The Density of Weakly Complete Problems under Adaptive Reductions^{*}

Jack H. Lutz Department of Computer Science Iowa State University Ames, IA 50011 U.S.A. lutz@cs.iastate.edu Yong Zhao LANshark Systems 784 Morrison Road Columbus, OH 43230 U.S.A. yzhao@lanshark.com

Abstract

Given a real number $\alpha < 1$, every language that is weakly $\leq_{n^{\alpha}/2-T}^{P}$ -hard for E or weakly $\leq_{n^{\alpha}-T}^{P}$ -hard for E₂ is shown to be exponentially dense. This simultaneously strengthens results of Lutz and Mayordomo(1994) and Fu(1995).

1 Introduction

In the mid-1970's, Meyer[15] proved that every \leq_{m}^{P} -complete language for exponential time—in fact, every \leq_{m}^{P} -hard language for exponential time—is dense. That is,

$$\mathbf{E} \not\subseteq \mathbf{P}_{\mathbf{m}}(\mathbf{DENSE}^c),\tag{1}$$

where $E = DTIME(2^{\text{linear}})$, DENSE is the class of all dense languages, DENSE^c is the complement of DENSE, and $P_m(DENSE^c)$ is the class of all languages that are \leq_m^P -reducible to non-dense languages. (A language $A \in \{0,1\}^*$ is *dense* if there is a real number $\epsilon > 0$ such that $|A_{\leq n}| > 2^{n^{\epsilon}}$ for all sufficiently large n, where $A_{\leq n} = A \cap \{0,1\}^{\leq n}$.) Since that time, a major objective of computational complexity theory has been to extend Meyer's result from \leq_m^P -reductions to \leq_T^P -reductions, i.e., to prove that every \leq_T^P -hard language for E is dense. That is, the objective is to prove that

$$\mathbf{E} \not\subseteq \mathbf{P}_{\mathrm{T}}(\mathrm{DENSE}^c),\tag{2}$$

where $P_T(DENSE^c)$ is the class of all languages that are \leq_T^P -reducible to non-dense languages. The importance of this objective derives largely from the fact (noted by Meyer[15]) that the class $P_T(DENSE^c)$ contains all languages that have subexponential circuit-size complexity. (A language $A \subseteq \{0, 1\}^*$ has subexponential circuit-size complexity if, for every real number $\epsilon > 0$, for every sufficiently large n, there is an n-input, 1-output Boolean

^{*}This research was supported in part by National Science Foundation Grant CCR-9157382, with matching funds from Rockwell International, Microware Systems Corporation, and Amoco Foundation.

circuit that decides that the set $A_{=n} = A \cap \{0, 1\}^n$ and has fewer than $2^{n^{\epsilon}}$ gates. Otherwise, we say that A has exponential circuit-size complexity.) Thus a proof of (2) would tell us that E contains languages with exponential circuit-size complexity, thereby answering a major open question concerning the relationship between (uniform) time complexity and (nonuniform) circuit-size complexity. Of course (2) also implies the more modest, but more famous conjecture, that

$$E \not\subseteq P_{T}(SPARSE),$$
 (3)

where SPARSE is the class of all sparse languages. (A language $A \subseteq \{0,1\}^*$ is sparse if there is a polynomial q(n) such that $|A_{\leq n}| \leq q(n)$ for all $n \in \mathbb{N}$.) As noted by Meyer[15], the class $P_T(SPARSE)$ consists precisely of all languages that have polynomial circuit-size complexity, so (3) asserts that E contains languages that do not have polynomial circuit-size complexity.

Knowing (1) and wanting to prove (2), the natural strategy has been to prove results of the form

$$\mathbf{E} \not\subseteq \mathbf{P}_r(\mathbf{DENSE}^c)$$

for successively larger classes $P_r(DENSE^c)$ in the range

$$P_{m}(DENSE^{c}) \subseteq P_{r}(DENSE^{c}) \subseteq P_{T}(DENSE^{c}).$$

The first major step beyond (1) in this program was the proof by Watanabe[17] that

$$E \not\subseteq P_{O(\log n) - tt}(DENSE^c),$$
(4)

i.e., that every language that is $\leq_{O(\log n)-\text{tt}}^{\text{P}}$ -hard for E is dense. The next big step was the proof by Lutz and Mayordomo[10] that, for every real number $\alpha < 1$,

$$\mathbf{E} \not\subseteq \mathbf{P}_{n^{\alpha} - \mathrm{tt}} (\mathrm{DENSE}^{c}).$$
(5)

This improved Watanabe's result from $O(\log n)$ truth-table (i.e., nonadaptive) queries to n^{α} such queries for α arbitrarily close to 1 (e.g., to $n^{0.99}$ truth-table queries). Moreover, Lutz and Mayordomo[10] proved (5) by first proving the stronger result that for all $\alpha < 1$,

$$\mu_{\rm p}(\mathbf{P}_{n^{\alpha}-\rm tt}(\rm DENSE^{c})) = 0, \tag{6}$$

which implies that every language that is weakly $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard for E or for $E_2 = \text{DTIME}(2^{\text{poly}})$ is dense. (A language A is weakly \leq_r^{P} -hard for a complexity class C if $\mu(P_r(A) | C) \neq 0$, i.e., if $P_r(A) \cap C$ is a nonnegligible subset of C in the sense of the resource-bounded measure developed by Lutz[9]. A language A is weakly \leq_r^{P} -complete for C if $A \in C$ and A is weakly \leq_r^{P} -hard for C. See [12] or [2] for a survey of resource-bounded measure and weak completeness.) The set of weakly $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard languages for E is now known to have p-measure 1 [3], hence measure 1 in the class C of all languages, while the set of all $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard languages for E has measure 0 unless $E \subseteq \text{BPP}$ [4, 1]. Thus, if $E \not\subseteq \text{BPP}$ (which is generally conjectured to be true), almost every language is weakly $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard, but not $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard, for E, so the result of Lutz and Mayordomo [10] is much more general than the fact that every $\leq_{n^{\alpha}-\text{tt}}^{P}$ -hard language for E is dense. A word on the relationship between hardness notions for E and E₂ is in order here. It is well known that a language is $\leq_{\rm m}^{\rm P}$ -hard for E if and only if it is $\leq_{\rm m}^{\rm P}$ -hard for E₂; this is because E₂ = P_m(E). The same equivalence holds for $\leq_{\rm T}^{\rm P}$ -hardness. It is also clear that every language that is $\leq_{n^{\alpha}-{\rm tt}}^{\rm P}$ -hard for E₂ is $\leq_{n^{\alpha}-{\rm tt}}^{\rm P}$ -hard for E. However, it is not generally the case that P_m(P_{n^{\alpha}-tt}(A)) = P_{n^{\alpha}-tt}(A), so it may well be the case that a language can be $\leq_{n^{\alpha}-{\rm tt}}^{\rm P}$ -hard for E, but not for E₂. These same remarks apply to $\leq_{n^{\alpha}-{\rm T}}^{\rm P}$ -hardness.

The relationship between weak hardness notions for E and E₂ is somewhat different. Juedes and Lutz [8] have shown that weak $\leq_{\rm m}^{\rm P}$ -hardness for E implies weak $\leq_{\rm m}^{\rm P}$ -hardness for E₂, and their proof of this fact also works for weak $\leq_{\rm T}^{\rm P}$ -hardness. However, Juedes and Lutz [8] also showed that weak $\leq_{\rm m}^{\rm P}$ -hardness for E₂ does not generally imply weak $\leq_{\rm m}^{\rm P}$ -hardness for E, and it is reasonable to conjecture (but has not been proven) that the same holds for weak $\leq_{\rm T}^{\rm P}$ -hardness. We further conjecture that the notions of weak $\leq_{n^{\alpha}-tt}^{\rm P}$ -hardness for E and weak $\leq_{n^{\alpha}-tt}^{\rm P}$ -hardness E₂ are incomparable, and similarly for weak $\leq_{n^{\alpha}-tt}^{\rm P}$ -hardness. In any case, (6) implies that, for every $\alpha < 1$, every language that is weakly $\leq_{n^{\alpha}-tt}^{\rm P}$ -hard for either E or E₂ is dense.

Shortly after, but independently of [10], Fu[7] used very different techniques to prove that, for every $\alpha < 1$,

$$\mathbf{E} \not\subseteq \mathbf{P}_{n^{\alpha/2}-\mathrm{T}}(\mathrm{DENSE}^c) \tag{7}$$

 and

$$\mathbf{E}_2 \not\subseteq \mathbf{P}_{n^{\alpha}-\mathrm{T}}(\mathrm{DENSE}^c). \tag{8}$$

That is, every language that is $\leq_{n^{\alpha/2}-T}^{P}$ -hard for E or $\leq_{n^{\alpha}-T}^{P}$ -hard for E₂ is dense. These results do not have the measure-theoretic strength of (6), but they are a major improvement over previous results on the densities of hard languages in that they hold for Turing reductions, which have *adaptive* queries.

In the present paper, we prove results which simultaneously strengthen results of Lutz and Mayordomo[10] and the results of Fu[7]. Specifically, we prove that, for every $\alpha < 1$,

$$\mu_{\rm p}(\mathbf{P}_{n^{\alpha/2}-\mathrm{T}}(\mathrm{DENSE}^c)) = 0 \tag{9}$$

 and

$$\mu_{\mathbf{p}_2}(\mathbf{P}_{n^{\alpha}-\mathbf{T}}(\mathbf{DENSE}^c)) = 0.$$
(10)

These results imply that every language that is weakly $\leq_{n^{\alpha/2}-T}^{P}$ -hard for E or weakly $\leq_{n^{\alpha/2}-T}^{P}$ -hard for E₂ is dense. The proof of (9) and (10) is not a simple extension of the proof in [10] or the proof in [7], but rather combines ideas from both [10] and [7] with the martingale dilation technique introduced by Ambos-Spies, Terwijn, and Zheng [3].

Our results also show that the strong hypotheses $\mu_{\rm p}(\rm NP) \neq 0$ and $\mu_{\rm p_2}(\rm NP) \neq 0$ (surveyed in [12] and [2]) have consequences for the densities of adaptively hard languages for NP. Mahaney [13] proved that

$$P \neq NP \Rightarrow NP \not\subseteq P_m(SPARSE), \tag{11}$$

and Ogiwara and Watanabe [16] improved this to

$$P \neq NP \Rightarrow NP \not\subseteq P_{btt}(SPARSE).$$
(12)

That is, if $P \neq NP$, then no sparse language can be \leq_{btt}^{P} -hard for NP. Lutz and Mayordomo [10] used (6) to obtain a stronger conclusion from a stronger hypothesis, namely, for all $\alpha < 1$,

$$\mu_{\rm p}(\rm NP) \neq 0 \Rightarrow \rm NP \not\subseteq \rm P_{n^{\alpha}-tt}(\rm DENSE^{c}).$$
⁽¹³⁾

By (9) and (10), we now have, for all $\alpha < 1$,

$$\mu_{\rm p}(\rm NP) \neq 0 \Rightarrow \rm NP \not\subseteq P_{n^{\alpha/2}-\rm T}(\rm DENSE^{\it c})$$
(14)

 and

$$\mu_{p_2}(NP) \neq 0 \Rightarrow NP \not\subseteq P_{n^{\alpha}-T}(DENSE^c).$$
(15)

Thus, if $\mu_p(NP) \neq 0$, then every language that is $\leq_{n^{0.49}-T}^{P}$ -hard for NP is dense. If $\mu_{p_2}(NP) \neq 0$, then every language that is $\leq_{n^{0.99}-T}^{P}$ -hard for NP is dense.

2 Preliminaries

The Boolean value of a condition, ψ is

$$\llbracket \psi \rrbracket = \begin{cases} 1 & \text{if } \psi \\ 0 & \text{if not } \psi. \end{cases}$$

The standard enumeration of $\{0, 1\}^*$ is $s_0 = \lambda, s_1 = 0, s_2 = 1, s_3 = 00, \ldots$ This enumeration induces a total ordering of $\{0, 1\}^*$ which we denote by <.

All languages here are subsets of $\{0,1\}^*$. The *Cantor space* is the set **C** of all languages. We identify each language $A \in \mathbf{C}$ with its characteristic sequence, which is the infinite binary sequence

$$[s_0 \in A] [s_1 \in A] [s_2 \in A] \cdots$$

where $s_0 = \lambda, s_1 = 0, s_2 = 1, s_3 = 00, \ldots$ is the standard enumeration of $\{0, 1\}^*$. For $w \in \{0, 1\}^*$ and $A \in \mathbb{C}$, we write $w \sqsubseteq A$ to indicate that w is a prefix of (the characteristic sequence of) A. The symmetric difference of the two languages A and B is $A \bigtriangleup B = (A - B) \cup (B - A)$.

The cylinder generated by a string $w \in \{0, 1\}^*$ is the set

$$\mathbf{C}_w = \{ A \in \mathbf{C} | w \sqsubseteq A \}.$$

Note that $\mathbf{C}_{\lambda} = \mathbf{C}$.

In this paper, a set $X \subseteq \mathbf{C}$ that appears in a probability $\Pr(X)$ or a conditional probability $\Pr(X|\mathbf{C}_w)$ is regarded as an event in the sample space \mathbf{C} with the uniform probability measure. Thus, for example, $\Pr(X)$ is the probability that $A \in X$ when the language $A \subseteq \{0, 1\}^*$ is chosen probabilistically by using an independent toss of a fair coin to decide

membership of each string in A. In particular, $\Pr(\mathbf{C}_w) = 2^{-|w|}$. The complement of a set $X \subset \mathbf{C}$ is the set $X^c = \mathbf{C} - X$.

Let $d \in \mathbb{N}$ and $t : \mathbb{N} \to \mathbb{N}$. A function $f : \mathbb{N}^d \times \{0,1\}^* \to \mathbb{Q}$ is exactly t(n)-time*computable* if there is an algorithm that, on input $(k_1, \ldots, k_d, w) \in \mathbb{N}^d \times \{0, 1\}^*$, runs for at most $O(t(k_1 + \cdots + k_d + |w|))$ steps and outputs an ordered pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ such that $f(k_1,\ldots,k_d,w) = \frac{a}{b}$. A function $f : \mathbb{N}^d \times \{0,1\}^* \to \mathbb{R}$ is t(n)-time-computable if there is an exactly t(n)-time-computable function $\widehat{f}: \mathbb{N}^{d+1} \times \{0,1\}^* \to \mathbb{Q}$ such that, for all $r, k_1, \ldots, k_d \in \mathbb{N} \text{ and } w \in \{0, 1\}^*,$

$$|\widehat{f}(r, k_1, \dots, k_d, w) - f(k_1, \dots, k_d, w)| \le 2^{-r}.$$

We briefly review those aspects of martingales and resource-bounded measure that are needed for our main theorem. The reader is referred to [2], [9], [12], or [14] for more thorough discussion.

A martingale is a function $d: \{0,1\}^* \to [0,\infty)$ such that, for all $w \in \{0,1\}^*$,

$$d(w) = \frac{d(w0) + d(w1)}{2}.$$

If $t: \mathbb{N} \to \mathbb{N}$, then a t(n)-martingale is a martingale that is t(n)-time-computable, and an exact t(n)-martingale is a (rational-valued) martingale that is exactly t(n)-time-computable. A martingale d succeeds on a language $A \in \mathbf{C}$ if, for every $c \in \mathbb{N}$, there exists $w \sqsubseteq A$ such that d(w) > c. The success set of a martingale d is the set

$$S^{\infty}[d] = \{A \in \mathbf{C} | d \text{ succeeds on } A\}.$$

The unitary success set of d is

$$S^1[d] = \bigcup_{\substack{w \in \{0,1\}^* \\ d(w) \ge 1}} \mathbf{C}_w$$

The following result was proven by Juedes and Lutz [8] and independently by Mayordomo [14].

Lemma 2.1 (Exact Computation Lemma) Let $t : \mathbb{N} \to \mathbb{N}$ be nondecreasing with $t(n) > n^2$. Then, for every t(n)-martingale d, there is an exact $n \cdot t(2n+2)$ -martingale d such that $S^{\infty}[d] \subseteq S^{\infty}[d].$

A sequence

$$\sum_{k=0}^{\infty} a_{j,k} \qquad (j = 0, 1, 2, \dots)$$

of series of terms $a_{j,k} \in [0,\infty)$ is uniformly p-convergent if there is a polynomial $m: \mathbb{N}^2 \to \mathbb{N}$ such that, for all $j, r \in \mathbb{N}$, $\sum_{k=1}^{\infty} a_{j,k} \leq 2^{-r}$, where we write $m_j(r) = m(j,r)$. The following sufficient condition for uniform p-convergence is easily verified by routine calculus.

Lemma 2.2 Let $a_{j,k} \in [0,\infty)$ for all $j,k \in \mathbb{N}$. If there exist a real number $\epsilon > 0$ and a polynomial $g: \mathbb{N} \to \mathbb{N}$ such that $a_{j,k} \leq e^{-k^{\epsilon}}$ for all $j,k \in \mathbb{N}$ with $k \geq g(j)$, then the series $\sum_{k=1}^{n} a_{j,k} \ (j = 0, 1, 2, ...)$ are uniformly p-convergent.

A uniform, resource-bounded generalization of the classical first Borel-Cantelli lemma was proved by Lutz [9]. Here we use the following precise variant of this result.

Theorem 2.3 Let $\alpha, \widetilde{\alpha} \in \mathbb{R}$ with $1 \leq \alpha \leq \widetilde{\alpha}$, and let

$$d: \mathbb{N} \times \mathbb{N} \times \{0, 1\}^* \to \mathbb{Q} \cap [0, \infty)$$

- be an exactly $2^{(\log n)^{\alpha}}$ -time-computable function with the following two properties. (i) For each $j, k \in \mathbb{N}$, the function $d_{j,k}$ defined by $d_{j,k}(w) = d(j,k,w)$ is a martingale.
- (ii) The series $\sum_{k=0}^{\infty} d_{j,k}$ (j = 0, 1, 2, ...) are uniformly p-convergent. Then there is an exact $2^{(\log n)^{\widetilde{\alpha}}}$ -martingale $\widetilde{\alpha}$ such that

$$\bigcup_{j=0}^{\infty}\bigcap_{t=0}^{\infty}\bigcup_{k=t}^{\infty}S^{1}[d_{j,k}]\subseteq S^{\infty}[\widetilde{d}].$$

Proof (sketch). Assume the hypothesis, and fix $\alpha' \in \mathbb{Q}$ such that $\alpha < \alpha' < \tilde{\alpha}$. Since $n \cdot 2^{(\log(2n+2))^{\alpha'}} = o(2^{(\log n)^{\widetilde{\alpha}}})$, it suffices by Lemma 2.1 to show that there is a $2^{(\log n)^{\alpha'}}$. martingale d' such that

$$\bigcup_{j=0}^{\infty} \bigcap_{t=0}^{\infty} \bigcup_{k=t}^{\infty} S^{1}[d_{j,k}] \subseteq S^{\infty}[d'].$$
(16)

Fix a polynomial $m : \mathbb{N}^2 \to \mathbb{N}$ testifying that the series $\sum_{k=0}^{\infty} d_{j,k}$ (j = 0, 1, 2, ...) are uniformly p-convergent, and define

$$d'(w) = \sum_{j=0}^{\infty} \sum_{t=0}^{\infty} \sum_{k=m_j(2t)}^{\infty} 2^{t-j} d_{j,k}(w)$$

for all $w \in \{0, 1\}^*$. Then, for each $w \in \{0, 1\}^*$,

$$d'(w) \leq \sum_{j=0}^{\infty} \sum_{t=0}^{\infty} \sum_{k=m_j(2t)}^{\infty} 2^{t-j+|w|} d_{j,k}(\lambda)$$
$$\leq 2^{|w|} \sum_{j=0}^{\infty} 2^{-j} \sum_{t=0}^{\infty} 2^t \cdot 2^{-2t}$$
$$= 2^{|w|+2},$$

so $d': \{0,1\}^* \to [0,\infty)$. It is clear by linearity that d' is a martingale. To see that (16) holds, assume that $A \in \bigcup_{j=0}^{\infty} \bigcap_{t=0}^{\infty} \bigcup_{k=t}^{\infty} S^1[d_{j,k}]$, and let $c \in \mathbb{N}$ be arbitrary. Then there exist $j \in \mathbb{N}$ and $k \ge m_j(2j+2c)$ such that $A \in S^1[d_{j,k}]$. Fix $w \sqsubseteq A$ such that $d_{j,k}(w) \ge 1$. Then $d'(w) \ge 2^{c+j-j}d_{j,k}(w) \ge 2^c$. Since c is arbitrary here, it follows that $A \in S^{\infty}[d']$, confirming (16).

To see that d' is $2^{(\log n)^{\alpha'}}$ -time-computable, define $d_A, d_B, d_C : \mathbb{N} \times \{0, 1\}^* \to [0, \infty)$ as follows, using the abbreviation s = r + |w| + 2.

$$d_{A}(r,w) = \sum_{j=0}^{s} \sum_{t=0}^{\infty} \sum_{k=m_{j}(2t)}^{\infty} 2^{t-j} d_{j,k}(w)$$

$$d_{B}(r,w) = \sum_{j=0}^{s} \sum_{t=0}^{2s} \sum_{k=m_{j}(2t)}^{\infty} 2^{t-j} d_{j,k}(w)$$

$$d_{C}(r,w) = \sum_{j=0}^{s} \sum_{t=0}^{2s} \sum_{k=m_{j}(2t)}^{m_{j}(2s^{2}+4s+t)} 2^{t-j} d_{j,k}(w)$$
(17)

For all $r \in \mathbb{N}$ and $w \in \{0, 1\}^*$, it is clear that

$$d_C(r,w) \le d_B(r,w) \le d_A(r,w) \le d'(w),$$

and it is routine to verify the inequalities

$$d'(w) - d_A(r, w) \leq 2^{-(r+1)}$$

$$d_A(r, w) - d_B(r, w) \leq 2^{-(r+2)}$$

$$d_B(r, w) - d_C(r, w) \leq 2^{-(r+2)}$$

whence we have

$$d'(w) - 2^{-r} \le d_C(r, w) \le d'(w)$$
(18)

for all $r \in \mathbb{N}$ and $w \in \{0, 1\}^*$. Using formula (17), the time required to compute $d_C(r, w)$ exactly is no greater than

$$O((s+1)(2s+1)m(s,2s^2+4s+2s)2^{(\log n)^{\alpha}}) = O(q(n) \cdot 2^{(\log n)^{\alpha}}),$$

where n = r + |w| and q is a polynomial. Since $q(n) \cdot 2^{(\log n)^{\alpha}} = o(2^{(\log n)^{\alpha'}})$, it follows that $d_C(r, w)$ is exactly $2^{(\log n)^{\alpha'}}$ -time-computable. By (18), then, d' is a $2^{(\log n)^{\alpha'}}$ -martingale. \Box

The proof of our main theorem uses the techniques of weak stochasticity and martingale dilation, which we briefly review here.

As usual, an *advice function* is a function $h : \mathbb{N} \to \{0, 1\}^*$. Given a function $q : \mathbb{N} \to \mathbb{N}$, we write ADV(q) for the set of all advice functions h such that $|h(n)| \leq q(n)$ for all $n \in \mathbb{N}$. Given a language B and an advice function h, we define the language

$$B/h = \{x \in \{0, 1\}^* \mid < x, h(|x|) > \in B\},\$$

where $\langle \cdot, \cdot \rangle$ is a standard string-pairing function, e.g., $\langle x, y \rangle = 0^{|x|} 1xy$. Given functions $t, q : \mathbb{N} \to N$, we define the advice class

$$DTIME(t)/ADV(q) = \{B/h \mid B \in DTIME(t) \text{ and } h \in ADV(q)\}.$$

Definition (Lutz and Mayordomo[10], Lutz[11]) For $t, q, \nu : \mathbb{N} \to \mathbb{N}$, a language A is weakly (t, q, ν) -stochastic if, for all $B, C \in \text{DTIME}(t)/\text{ADV}(q)$ such that $|C_{=n}| \ge \nu(n)$ for all sufficiently large n,

$$\lim_{n \to \infty} \frac{|(A \bigtriangleup B) \cap C_{=n}|}{|C_{=n}|} = \frac{1}{2}$$

We write $WS(t, q, \nu)$ for the set of all weakly (t, q, ν) -stochastic languages.

The following result resembles the weak stochasticity theorems proved by Lutz and Mayordomo [10] and Lutz [11], but gives a more careful upper bound on the time complexity of the martingale.

Theorem 2.4 (Weak Stochasticity Theorem) Assume that $\alpha, \beta, \gamma, \tau \in \mathbb{R}$ satisfy $\alpha \geq 1, \beta \geq 1, \gamma > 0$, and $\tau > \alpha\beta$. Then there is an exact $2^{(\log n)^{\tau}}$ -martingale d such that

$$S^{\infty}[d] \cup WS(2^{n^{\alpha}}, n^{\beta}, 2^{\gamma n}) = \mathbf{C}.$$

Proof. Assume the hypothesis, and assume without loss of generality that $\alpha, \beta, \gamma, \tau \in \mathbb{Q}$. Fix $\alpha', \tau', \tau'' \in Q$ such that $\alpha < \alpha'$ and $\alpha'\beta < \tau'' < \tau' < \tau$. Let $U \in \text{DTIME}(2^{n^{\alpha'}})$ be a language that is universal for $\text{DTIME}(2^{n^{\alpha}}) \times \text{DTIME}(2^{n^{\alpha}})$ in the following sense. For each $i \in \mathbb{N}$, let

$$C_i = \{x \in \{0, 1\}^* | < s_i, 0x \ge U\},\$$
$$D_i = \{x \in \{0, 1\}^* | < s_i, 1x \ge U\}.$$

Then DTIME $(2^{n^{\alpha}}) \times \text{DTIME}(2^{n^{\alpha}}) = \{(C_i, D_i) | i \in \mathbb{N}\}.$

Define a function $d' : \mathbb{N}^3 \times \{0, 1\}^* \to \mathbb{Q} \cap [0, \infty)$ as follows. If k is not a power of 2, then $d'_{i,i,k}(w) = 0$. Otherwise, if $k = 2^n$, where $n \in \mathbb{N}$, then

$$d'_{i,j,k}(w) = \sum_{y,z \in \{0,1\}^{\leq n^{eta}}} \Pr(Y_{i,j,k,y,z} | \mathbf{C}_w),$$

where the sets $Y_{i,j,k,y,z}$ are defined as follows. If $|(C_i/y)_{=n}| < 2^{\gamma n}$, then $Y_{i,j,k,y,z} = \emptyset$. If $|(C_i/y)_{=n}| \ge 2^{\gamma n}$, then $Y_{i,j,k,y,z}$ is the set of all $A \in \mathbb{C}$ such that

$$\left|\frac{|(A \bigtriangleup (D_i/z)) \cap (C_i/y)_{=n}|}{|(C_i/y)_{=n}|} - \frac{1}{2}\right| \ge \frac{1}{j+1}.$$

The definition of conditional probability immediately implies that, for each $i, j, k \in \mathbb{N}$, the function $d'_{i,j,k}$ is a martingale. Since $U \in \text{DTIME}(2^{n^{\alpha'}})$ and $\alpha'\beta < \tau''$, the time required to compute each $\Pr(Y_{i,j,k,y,z}|\mathbf{C}_w)$ using binomial coefficients is at most $O(2^{(\log(i+j+k))\tau''})$ steps, so the time required to compute $d'_{i,j,k}(w)$ is at most $O((2^{n^{\beta}}+1)^2 \cdot 2^{(\log(i+j+k))\tau''}) = O(2^{(\log(i+j+k))\tau'})$ steps. Thus d' is exactly $2^{(\log n)\tau'}$ -time-computable.

As in [10] and [11], the Chernoff bound tells us that, for all $i, j, n \in \mathbb{N}$ and $y, z \in \{0, 1\}^{\leq n^{\beta}}$, writing $k = 2^{n}$,

$$\Pr(Y_{i,j,k,y,z}) \le 2e^{-k^{\gamma}/2(j+1)^2},$$

whence

$$\begin{aligned} d'_{i,j,k}(\lambda) &\leq (2^{n^{\beta}}+1)^2 \cdot 2e^{-k^{\gamma}/2(j+1)^2} \\ &< e^{2n^{\beta}+3-k^{\gamma}/2(j+1)^2}. \end{aligned}$$

Let $a = \lceil \frac{1}{\gamma} \rceil$, let $\epsilon = \frac{\gamma}{4}$, and fix $k_0 \in \mathbb{N}$ such that

$$k^{2\epsilon} > k^{\epsilon} + 2(\log k)^{\beta} + 3$$

for all $k \geq k_0$. Define $g : \mathbb{N} \to \mathbb{N}$ by

$$g(j) = 4^a (j+1)^{4a} + k_0$$

for all $j \in \mathbb{N}$. Then g is a polynomial and, for all $i, j, n \in \mathbb{N}$, writing $k = 2^n$,

$$\begin{split} k \geq g(j) \quad \Rightarrow \quad \begin{cases} k^{\gamma} &= k^{2\epsilon} k^{2\epsilon} \\ &> [4^a (j+1)^{4a}]^{2\epsilon} (k^{\epsilon} + 2(\log k)^{\beta} + 3) \\ &\geq 2(j+1)^2 (k^{\epsilon} + 2n^{\beta} + 3) \\ &\Rightarrow \quad d'_{i,j,k}(\lambda) < e^{-k^{\epsilon}}. \end{split}$$

It follows by Lemma 2.2 that the series $\sum_{k=0}^{\infty} d'_{i,j,k}(\lambda)$, for $i, j \in \mathbb{N}$, are uniformly p-convergent.

Since $1 < \tau' < \tau$, it follows by Theorem 2.3 that there is an exact $2^{(\log n)^{\tau}}$ -martingale d such that

$$\bigcup_{i=0}^{\infty}\bigcup_{j=0}^{\infty}\bigcap_{t=0}^{\infty}\bigcup_{k=t}^{\infty}S^{1}[d'_{i,j,k}]\subseteq S^{\infty}[d].$$
(19)

Now assume that $A \notin WS(2^{n^{\alpha}}, n^{\beta}, 2^{\gamma n})$. Then, by the definition of weak stochasticity, we can fix $i, j \in \mathbb{N}$, functions $h_1, h_2 \in ADV(n^{\beta})$, and an infinite set $J \subseteq \mathbb{N}$ such that, for all $n \in J$, $A \in Y_{i,j,k,h_1(n),h_2(n)}$, where $k = 2^n$. For each $n \in J$, then, there is a prefix $w \sqsubseteq A$ such that $\mathbf{C}_w \subseteq Y_{i,j,k,h_1(n),h_2}(n)$, whence

$$d'_{i,j,k}(w) \ge \Pr(Y_{i,j,k,h_1(n),h_2(n)} | \mathbf{C}_w) = 1,$$

i.e., $A \in S^1[d'_{i,j,k}]$. This argument shows that

$$\bigcup_{i=0}^{\infty}\bigcup_{j=0}^{\infty}\bigcap_{t=0}^{\infty}\bigcup_{k=t}^{\infty}S^{1}[d'_{i,j,k}]\cup \mathrm{WS}(2^{n^{\alpha}},n^{\beta},2^{\gamma n})=\mathbf{C}.$$

It follows by (19) that

$$S^{\infty}[d] \cup WS(2^{n^{\alpha}}, n^{\beta}, 2^{\gamma n}) = \mathbf{C}.$$
 \Box

The technique of martingale dilation was introduced by Ambos-Spies, Terwijn, and Zheng [3]. It has also been used by Juedes and Lutz[8] and generalized considerably by Breutzmann and Lutz [6]. We use the notation of [8] here.

The restriction of a string $w = b_0 b_1 \cdots b_{n-1} \in \{0,1\}^*$ to a language $A \subseteq \{0,1\}^*$ is the string $w \upharpoonright A$ obtained by concatenating the successive bits b_i for which $s_i \in A$. If $f: \{0,1\}^* \to \{0,1\}^*$ is strictly increasing and d is a martingale, then the *f*-dilation of d is the function $f^{\hat{}}d: \{0,1\}^* \to [0,\infty)$ defined by

$$f^{\hat{}}d(w) = d(w \restriction range(f))$$

for all $w \in \{0, 1\}^*$.

Lemma 2.5 (Martingale Dilation Lemma - Ambos-Spies, Terwijn, and Zheng[3]) If $f : \{0,1\}^* \to \{0,1\}^*$ is strictly increasing and d is a martingale, then $f^{\hat{}}d$ is also a martingale. Moreover, for every language $A \in \{0,1\}^*$, if d succeeds on $f^{-1}(A)$, then $f^{\hat{}}d$ succeeds on A.

Finally, we summarize the most basic ideas of resource-bounded measure in E and E₂. A p-martingale is a martingale that is, for some $k \in \mathbb{N}$, an n^k -martingale. A p₂-martingale is a martingale that is, for some $k \in \mathbb{N}$, a $2^{(\log n)^k}$ -martingale.

Definition (Lutz [9])

- 1. A set X of languages has p-measure 0, and we write $\mu_p(X) = 0$, if there is a pmartingale d such that $X \subseteq S^{\infty}[d]$.
- 2. A set X of languages has p_2 -measure 0, and we write $\mu_{p_2}(X) = 0$, if there is a p_2 -martingale d such that $X \subseteq S^{\infty}[d]$.
- 3. A set X of languages has measure 0 in E, and we write $\mu(X|E) = 0$, if $\mu_{\rm p}(X \cap E) = 0$.
- 4. A set X of languages has measure 0 in E_2 , and we write $\mu(X|E_2) = 0$, if $\mu_{p_2}(X \cap E_2) = 0$.
- 5. A set X of languages has measure 1 in E, and we write $\mu(X|E) = 1$, if $\mu(X^c|E) = 0$. In this case, we say that X contains almost every element of E.
- 6. A set X of languages has measure 1 in E_2 , and we write $\mu(X|E_2) = 1$, if $\mu(X^c|E_2) = 0$. In this case, we say that X contains almost every element of E_2 .
- The expression μ(X|E) ≠ 0 means that X does not have measure 0 in E. Note that this does not assert that "μ(X|E)" has some nonzero value. Similarly, the expression μ(X|E₂) ≠ 0 means that X does not have measure 0 in E₂.

It is shown in [9] that these definitions endow E and E₂ with internal measure structure. This structure justifies the intuition that, if $\mu(X|E) = 0$, then $X \cap E$ is a *negligibly small* subset of E (and similarly for E₂).

3 Results

The key to our main theorem is the following lemma, which says that languages that are $\leq_{n^{\alpha}-T}^{P}$ -reducible to non-dense languages cannot be very stochastic.

Lemma 3.1 (Main Lemma) For all real numbers $\alpha < 1$ and $\beta > 1 + \alpha$,

 $P_{n^{\alpha}-T}(DENSE^{c}) \cap WS(2^{n}, n^{\beta}, 2^{\frac{n}{2}}) = \emptyset.$

Proof. Let $\alpha < 1$ and $\beta > 1 + \alpha$, and assume without loss of generality that α and β are rational. Let $A \in P_{n^{\alpha}-T}(DENSE^{c})$. It suffices to show that A is not weakly $(2^{n}, n^{\beta}, 2^{\frac{n}{2}})$ -stochastic.

Since $A \in P_{n^{\alpha}-T}(\text{DENSE}^{c})$, there exist a non-dense language S, a polynomial q(n), and a q(n)-time-bounded oracle Turing machine M such that $A = L(M^{S})$ and, for every $x \in \{0, 1\}^{*}$ and $B \subseteq \{0, 1\}^{*}$, M makes exactly $\lfloor |x|^{\alpha} \rfloor$ queries (all distinct) on input x with oracle B. Call these queries $Q^{B}(x, 1), \ldots, Q^{B}(x, \lfloor |x|^{\alpha} \rfloor)$ in the order in which M makes them.

For each $B \in \{0,1\}^*$ and $n \in \mathbb{N}$, define an equivalence relation $\approx_{B,n}$ on $\{0,1\}^{\leq q(n)}$ by

$$u \approx_{B,n} v \Leftrightarrow (\forall w) [u \le w \le v \Rightarrow \llbracket w \in B \rrbracket = \llbracket u \in B \rrbracket]$$

and an equivalence relation $\equiv_{B,n}$ on $\{0,1\}^n$ by

$$x \equiv_{B,n} y \Leftrightarrow (\forall i) [1 \le i \le n^{\alpha} \Rightarrow Q^B(x,i) \approx_{B,n} Q^B(y,i)].$$

Note that $\approx_{B,n}$ has at most $2|B_{\leq q(n)}|+1$ equivalence classes, so $\equiv_{B,n}$ has at most $(2|B_{\leq q(n)}|+1)^{n^{\alpha}}$ equivalence classes.

Let $\epsilon = \frac{1-\alpha}{2}$, and let J be the set of all $n \in \mathbb{N}$ for which the following three conditions hold.

- (i) $2|S_{\leq q(n)}| + 1 \leq 2^{n^{\epsilon}}$. (ii) $n^{\alpha+\epsilon} \leq \frac{n}{2}$.
- (iii) $n^{\alpha}(2n+1) \leq n^{\beta}$.

Since $\alpha + \epsilon < 1$ and $\beta > 1 + \alpha$, conditions (ii) and (iii) hold for all sufficiently large n. Since $\epsilon > 0$ and S is not dense, condition (i) holds for infinitely many n. Thus the set J is infinite.

Define an advice function $h : \mathbb{N} \to \{0,1\}^*$ as follows. If $n \notin J$, then $h(n) = \lambda$. If $n \in J$, then let D_n be a maximum-cardinality equivalence class of the relation $\equiv_{S,n}$. For each $1 \leq i \leq \lfloor n^{\alpha} \rfloor$, fix strings $y_{n,i}, z_{n,i} \in D_n$ such that, for all $x \in D_n$,

$$Q^{S}(y_{n,i},i) \leq Q^{S}(x,i) \leq Q^{S}(z_{n,i},i).$$

Let

$$\begin{split} h_1(n) &= y_{n,1} \cdots y_{n,\lfloor n^{\alpha} \rfloor}, \\ h_2(n) &= z_{n,1} \cdots z_{n,\lfloor n^{\alpha} \rfloor}, \\ h_3(n) &= \llbracket Q^S(y_{n,1},1) \in S \rrbracket \cdots \llbracket Q^S(y_{n,\lfloor n^{\alpha} \rfloor},\lfloor n^{\alpha} \rfloor) \in S \rrbracket, \\ h(n) &= h_1(n)h_2(n)h_3(n). \end{split}$$

Note that $|h(n)| = |n^{\alpha}|(2n+1) \le n^{\beta}$ for all $n \in J$, so $h \in ADV(n^{\beta})$.

For each $n \in \mathbb{N}$, let $t = \lfloor n^{\alpha} \rfloor$, and let C_n be the set of all coded pairs

$$\langle x, y_1 \cdots y_t z_1 \cdots z_t b_1 \cdots b_t \rangle$$

such that $x, y_1, \ldots, y_t, z_1, \ldots, z_t \in \{0, 1\}^n, b_1, \ldots, b_t \in \{0, 1\}$, and, for each $1 \le i \le t$,

$$Q^{b_1 \cdots b_t}(y_i, i) \le Q^{b_1 \cdots b_t}(x, i) \le Q^{b_1 \cdots b_t}(z_i, i),$$

where $Q^{b_1 \cdots b_t}(w, i)$ denotes the *i*th query of M on input w when the successive oracle answers are b_1, \ldots, b_t . Let B_n be the set of all such coded pairs in C_n such that M accepts on input x when the successive oracle answers are b_1, \ldots, b_t . Finally, define the languages

$$B = \{ \langle x, v \rangle | v = \lambda \text{ or } \langle x, v \rangle \in B_{|x|} \},\$$
$$C = \{ \langle x, v \rangle | v = \lambda \text{ or } \langle x, v \rangle \in C_{|x|} \}.$$

It is clear that $B, C \in \text{DTIME}(2^n)$. Also, by our construction of these sets and the advice function h, for each $n \in \mathbb{N}$, we have

$$(C/h)_{=n} = \begin{cases} D_n & \text{if } n \in J \\ \{0,1\}^n & \text{if } n \notin J \end{cases}$$

and

$$(B/h)_{=n} = \begin{cases} A \cap D_n & \text{if } n \in J \\ \{0,1\}^n & \text{if } n \notin J \end{cases}.$$

For each $n \in J$, if $\kappa(n)$ is the number of equivalence classes of $\equiv_{S,n}$, then

$$\kappa(n) \le (2|S_{\le q(n)}|+1)^{n^{\alpha}} \le (2^{n^{\epsilon}})^{n^{\alpha}} = 2^{n^{\alpha+\epsilon}},$$

 \mathbf{SO}

$$|D_n| \ge \frac{2^n}{\kappa(n)} \ge 2^{n-n^{\alpha+\epsilon}} \ge 2^{\frac{n}{2}}.$$

It follows that $|(C/h)_{=n}| \ge 2^{\frac{n}{2}}$ for all $n \in \mathbb{N}$.

Finally, for all $n \in J$,

$$(A \bigtriangleup (B/h)) \cap (C/h)_{=n} = (A \bigtriangleup (A \cap D_n)) \cap D_n = \emptyset.$$

Since J is infinite, it follows that

$$\frac{|(A \bigtriangleup (B/h)) \cap (C/h)_{=n}|}{|(C/h)_{=n}|} \not \rightarrow \frac{1}{2}$$

as $n \to \infty$. Since $B, C \in \text{DTIME}(2^n)$, $h \in \text{ADV}(n^\beta)$, and $|C_{=n}| \ge 2^{n^2}$ for all $n \in \mathbb{N}$, this shows that A is not weakly $(2^n, n^\beta, 2^{\frac{n}{2}})$ -stochastic. \Box

We now prove our main result.

Theorem 3.2 (Main Theorem) For every real number $\alpha < 1$,

$$\mu_{\mathbf{p}}(\mathbf{P}_{n^{\alpha/2}-\mathbf{T}}(\mathrm{DENSE}^{c})) = \mu_{\mathbf{p}_{2}}(\mathbf{P}_{n^{\alpha}-\mathbf{T}}(\mathrm{DENSE}^{c})) = 0.$$

Proof. Let $\alpha < 1$, and let $\beta = \frac{3+\alpha}{2}$, so that $1 + \alpha < \beta < 2$. By Theorem 2.4, there is an exact $2^{(\log n)^2}$ -martingale d such that

$$S^{\infty}[d] \cup WS(2^n, n^{\beta}, 2^{\frac{n}{2}}) = \mathbf{C}.$$

By Lemma 3.1, we then have

$$P_{n^{\alpha}-T}(DENSE^{c}) \subseteq S^{\infty}[d].$$

Since d is a p₂-martingale, this implies that $\mu_{p_2}(P_{n^{\alpha}-T}(DENSE^c)) = 0.$

Define $f : \{0, 1\}^* \to \{0, 1\}^*$ by

$$f(x) = 0^{|x|^2 - |x| - 1} 1x.$$

Then f is strictly increasing, so $f^{\hat{}}d$, the f-dilation of d, is a martingale. The time required to compute $f^{\hat{}}d(w)$ is

$$O(|w|^2 + 2^{(\log |w'|)^2})$$

steps, where $w' = w \upharpoonright range(f)$. (This allows $O(|w|^2)$ steps to compute w' and then $O(2^{(\log |w'|)^2})$ steps to compute d(w').)

Now |w'| is bounded above by the number of strings x such that $|x|^2 \leq |s_{|w|}| = \lfloor \log(1 + |w|) \rfloor$, so

$$|w'| < 2^{1 + \sqrt{\log(1 + |w|)}}.$$

Thus the time required to compute $f^{\hat{}}d(w)$ is

$$O(|w|^2 + 2^{(1+\sqrt{\log(1+|w|)})^2}) = O(|w|^2)$$

steps, so f^{d} is an n^{2} -martingale.

Now let $A \in P_{n^{\alpha/2}-T}(DENSE^c)$. Then $f^{-1}(A) \in P_{n^{\alpha}-T}(DENSE^c) \subseteq S^{\infty}[d]$, so $A \in S^{\infty}[f^{-}d]$ by Lemma 2.5. This shows that $P_{n^{\alpha/2}-T}(DENSE^c) \subseteq S^{\infty}[f^{-}d]$. Since $f^{-}d$ is an n^2 -martingale, it follows that $\mu_p(P_{n^{\alpha/2}-T}(DENSE^c)) = 0$. \Box

We now develop a few consequences of the Main Theorem. The first is immediate.

Corollary 3.3 For every real number $\alpha < 1$,

$$\mu(\mathbf{P}_{n^{\alpha/2}-\mathrm{T}}(\mathrm{DENSE}^c) \mid \mathbf{E}) = \mu(\mathbf{P}_{n^{\alpha}-\mathrm{T}}(\mathrm{DENSE}^c) \mid \mathbf{E}_2) = 0$$

The following result on the density of weakly complete (or weakly hard) languages now follows immediately from Corollary 3.3.

Corollary 3.4 For every real number $\alpha < 1$, every language that is weakly $\leq_{n^{\alpha/2}-T}^{P}$ -hard for E or weakly $\leq_{n^{\alpha}-T}^{P}$ -hard for E₂ is dense.

Our final two corollaries concern consequences of the strong hypotheses $\mu_p(NP) \neq 0$ and $\mu_{p_2}(NP) \neq 0$. The relative strengths of these hypotheses are indicated by the known implications

$$\mu(\mathrm{NP} \mid \mathrm{E}) \neq 0 \Rightarrow \mu(\mathrm{NP} \mid \mathrm{E}_2) \neq 0 \Leftrightarrow \mu_{\mathrm{P2}}(\mathrm{NP}) \neq 0 \Rightarrow \mu_{\mathrm{p}}(\mathrm{NP}) \neq 0 \Rightarrow \mathrm{P} \neq \mathrm{NP}.$$

(The leftmost implication was proven by Juedes and Lutz[8]. The remaining implications follow immediately from elementary properties of resource-bounded measure.)

Corollary 3.5 Let $\alpha < 1$. If $\mu_p(NP) \neq 0$, then every language that is $\leq_{n^{\alpha/2}-T}^{P}$ -hard for NP is dense. If $\mu_{p_2}(NP) \neq 0$, then every language that is $\leq_{n^{\alpha}-T}^{P}$ -hard for NP is dense.

We conclude by considering the densities of languages to which SAT can be adaptively reduced.

Definition A function $g : \mathbb{N} \to \mathbb{N}$ is subradical if $\log g(n) = o(\log n)$.

It is easy to see that a function g is subradical if and only if, for all k > 0, $g(n) = o(\sqrt[k]{n})$. (This is the reason for the name "subradical.") Subradical functions include very slowgrowing functions such as $\log n$ and $(\log n)^5$, as well as more rapidly growing functions such as $2^{(\log n)^{0.99}}$.

Corollary 3.6 If $\mu_{p}(NP) \neq 0$, $g : \mathbb{N} \to \mathbb{N}$ is subradical, and $SAT \leq_{g(n)-T}^{P} H$, then H is dense.

Proof. Assume the hypothesis. Let $A \in NP$. Then there is a \leq_{m}^{P} -reduction f of A to SAT. Fix a polynomial q(n) such that, for all $x \in \{0,1\}^*$, $|f(x)| \leq q(|x|)$. Composing f with the $\leq_{g(n)-T}^{P}$ -reduction of SAT to H that we have assumed to exist then gives a $\leq_{g(g(n))-T}^{P}$ -reduction of A to H. Since g is subradical, $\log g(q(n)) = o(\log q(n)) = o(\log n)$, so for all sufficiently large $n, g(q(n)) \leq 2^{\frac{\log n}{4}} = n^{\frac{1}{4}}$. Thus $A \leq_{n=1}^{P} H$.

The above argument shows that H is $\leq_{n^{\frac{1}{4}}-T}^{P}$ -hard for NP. Since we have assumed $\mu_{p}(NP) \neq 0$, it follows by Corollary 3.5 that H is dense. \Box

To put the matter differently, Corollary 3.6 tells us that if SAT is polynomial-time reducible to a non-dense language with at most $2^{(\log n)^{0.99}}$ adaptive queries, then NP has measure 0 in E and in E₂.

4 Questions

As noted in the introduction, the relationships between weak hardness notions for E and E₂ under reducibilities such as $\leq_{\mathrm{T}}^{\mathrm{P}}, \leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{P}}$, and $\leq_{n^{\alpha}-\mathrm{tt}}^{\mathrm{P}}$ remain to be resolved. Our main theorem also leaves open the question whether $\leq_{n^{\alpha}-\mathrm{T}}^{\mathrm{P}}$ -hard languages for E must be dense when $\frac{1}{2} \leq \alpha < 1$. We are in the curious situation of knowing that the classes $\mathrm{P}_{n^{0.99}-\mathrm{tt}}(\mathrm{DENSE}^c)$ and $\mathrm{P}_{n^{0.49}-\mathrm{T}}(\mathrm{DENSE}^c)$ have p-measure 0, but not knowing whether $\mathrm{P}_{n^{0.50}-\mathrm{T}}(\mathrm{DENSE}^c)$ has p-measure 0. Indeed, at this time we cannot even prove that E $\not\subseteq \mathrm{P}_{n^{0.50}-\mathrm{T}}(\mathrm{SPARSE})$. Further progress on this matter would be illuminating.

References

- K. Ambos-Spies, Randomness, relativizations, and polynomial reducibilities. In Proceedings of the First Structure in Complexity Theory Conference, pp. 23-34. Springer-Verlag, 1986.
- [2] K. Ambos-Spies and E. Mayordomo, Resource-bounded measure and randomness, in A. Sorbi(ed.), *Complexity, Logic, and Recursion Theory*, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, to appear.
- [3] K. Ambos-Spies, S. A. Terwijn, and X. Zheng, Resource-bounded randomness and weakly complete problems. *Theoretical Computer Science*. To appear.
- [4] C. H. Bennett and J. Gill, Relative to a random oracle A, $P^A \neq NP \neq co NP^A$ with probability 1, SIAM Journal on Computing 10 (1981), pp.96-113.
- [5] L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete sets. SIAM Journal on Computing, 6:305-322, 1977.
- [6] J. M. Breutzmann and J. H. Lutz, Equivalence of measures of complexity classes, Proceedings of the Fourteenth Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, 1997, to appear.
- [7] B. Fu, With quasi-linear queries, EXP is not polynomial time Turing reducible to sparse sets. *SIAM Journal on Computing*, 24:1082-1090, 1995.
- [8] D. W. Juedes and J. H. Lutz, Weak completeness in E and E₂. Theoretical Computer Science, 143:149-158, 1995.
- J. H. Lutz, Almost everywhere high nonuniform complexity, Journal of Computer and System Sciences, 19:1100-1131, 1990.
- [10] J. H. Lutz and E. Mayordomo, Measure stochasticity, and the density of hard languages. SIAM Journal on Computing, 23:762-779, 1994.
- [11] J. H. Lutz, One-way functions and balanced NP. *Theoretical Computer Science*, to appear.
- [12] J. H. Lutz, The quantitative structure of exponential time, in L. A. Hemaspaandra and A. L. Selman (eds.), Complexity Theory Retrospective II, Springer-Verlag, 1996, to appear. A preliminary version appears in Proceedings of The Eighth Annual Structure in Complexity Theory Conference (San Diego, CA, May 18-21, 1993), IEEE Computer Society Press, 1993, pp. 158-175.
- [13] S. R. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25:130-143, 1982.
- [14] E. Mayordomo, Contributions to the Study of Resource-Bounded Measure. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1994.

- [15] A. R. Meyer, 1977. Reported in [5].
- [16] M. Ogiwara and O. Watanabe, On polynomial bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471-483, June 1991.
- [17] O. Watanabe, On the Structure of Intractable Complexity Classes. PhD thesis, Tokyo Institute of Technology, 1987.