αk,ᾱk

k . Then dimFS(MR) = dimH(MR) = minm−1
k=0 dimH(Mα,ᾱ

k ) and
DimFS(MR) = dimP(MR) = minm−1

k=0 dimP(Mα,ᾱ
k ).



Corollary 5.12 (Theorem 1 [2]). Let k ∈ Σm and let Mk =
{S ∈ Cm | lim inf

n→∞
πk(x, n) < lim sup

n→∞
πk(x, n)}. Then dimH(∩m−1

k=0 Mk) = 1.

Theorem 5.13. Let A be a d×m matrix and b = (b1, . . . , bd) ∈ Rd. Let

K i.o.(A, b) = {S ∈ Cm | (∃{kn} ⊆ N) lim
n→∞

kn = ∞ and lim
n→∞

A(~π(S, kn))T = b}

and let K(A, b) = {S ∈ Cm | lim
n→∞

A(~π(S, n))T = b}. Then dimFS(K i.o.(A, b)) =

dimH(K i.o.(A, b)) = sup~α∈∆(Σm)

A~αT =b

Hm(~α), dimP(K i.o.(A, b)) = 1, and

dimH(K(A, b)) = DimFS(K(A, b)) = sup~α∈∆(Σm)

A~αT =b

Hm(~α).

Proof. It is easy to check that K i.o.(A, b) and K(A, b) are both saturated. ut

6 Conclusion

A general saturated set usually has an uncountable decomposition in which, the
dimension of each element is easy to determine, while the dimension of the whole
set, which is the uncountable union of all the element sets, is very difficult to
determine and requires advanced techniques in multifractal analysis and ergodic
theory. By using finite-state gambler and gale characterizations of dimensions,
we are able to obtain very general results calculating the classical dimensions and
finite-state dimensions of saturated sets using completely elementary analysis.
This indicates that gale characterizations will play a more important role in
dimension-theoretic analysis and that finite-state gambler is very powerful.
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A Appendix for Section 3

Proof (Proof of Observation 3.1). Let δ = minq∈Q mini=0..m(βi(q) − βi(q)
2ε ).

For all q ∈ Q, let β′i(q) ∈ [βi(q) − δ, βi(q)] ∩ [0, 1] ∩ Q, if i 6= 0. Otherwise, let
β′0(q) = 1−∑m−1

i=1 β′i(q). Note that for all q ∈ Q and all i ∈ {0, . . . , m− 1},

β′i(q) ≥ βi(q)− δ ≥ 0 (A.1)

and that β′ maps states to rational bets.
For w ∈ Σ∗

m, let

#qi(w) = |{n | 0 ≤ n ≤ |w| − 1, δ(w[0..n− 1]) = q and w[n] = i}|.

Note that

|w| =
∑

q∈Q

m−1∑

i=0

#qi(w). (A.2)

Now we have that for all w ∈ Σ∗
m,

d
(s+ε)
G′ (w) = c0m

(s+ε)|w| ∏

q∈Q

m−1∏

i=0

β′i(q)
#qi(w)

≥(A.1) c0m
(s+ε)|w| ∏

q∈Q

m−1∏

i=0

(βi(q)− δ)#qi(w)

=(A.2) c0m
s|w| ∏

q∈Q

m−1∏

i=0

[(βi(q)− δ)2ε]#qi(w).

By the choice of δ,

d
(s+ε)
G′ (w) ≥ c0m

s|w| ∏

q∈Q

m−1∏

i=0

[(βi(q)− (βi(q)− βi(q)
2ε ))2ε]#qi(w)

= c0m
s|w| ∏

q∈Q

m−1∏

i=0

βi(q)#qi(w)

= d
(s)
G (w).

Thus, for all S ∈ S∞[d(s)
G ],

lim sup
n→∞

d
(s+ε)
G′ (S) ≥ lim sup

n→∞
d
(s)
G (S) = ∞,

and for all S ∈ S∞str[d
(s)
G ],

lim inf
n→∞

d
(s+ε)
G′ (S) ≥ lim inf

n→∞
d
(s)
G (S) = ∞.



Therefore,
S∞[d(s)

G ] ⊆ S∞[d(s+ε)
G′ ]

and
S∞str[d

(s)
G ] ⊆ S∞str[d

(s+ε)
G′ ].

ut

B Appendix for Section 4

Proof (Proof of Theorem 4.2). We assume that β′ ≥ β ≥ 1, since when either
of these values are less than 1, the proof is essentially looking at the subset of
X where their values are replaced by 1. First, we prove the lower bounds for the
dimensions.

When S is clear from the context, let αn = π0(S, n) and βn = π1(S, n).
Let α′ = α∗(β′) and let α = α∗(β).
For Hausdorff dimension and finite-state dimension, let

Y =
{

S

∣∣∣∣ lim
n→∞

αn = α′, lim
n→∞

βn = β′α′, and (∀i > 1) lim
n→∞

πi(S, n) =
1− α′ − β′α′

m− 2

}
.

By Eggleston’s theorem, we have dimH(Y ) = Hβ′,m(α∗(β′)). Since β′ ≥ β ≥ 1
and Y ⊆ X,

dimFS(X) ≥ dimH(X) ≥ dimH(Y ) = Hβ′,m(α∗(β′)).

For packing dimension and finite-state strong dimension, let

Z =
{

S

∣∣∣∣ lim
n→∞

αn = α, lim
n→∞

βn = βα, and (∀i > 1) lim
n→∞

πi(S, n) =
1− α− βα

m− 2

}
.

Now we construct from Z a set Z ′ ⊆ X by interpolating the sequences in Z.
First let l0 = 2 and for every i ∈ N, li+1 = 2li .
Define f0 : Σ∗

m → Σ∗
m be such that f0(w) = w for all w ∈ Σ∗

m. Let ρ =
1

αβ′−αβ+1 . For each n > 0, define fn : Σ∗
m → Σ∗

m such that for every w ∈ Σ∗
m,

|fn(w)| = |w| and for every i < |w|,

fn(w)[i] =





fn−1(w)[i] i ≤ ln−1

w[i] i ≤ dρlne and i > ln−1

1 i > dρlne and i ≤ ln

w[i] i > ln.

Define f : Σ∗
m → Σ∗

m such that for all w ∈ Σ∗
m

f(w) = fn(w)(w),

where n(w) = min {n ∈ N | ln ≥ |w| }. Also, extend f to f : Σ∞
m → Σ∞

m such
that for all S ∈ Σ∞

m ,
f(S) = lim

n→∞
f(S[0..n− 1]).



Let Z ′ = f(Z).
By the construction of f and choice of ρ, it is clear that f is a dilation and

for all n ∈ N, |Col(f, S[0.. dρlne − 1])| ≤ log ln. Thus for all ε > 0, there are
infinitely many n such that

|Col(f, S[0..n− 1])| < εn. (B.1)

Note that by Eggleston’s theorem, dimH(Z) = Hβ,m(α∗(β)). Then by Super-
gale Dilation Theorem [11] and (B.1), dimP(Z ′) ≥ Hβ,m(α∗(β)).

It is easy to verify that for every S ∈ Z ′,

lim inf
n→∞

βn

αn
≥ β and lim sup

n→∞
βn

αn
≥ β′.

So Z ′ ⊆ X. Therefore, DimFS(X) ≥ dimP(X) ≥ Hβ,m(α∗(β)).
Now, we prove that Hβ′,m(α∗(β′)) is an upper bound for dimH(X) and

dimFS(X).
If β′ < 1, then Hβ′,m(α∗(β′)) = 1 and the upper bound holds trivially. So

assume β′ ≥ 1.
Let α = α∗(β′). Let s > Hβ′,m(α∗(β′)). Define

d(wb) =





msαd(w) b = 0
msβ′αd(w) b = 1
ms 1−α−β′α

m−2 d(w) b ≥ 2
.

It is clear that d is a finite-state s-gale.
Let

B = β
′ β′

β′+1 .

Let

ε =
s−Hβ′,m(α∗(β′))

2 logm B
.

Let S ∈ X and let δ > 0 be such that δ ≤ min(εβ′2/2, 1/2).
Since

lim sup
n→∞

βn

αn
≥ β′,

there exists an infinite set J ⊆ N such that for all n ∈ J

βn

αn
≥ β′ − δ.

By the choice of δ, for all n ∈ J

αn

βn
≤ 1

β′ − δ
=

1
β′

+
δ

(β′ − δ)β′
≤ 1

β′
+ ε,

i.e.,

αn + βn ≤ β′ + 1
β′

βn + ε. (B.2)



Now, note that

msB1−ε = (1 + β′ + (m− 2)B)Bε, (B.3)

since

msB1−ε = msB1− s−logm(m−2+ 1+β′
B

)
2 logm B

= B1+logB ms− logm ms−logm(m−2+ 1+β′
B

)
2 logm B

= B1+
2 logm ms−logm ms+logm(m−2+ 1+β′

B
)

2 logm B

= B1+
logm ms+logm(m−2+ 1+β′

B
)

2 logm B

= B1+
s−logm(m−2+ 1+β′

B
)+2 logm(m−2+ 1+β′

B
)

2 logm B

= B1+ε+logB(m−2+ 1+β′
B ).

For all n ∈ J ,

d(S[0..n− 1]) = msnαnαn(β′α)nβn

(
1− α− β′α

m− 2

)n(1−αn−βn)

=
[

msβ′βnB1−αn−βn

1 + β′ + (m− 2)B

]n

≥(B.2)


msβ′βnB

1− β′+1
β′ βn−ε

1 + β′ + (m− 2)B




n

=
[

msB1−ε

1 + β′ + (m− 2)B

]n

=(B.3) Bεn.

Since J is an infinite set,

lim sup
n→∞

d(S[0..n− 1]) = ∞,

i.e., S ∈ S∞[d]. Since s > Hβ′,m(α∗(β′)) is arbitrary and d is finite-state s-gale,
dimH(X) ≤ dimFS(X) ≤ Hβ′,m(α∗(β′)).

An essentially identical argument gives us dimP(X) ≤ DimFS(X) ≤ Hβ,m(α∗(β)).
ut

Theorem B.1. Let α ≥ 1/m. Let X =
{

S
∣∣∣ lim

n→∞
π0(S, n) = α

}
and Y ={

S
∣∣∣ lim inf

n→∞
π0(S, n) ≥ α

}
. Then

dimP(X) = dimH(X) = dimP(Y ) = dimH(Y ) = logm

[
α−α

(
1− α

m− 1

)α−1
]

.



Proof (Proof of Theorem B.1). The results are clear for α = 1/m, so we
assume that α > 1/m.

Let Hα,m = logm

[
α−α

(
1−α
m−1

)α−1
]
.

We first show that dimP(Y ) ≤ Hα,m. For s > Hα,m, define

d(wb) =

{
msαd(w) b = 0
ms 1−α

m−1d(w) b 6= 0.

It is clear that d is an s-gale. Let

ε =
s−Hα,m

2 logm
α(m−1)

1−α

. (B.4)

Note that α(m−1)
1−α > 1. Let S ∈ Y , i.e., lim inf

n→∞
π0(S, n) ≥ α. So there exists

J ⊆ N such that |N \ J | < ∞ and for every n ∈ J ,

π0(S, n) ≥ α− ε.

d(S[0..n− 1]) =

[
msαπ0(S,n)

(
1− α

m− 1

)1−π0(S,n)
]n

=(B.4)

[(
α(m− 1)

1− α

)2ε

α−α

(
1− α

m− 1

)α−1

απ0(S,n)

(
1− α

m− 1

)1−π0(S,n)
]n

=

[(
α(m− 1)

1− α

)2ε

απ0(S,n)−α

(
1− α

m− 1

)α−π0(S,n)
]n

=

[(
α(m− 1)

1− α

)2ε (
α(m− 1)

1− α

)π0(S,n)−α
]n

=

[(
α(m− 1)

1− α

)2ε+π0(S,n)−α
]n

.

Then for every n ∈ J ,

d(S[0..n− 1]) ≥
[
α(m− 1)

1− α

]εn

.

Since α(m−1)
1−α > 1, S ∈ S∞str[d] and dimH(Y ) ≤ dimP(Y ) ≤ Hα,m. Note taht

X ⊆ Y , so dimH(X) ≤ dimP(X) ≤ Hα,m.
Now it suffices to show that dimH(X) ≥ Hα,m.
Let

Z =
{

S

∣∣∣∣ lim
n→∞

π0(S[0..n− 1]) = α and (∀i > 0) lim
n→∞

πi(S[0..n− 1]) =
1− α

m− 1

}
.

By Eggleston’s theorem, dimH(Z) = Hα,m. Since Z ⊆ X ⊆ Y , dimH(Y ) ≥
dimH(X) ≥ Hα,m. ut



Theorem B.2. (Corollary 13 in [2]). Let Σm be the m-ary alphabet. Let k < m.
Let α0, α1, . . . , αk−1 ∈ [0, 1] be such that α =

∑k−1
i=0 αi ≤ 1. Let

X =
{

S
∣∣∣ lim

n→∞
πi(S, n) = αi, 0 ≤ i ≤ k

}
.

Then dimH(X) is

Hm

(
α0, . . . , αk−1,

1−α
m−k , . . . , 1−α

m−k

)
= logm

[
α−α0

0 · · ·α−αk−1
k−1

(
1−α
m−k

)−(1−α)
]

and

dimFS(X) = DimFS(X) = dimP(X) = dimH(X).

Proof (Proof of Theorem B.2). We insist that 00 = 1 and 0/0 = 1 in the
proof.

Let

H = Hm

(
α0, α1, . . . , αk−1,

1− α

m− k
, . . . ,

1− α

m− k

)
.

For s > H, define

d(wb) =

{
msd(w)αb b < k

msd(w) 1−α
m−k otherwise.

It is clear that d is a finite-state s-gale. Let

δ =
s−H

−2 logm(α0 · · ·αk−1
1−α
m−k )

.

For S ∈ X,

lim
n→∞

πi(S, n) = αi, 0 ≤ i ≤ k.

So there exists n0 ∈ N such that for all n ≥ n0 |πi(S, n) − αi| < δ for all i < k
and that

∣∣∣∣∣α−
k−1∑

i=0

πi(S, n)

∣∣∣∣∣ < δ



Then for all n ≥ n0,

d(S[0..n− 1]) =

[
ms

(
1− α

m− k

)1−∑k−1
i=0 πi(S,n) k−1∏

i=0

α
πi(S,n)
i

]n

=

[
ms−HmH

(
1− α

m− k

)1−∑k−1
i=0 πi(S,n) k−1∏

i=0

α
πi(S,n)
i

]n

=

[
ms−Hα−α0

0 · · ·α−αk−1
k−1

(
1− α

m− k

)−(1−α) (
1− α

m− k

)1−∑k−1
i=0 πi(S,n) k−1∏

i=0

α
πi(S,n)
i

]n

=

[
ms−H

(
1− α

m− k

)α−∑k−1
i=0 πi(S,n) k−1∏

i=0

α
πi(S,n)−αi

i

]n

≥
[
ms−H

(
α0 · · ·αk−1

1− α

m− k

)δ
]n

=
[
ms−Hm

H−s
2

]n

= m
s−H

2 n.

So S ∈ S∞str[d] and thus dimFS(X) ≤ DimFS(X) ≤ H.
Let

Z =
{

S

∣∣∣∣ (∀i < k) lim
n→∞

πi(S, n) = αi and (∀i ≥ k) lim
n→∞

πi(S, n) =
1− α

m− k

}
.

By Eggleston’s theorem, dimH(Z) = H. The theorem then follows from the
monotonicity of dimensions. ut

C Appendix for Section 5

Proof (Proof of Theorem 5.2). It is easy to see that Hk(β) = 0. It suffices to
show that

Hk(~α) ≥ E~β logk

1
~α

.

E~β logk

1
~α

=
k−1∑

i=0

βi logk

1
αi

= βj logk

1
αj

= logk

1
αj

≤
k−1∑

i=0

αi logk

1
αi

= Hk(~α).

ut
Proof (Proof of Theorem 5.3). Assume ~α >>ε ~β, it suffices to show that

Hk(~α) ≥ Er~α+(1−r)~β logk

1
~α
− ε.



Er~α+(1−r)~β logk

1
~α
− ε =

k−1∑

i=0

(rαi + (1− r)βi) logk

1
αi
− ε

=
k−1∑

i=0

rαi logk

1
αi

+
k−1∑

i=0

(1− r)βi logk

1
αi
− ε

= rHk(~α) + (1− r)E~β logk

1
~α
− (1− r)ε− rε

≤ Hk(~α).

ut

Proof (Proof of Theorem 5.4). Let A = {i | µi ≥ βi } and let B = {i | µi < βi }.
Then A ∩ B = ∅ and A ∪ B = [0..m − 1]. Note that for any i ∈ A, µi =
1
m ≥ βi and logm

1
sµi+(1−s)βi

≥ 1 and for any i ∈ B, µi = 1
m < βi and∑

i∈B s(µi − βi) logm
1

sµi+(1−s)βi
< 1. Since

∑m−1
i=0 s(µi − βi) = 0,

∑
i∈A s(µi −

βi) = −∑
i∈B s(µi − βi).

E~α logm

1
~α
− E~β logm

1
~α

= Es(~µ−~β) logm

1

s~µ + (1− s)~β

=
m−1∑

i=0

s(µi − βi) logm

1
sµi + (1− s)βi

=
∑

i∈A

s(µi − βi) logm

1
sµi + (1− s)βi

+
∑

i∈B

s(µi − βi) logm

1
sµi + (1− s)βi

≥
∑

i∈A

s(µi − βi) · 1 +
∑

i∈B

s(µi − βi) · 1

≥ 0.

Therefore,

E~α logm

1
~α
≥ E~β logm

1
~α

,

i.e., ~α >> ~β.

Proof (Proof of Theorem 5.5). Let G = (Q, δ, ~β, q0, 1) be an FSG such that
Q = {q0}, δ(q0, b) = q0 for all b ∈ Σk, and ~β(q0) = ~α.

Let s > Hk(~α)+ ε. The s-gale d
(s)
G of G is defined by the following recursion,

d
(s)
G (wb) =

{
1 w = b = λ

ksd
(s)
G (w)αb otherwise,



for all w ∈ Σ∗
k and b ∈ Σk. Let S ∈ X. Then

d
(s)
G (S[0..n− 1]) = ksn

k−1∏

i=0

α
nπi(S,n)
i

= ksnkn
∑k−1

i=0 πi(S,n) logk αi

=
(
ks−E~π(S,n) logk

1
~α

)n

.

Thus S ∈ S∞[d(s)
G ] and dimFS(S) ≤ s, when the domination condition holds

for infinitely many n. Similarly, S ∈ S∞str[d
(s)
G ] and DimFS(S) ≤ s, when the

domination condition holds for all but finitely many n. The theorem then follows,
since ε can be arbitrarily small.

Proof (Proof of Theorem 5.6). We prove this by giving a counterexample
with Σ3. This counterexample can be extended to larger alphabets very easily.

Let α = ( 54
300 , 54

300 , 192
300 ), β = ( 25

300 , 75
300 , 200

300 ). And we have

H(α) ≈ 0.8219015831,

and
H(β) ≈ 0.7344147903,

and
H(α)− Eβ log3

β

α
≈ 0.05003477990.

So α >> β.
Note that fix α ∈ ∆({0, 1, 2}), for γ ∈ ∆({0, 1, 2}), α >> γ if

H(α) ≥ Eγ log3

1
α

,

i.e.,

H(α) ≥ γ0 log3

1
α0

+ γ1 log3

1
α1

+ γ2 log3

1
α2

.

It is clear that α determines a hyperplane that separate the space of all prob-
ability measures. Since we only consider the cases where γ0 + γ1 + γ2 = 1, the
above inequality simplifies to

H(α) ≥ γ0 log3

1
α0

+ γ1 log3

1
α1

+ (1− γ0 − γ1) log3

1
1− α0 − α1

.

Let γ0 = 0, we may solve the above inequality and obtain the boundary point
for α at γ0 = 0 is γ1 = 9

25 . Similarly, the boundary point for β at γ0 = 0 is
approximately γ1 = 0.3965181711.

Let γ∗ = (0, 0.37, 0.63).

H(α)− Eγ∗ log3

1
α
≈ −0.01154648767



and
H(β)− Eγ∗ log3

1
β
≈ 0.02593650702.

Thus β dominates γ∗ but α does not dominate γ∗. ut
Lemma C.1 ([12]). For every n ≥ m ≥ 2 and every partition ~a = (a0, . . . , am−1)
of n, there are more than

mnHm( ~a
n )−(m+1) logm n

strings u of length n and #(i, u) = ai for each i ∈ Σm.

Theorem C.2. ([6]). Let d be an s-supergale, where s ∈ [0,∞). Then for all
w ∈ Σ∗

m, l ∈ N, and 0 < α ∈ R, there are fewer than ml

α strings u ∈ Σl
m for

which d(wu) > αm(s−1)ld(w).

Proof (Proof of Theorem 5.7). First we prove dimH(X) ≥ H. It suffices to
show that for all s < H, dimH(X) ≥ s.

Let s < H. Let d be an arbitrary s-supergale. Let s′ = (H +s)/2. Let n0 ∈ N
be such that

√
m < n0(H − s′) and ms′n0−(m+1) logm n0 > 2sn0+1.

Fix an S ∈ X such that lim inf
n→∞

Hm(~π(S, n)) > s′.

For each i ≥ n0, let {~βi,1, . . . , ~βi,ci} ⊆ ∆(Σm) be such that for each j ∈ [1..ci],
~βi,j = k

n for some k ≤ n and Hm(~βi,j) > s′; for all ~β ∈ F (S) there exists
j ∈ [1..ci] such that |~βi,j − ~β| < 1/i; for all j ∈ [1..ci], there exists ~β ∈ F (S)
such that |~βi,j − ~β| < 1/i; for all j ∈ [1..ci− 1], |~βi,j − ~βi,j+1| < 1

i ; for all i ≥ n0,
|~βi+1,0 − ~βi,ci | < 1

i+1 .
Now, we first construct a sequence S′ ∈ Σ∞

m by building its prefixes induc-
tively.

Let w0 be such that |w0| = 2n0 . Note that the choice of w0 does not affect the
argument, since w0 does not change the asymptotic behavior of the sequence.
Without loss of generality, assume ~π(w0, |w0|) = βn0,1.

For all n > 0, assume wn−1 is already constructed. Let wn,0 = wn−1. We
construct inductively wn,1, . . . , wn,cn and then let wn = wn,cn .

For j > 0, assume wn,j−1 is already constructed.
Let l = n0 + n− 1.
For each l, j, let

Bl,j =
{

u ∈ Σl
m

∣∣∣ ~π(u, l) = ~βl,j

}
.

For each l ≥ n0 and w ∈ Σ∗
m, let

Wl,w =
{

u ∈ Σl
m

∣∣∣∣ d(wu) ≤ 1
m

d(w)
}

.

Since d is an s-supergale, by Theorem C.2, for all w ∈ Σ∗
m, there are fewer

than msl+1 strings u ∈ Σl
m for which d(wu) > 1

md(w). By the choice of n0, ~βl,j ,
and Lemma C.1,

|Bl,j | > msl+1,



i.e., Wl,w ∩Bl,j 6= ∅.
Let u1 ∈ Wl,w ∩Bl,j . For all i ∈ [2..2|wn,j−1|], let ui ∈ Wl,wu1...ui−1 ∩Bl,j .
Let wn,j = wn,j−1u1 . . . u

2|wn,j−1| .
Let S′ = lim

n→∞
wn.

Note that when wn is being constructed, l ≤ blogm|wn,j−1|c. It is then easy
to verify that S′ /∈ S∞[d].

Now we verify that Π(S) = Π(S′). Then S′ ∈ X, since X is defined by
asymptotic frequency.

Let ~β ∈ Π(S) be arbitrary. For each l = n0 +n− 1, there exists some jl such
that |~β − ~βl,jl

| < 1
l . Then by the construction,

|~π(wl,jl
, |wl,jl

|)− ~βl,jl
| < √

m
2

|wl,jl
| <

1
l
.

So it is clear that

|~π(wl,jl
, |wl,jl

|)− ~β| < 2
√

m

l
.

Thus
lim
l→∞

~π(wl,jl
, |wl,jl

|) = ~β.

Since wl,jl
v S′ for all l = n0 + n − 1. So we have for all n ∈ N, ~β ∈ Π̄n(S′),

hence ~β ∈ Π(S′). Therefore Π(S) ⊆ Π(S′).
Now, let ~β /∈ Π(S). Since Π(S) is closed, there exists δ > 0 such that for all

~β′ ∈ Π(S), |~β − ~β′| > δ.
Let n1 be such that l1 = n0 + n1 − 1 > 8m

δ . By construction, for all l ≥ l1,
all j ∈ [1..cl], and all |wl,j−1| ≤ k ≤ |wl,j |,

|~π(wl,j , |wl,j |)− ~π(wl,j , k)| < 2
√

m

l
.

Also, for all l ≥ l1 and all j ∈ [1..cl], there exists ~β′ ∈ Π(S) such that

|~π(wl,j , |wl,j |)− ~β′| < 2
√

m

l
.

Thus for all k > |wl1,1|, there exists ~β′ ∈ Π(S) such that

|~π(S, k)− ~β′| < 4m

l
.

Therefore, for all k > |wl1,1|

|~π(S, k)− ~β′| < 4m

l1
<

δ

2
.

Thus for all sufficiently large k,

|~π(S, k)− ~β| > δ

2
.



So there exists n2 ∈ N such that for all n ≥ n2, ~β /∈ Π̄n, i.e., ~β /∈ Π(S′).
Now we have that S′ ∈ X. Since S′ /∈ S∞[d], s < H is arbitrary, and d is an

arbitrary s-supergale,
dimH(X) ≥ H.

By a similar construction, we may prove that

dimP(X) ≥ P.

In the following, we prove the finite-state dimension upper bounds. Given
~α ∈ ∆(Σm), define B(~α, r) as

B(~α, r) = ∆(Σm) ∩
{

~β ∈ Rm
∣∣ (∀i)[βi < αim

r and βi > αim
−r]

}
.

Let
F (X) = {~α ∈ ∆(Σm) | H(~α) = H } .

Let ε > 0. Let
C =

{
B(~α, ε

2 ) | ~α ∈ F (X)
}

.

It is clear that C is an open cover of F (X). Since F (X) is compact, there exists
C ⊆ ∆(Σm) such that |C| < ∞ and

F (X) ⊆
⋃

~α∈C

B(~α, ε
2 ).

Let S ∈ X. Then lim inf
n→∞

Hm(~π(S, n)) ≤ H. By Theorem 5.4, there exists

~α∗ ∈ F (X) such that ~α∗ >>ε ~π(S, n) for infinitely many n ∈ N. Then by the
construction of C, there exists ~α ∈ C such that ~α∗ ∈ B(~α, ε

2 ). Now, we have
that for infinitely many n ∈ N,

Hm(~α) = Hm(~α∗) ≥ E~π(S,n) logm

1
~α∗

− ε

2

= E~π(S,n) logm

1
~α

+ E~π(S,n) logm

~α

~α∗
− ε

2
.

By the definition of B(α, ε
2 ),

Hm(~α) ≥ E~π(S,n) logm

1
~α
− ε,

i.e., ~α >>ε ~π(S, n) for infinitely many n ∈ N. Since S ∈ X is arbitrary, we may
partition X as X =

⋃
~α∈C X~α such that for every ~α ∈ C,

X~α = {S ∈ X | ~α >>ε ~π(S, n) for infinitely many n ∈ N} .

Since ε > 0 is arbitrary, thus by Theorem 5.5, dimFS(X~α) ≤ Hm(~α) = H
for every ~α ∈ C. Since |C| < ∞, by Theorem 3.2, dimFS(X) ≤ H. Similarly,
DimFS(X) ≤ P . ut


