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Abstract

Given a real number a < 1, every language that is weakly SEQ/Z_T—hard for E or

weakly SEQ_T—hard for E5 is shown to be exponentially dense. This simultaneously
strengthens results of Lutz and Mayordomo(1994) and Fu(1995).

1 Introduction

In the mid-1970’s, Meyer[15] proved that every <P -complete language for exponential
time—in fact, every <P -hard language for exponential time—is dense. That is,

E ¢ P, (DENSE®), (1)

where E = DTIME(2!in€a)  DENSE is the class of all dense languages, DENSE® is the
complement of DENSE, and P,,,(DENSE®) is the class of all languages that are <! -reducible
to non-dense languages. (A language A € {0,1}* is dense if there is a real number € > 0
such that [A<,| > 2™ for all sufficiently large n, where A<, = AN {0,1}=".) Since that
time, a major objective of computational complexity theory has been to extend Meyer’s
result from <P -reductions to S%—reductions, i.e., to prove that every S%—hard language for
E is dense. That is, the objective is to prove that

E ¢ Pp(DENSE?), (2)

where Pr(DENSE®) is the class of all languages that are <t-reducible to non-dense lan-
guages. The importance of this objective derives largely from the fact (noted by Meyer[15])
that the class PT(DENSE®) contains all languages that have subexponential circuit-size
complexity. (A language A C {0, 1}* has subezponential circuit-size complezity if, for every
real number ¢ > 0, for every sufficiently large n, there is an n-input, 1-output Boolean
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circuit that decides that the set A_, = AN {0,1}" and has fewer than 2" gates. Other-
wise, we say that A has exponential circuit-size complexity.) Thus a proof of (2) would tell
us that E contains languages with exponential circuit-size complexity, thereby answering a
major open question concerning the relationship between (uniform) time complexity and
(nonuniform) circuit-size complexity. Of course (2) also implies the more modest, but more
famous conjecture, that

E ¢ Pr(SPARSE), (3)

where SPARSE is the class of all sparse languages. (A language A C {0,1}* is sparse if
there is a polynomial ¢(n) such that |A<,| < ¢(n) for all n € N.) As noted by Meyer[15],
the class Pp(SPARSE) consists precisely of all languages that have polynomial circuit-size
complexity, so (3) asserts that E contains languages that do not have polynomial circuit-size
complexity.

Knowing (1) and wanting to prove (2), the natural strategy has been to prove results of
the form

E ¢ P,(DENSE®)

for successively larger classes P,(DENSE®) in the range
P,,(DENSE®) C P, (DENSE®) C P1(DENSE?).
The first major step beyond (1) in this program was the proof by Watanabe[17] that
E Z Po(iogn)—1t(DENSE®), (4)

i.e., that every language that is Sg( (-hard for E is dense. The next big step was the

logn)—
proof by Lutz and Mayordomo|[10] that, for every real number a < 1,

E ¢ Ppo_y (DENSE?). (5)

This improved Watanabe’s result from O(logn) truth-table (i.e., nonadaptive) queries to
@ such queries for « arbitrarily close to 1 (e.g., to n%% truth-table queries). Moreover,
Lutz and Mayordomo[10] proved (5) by first proving the stronger result that for all & < 1,

n

pip(Pra 4 (DENSES)) =0, (6)

which implies that every language that is weakly <. . -hard for E or for Ep = DTIME(QPOly)
is dense. (A language A is weakly <F-hard for a complexity class C if u(P,(4) | C) # 0, i.e.,
if P.(A) NC is a nonnegligible subset of C in the sense of the resource-bounded measure
developed by Lutz[9]. A language A is weakly <F-complete for C if A € C and A is weakly
<P_hard for C. See [12] or [2] for a survey of resource-bounded measure and weak com-
pleteness.) The set of weakly <. ,,-hard languages for E is now known to have p-measure
1 [3], hence measure 1 in the class C of all languages, while the set of all <l._, -hard
languages for E has measure 0 unless E C BPP [4, 1]. Thus, if E € BPP (which is generally
conjectured to be true), almost every language is weakly <l._,-hard, but not <P._,;-hard,
for E, so the result of Lutz and Mayordomo [10] is much more general than the fact that
every <F,_,,-hard language for E is dense.



A word on the relationship between hardness notions for E and Es is in order here. It
is well known that a language is <P -hard for E if and only if it is <P -hard for Ey; this is
because E9 = Pp,(E). The same equivalence holds for g%—hardness. It is also clear that
every language that is <P _,.-hard for Ey is <P._;-hard for E. However, it is not generally
the case that Py, (Ppe_1(A)) = Ppa_41(A), so it may well be the case that a language can
be <P, _,;-hard for E, but not for E5. These same remarks apply to gga_T—hardness.

The relationship between weak hardness notions for E and Es is somewhat different.
Juedes and Lutz [8] have shown that weak <! -hardness for E implies weak <I -hardness for
Eo, and their proof of this fact also works for weak S%—hardness. However, Juedes and Lutz
8] also showed that weak <I -hardness for E; does not generally imply weak <P -hardness
for E, and it is reasonable to conjecture (but has not been proven) that the same holds for
weak <F-hardness. We further conjecture that the notions of weak <F. ., -hardness for E
and weak <P._  -hardness E, are incomparable, and similarly for weak <P, _-hardness.
In any case, (6) implies that, for every a < 1, every language that is weakly <F. . -hard
for either E or Eq is dense.

Shortly after, but independently of [10], Fu[7] used very different techniques to prove
that, for every o < 1,

EZP, a2 7 (DENSE?) (7)
and

Es Z Ppo_1p(DENSE?). (8)
That is, every language that is SEQ s»_-hard for E or SgafT—hard for E5 is dense. These

results do not have the measure-theoretic strength of (6), but they are a major improve-
ment over previous results on the densities of hard languages in that they hold for Turing
reductions, which have adaptive queries.

In the present paper, we prove results which simultaneously strengthen results of Lutz
and Mayordomo|[10] and the results of Fu[7]. Specifically, we prove that, for every a < 1,

tip(Ppas2_p(DENSE®)) = 0 (9)
and

Pops (Pre—T(DENSE?)) = 0. (10)
These results imply that every language that is weakly gga s»_p-hard for E or weakly

the proof in [10] or the proof in [7], but rather combines ideas from both [10] and [7] with
the martingale dilation technique introduced by Ambos-Spies, Terwijn, and Zheng [3].

Our results also show that the strong hypotheses p, (NP) # 0 and pp,, (NP) # 0 (surveyed
in [12] and [2]) have consequences for the densities of adaptively hard languages for NP.
Mahaney [13] proved that

<5a s2_p-hard for Ey is dense. The proof of (9) and (10) is not a simple extension of

P # NP = NP ¢ P,,(SPARSE), (11)



and Ogiwara and Watanabe [16] improved this to
P # NP = NP ¢ Py, (SPARSE). (12)

That is, if P #£ NP, then no sparse language can be Sgtt—hard for NP. Lutz and Mayordomo

[10] used (6) to obtain a stronger conclusion from a stronger hypothesis, namely, for all
a <1,

115 (NP) # 0 = NP & Pe_y (DENSE?). (13)
By (9) and (10), we now have, for all @ < 1,

4ip(NP) # 0= NP ¢ P, .»_(DENSE?) (14)
and

Jipy (NP) # 0 = NP & Ppo_1(DENSE®). (15)

Thus, if u,(NP) # 0, then every language that is SZO_@_T—hard for NP is dense. If
tps (NP) # 0, then every language that is SEO_QQ_T—hard for NP is dense.

2 Preliminaries

The Boolean value of a condition, 1 is

1 ity
[w)]]_{ 0 if not .

The standard enumeration of {0,1}* is so = A, s1 = 0,52 = 1,53 = 00, ... This enumeration
induces a total ordering of {0,1}* which we denote by <.

All languages here are subsets of {0,1}*. The Cantor space is the set C of all languages.
We identify each language A € C with its characteristic sequence, which is the infinite
binary sequence

[[80 € A]][[Sl € A]][[SQ € A]] S

where sp = A\, s; = 0,89 = 1,83 = 00,... is the standard enumeration of {0,1}*. For
w € {0,1}* and A € C, we write w C A to indicate that w is a prefix of (the characteristic
sequence of) A. The symmetric difference of the two languages A and B is AA B =
(A—B)U(B - A).

The cylinder generated by a string w € {0,1}* is the set

Cy,={A€ClwC Al.

Note that C, = C.

In this paper, a set X C C that appears in a probability Pr(X) or a conditional proba-
bility Pr(X|C,,) is regarded as an event in the sample space C with the uniform probability
measure. Thus, for example, Pr(X) is the probability that A € X when the language
A C {0,1}* is chosen probabilistically by using an independent toss of a fair coin to decide



membership of each string in A. In particular, Pr(C,) = 2-*I. The complement of a set
X CCis theset X¢=C - X.

Let d € Nand t : N — N. A function f : N¢ x {0,1}* — Q is ezactly t(n)-time-
computable if there is an algorithm that, on input (ki,... ,kq, w) € N? x {0,1}*, runs for
at most O(t(ky + -+ + kg + |w]|)) steps and outputs an ordered pair (a,b) € Z x Z such
that f(k1,...,kq,w) = %. A function f : N¢ x {0,1}* — R is t(n)-time-computable if
there is an exactly ¢(n)-time-computable function f: N1 x {0,1}* — Q such that, for all
r.ki,... kg € Nand w € {0,1}*,

~

|f(’f',k1,... ,kd,w) —f(kl,... ,kd,w)| <277,

We briefly review those aspects of martingales and resource-bounded measure that are
needed for our main theorem. The reader is referred to [2], [9], [12], or [14] for more thorough
discussion.

A martingale is a function d : {0,1}* — [0,00) such that, for all w € {0,1}*,

d(w0) + d(wl)'

d(w) = 5

If t : N = N, then a t(n)-martingale is a martingale that is ¢(n)-time-computable, and an
exact t(n)-martingale is a (rational-valued) martingale that is exactly ¢(n)-time-computable.
A martingale d succeeds on a language A € C if, for every ¢ € N, there exists w C A such
that d(w) > c. The success set of a martingale d is the set

S>°[d] = {A € C|d succeeds on A}.

The unitary success set of d is

S'd = |J Cu
we{0,1}*
d(w)>1

The following result was proven by Juedes and Lutz [8] and independently by Mayor-
domo [14].

Lemma 2.1 (Exact Computation Lemma) Let t : N — N be nondecreasing with t(n) > n.
Then, for every t(n)-martingale d, there is an exact n - t(2n + 2)-martingale d such that

S%[d] C $>[d].

A sequence
o0
> ajk (j=0,1,2,...)
k=0

of series of terms a; € [0,00) is uniformly p-convergent if there is a polynomial m : N - N

oo
such that, for all j,r € N, Z ajr < 277, where we write m;(r) = m(j,r). The following
k=m(r)
sufficient condition for uniform p-convergence is easily verified by routine calculus.



Lemma 2.2 Let a;), € [0,00) for all j,k € N. If there exist a real number € > 0 and a
polynomial g : N — N such that ajj < e % for all 5,k € N with k > ¢(j), then the series
o

Za]’,k (1 =0,1,2,...) are uniformly p-convergent.
k=0

A uniform, resource-bounded generalization of the classical first Borel-Cantelli lemma
was proved by Lutz [9]. Here we use the following precise variant of this result.

Theorem 2.3 Let o, € R with 1 < a < &, and let

d:NxNx{0,1}* - QnJ0,00)
be an ezactly 20°8™ _time-computable function with the following two properties.
(i) For each j,k €N, the function d;y, defined by d;(w) = d(j, k,w) is a martingale.

(ii) The series Zdj,k (1 =0,1,2,...) are uniformly p-convergent.
k=0

Then there is an exact 2008™°

-martingale & such that

[ elNe elENe o]

U ﬂ U S'd; ] C S[d].

§=01t=0 k=t

Proof (sketch). Assume the hypothesis, and fix @' € Q such that « < o/ < &. Since

n - 2(log(2n+2))" 0(2(1°g”)&), it suffices by Lemma 2.1 to show that there is a ologn)’_
martingale d’ such that

[ elNe elENe o]

U N US"dk] € 5®[d)- (16)

§=01t=0 k=t

o0
Fix a polynomial m : N> — N testifying that the series Zdj,k (7 =0,1,2,...) are
k=0
uniformly p-convergent, and define

d(w) < YooY 2t 0

(e.0) oo
< oM Yoy
§=0 t=0

_ w|+2
— 9lvl ,



sod :{0,1}* — [0,00). It is clear by linearity that d’ is a martingale. To see that (16)

(o ole ole o]

holds, assume that A € U m U5’1 [djr], and let ¢ € N be arbitrary. Then there exist
§=01=0 k=t
j € Nand k > m;(2j + 2c) such that A € S[d;;]. Fix w C A such that d; z(w) > 1. Then
d'(w) > 27777d; . (w) > 2¢. Since c is arbitrary here, it follows that A € $°°[d’], confirming
(16).
To see that d' is 2(°8™" _time-computable, define d,dp,dc : N x {0,1}* = [0,00) as
follows, using the abbreviation s = r + |w| + 2.

da(r,w) = ZZ Z 279 d; g (w

§=0 t=0 k=m, (2t)

dp(r,w) = ZZ Z 29 d g (w

=0 t=0 k=m; (2t)

s 25 myj( (252 +45+t)

do(row) = > 3 > 27d,(w) (17)

J=01=0  k=m;(2t)
For all r € N and w € {0, 1}*, it is clear that
do(r,w) < dg(r,w) < da(r,w) < d(w),
and it is routine to verify the inequalities

d'(w) — d(r,w)
da(r,w) —dp(r,w)
dp(r,w) — dc(r,w)

IAIA A
NN
=
K

whence we have
d'(w) = 27" < de(r,w) < d'(w) (18)

for all r € N and w € {0,1}*. Using formula (17), the time required to compute d¢(r, w)
exactly is no greater than

O((s +1)(2s 4 1)m(s, 25> + 45 + 23)2(10gn)°‘) = 0(gq(n) - 2(102;71)‘1)’

where n = r 4 |w| and ¢ is a polynomial. Since g(n) - 2(08™)" = o(2(log ")a,), it follows that
de(r,w) is exactly 20987 _time-computable. By (18), then, d' is a 2(°6™ _martingale. O

The proof of our main theorem uses the techniques of weak stochasticity and martingale
dilation, which we briefly review here.

As usual, an advice function is a function h : N — {0,1}*. Given a function ¢ : N — N,
we write ADV (q) for the set of all advice functions h such that |h(n)| < g(n) for alln € N.
Given a language B and an advice function h, we define the language

B/h ={z € {0,1}" |< z,h(|z|) >€ B},



where < -, - > is a standard string-pairing function, e.g., < z,y >= 0lzl1zy. Given
functions t,q : N — N, we define the advice class

DTIME(t)/ADV(q) = {B/h | B € DTIME(t) and h € ADV(q)}.

Definition (Lutz and Mayordomo|[10], Lutz[11]) For t,q,v : N — N, a language A is
weakly (t,q,v)-stochastic if, for all B,C € DTIME(t)/ADV(q) such that |C—y| > v(n) for

all sufficiently large n,
. [(AAB)NC=,| 1
lim = —.
n— 00 |C:n| 2

We write WS(t, ¢, ) for the set of all weakly (¢, ¢, v)-stochastic languages.

The following result resembles the weak stochasticity theorems proved by Lutz and
Mayordomo [10] and Lutz [11], but gives a more careful upper bound on the time complexity
of the martingale.

Theorem 2.4 (Weak Stochasticity Theorem) Assume that «, 3,v,7 € R satisfy « > 1,3 >
1,7 >0, and T > af8. Then there is an exact 2008n)™ _martingale d such that

S®[d] U WS(2™",nf, 2™ = C.

Proof. Assume the hypothesis, and assume without loss of generality that o, 3,v,7 € Q.
Fix o/, 7',7" € @Q such that o« < & and /B < 7" < 7' < 7. Let U € DTIME(Q"D/) be a
language that is universal for DTIME(2"") x DTIME(2™") in the following sense. For each
1 €N, let

Ci={z€{0,1}"| < s;,00 >e U},

D; ={z €{0,1}*| < sj,1z > U}.

Then DTIME(2"") x DTIME(2"") = {(C;, D;)|i € N}.
Define a function d’ : N* x {0,1}* — QN[0, 00) as follows. If k is not a power of 2, then

d. ;. (w) = 0. Otherwise, if kK = 2", where n € N, then

l7j’k
d;,],k(w) = Z Pr(y;;vj7k7y7z|cw)7
y,ze{0,1}<n”

where the sets Y; ;. . are defined as follows. If |(C;/y)=pn| < 27", then Y j ., = 0. If
|(Ci/y)=n| > 27", then Y j 1, is the set of all A € C such that

(AL (Di/2) N (Ci/y)=nl 1| 1

[(Ci/y)=nl 2( 7+ 1

The definition of conditional probability immediately implies that, for each i, 5,k € N, the
function d; ; . is a martingale. Since U € DTIME(2™" ) and o/ < 7", the time required

to compute each Pr(Y; ;,..|Cy) using binomial coefficients is at most O(2(08(+i+k)"™ ")
steps, so the time required to compute d; ; ; (w) is at most O((2"" + 1)2 . 2(og(i+i+k)™y =

0(2(1°g(i+j+k))T,) steps. Thus d' is exactly 2(°8 ")Tl—time—computable.




As in [10] and [11], the Chernoff bound tells us that, for all i,j,n € N and y,z €
{0,135 writing k = 2,
Pr(Yi,j,k,y,z) < 26—197/2(9'4-1)2’

whence

di 1) < (27 +1)2 - 2e7 K20
< 62n5+37k7/2(j+1)2.

Let a = [%], let e = 7, and fix ko € N such that
k% > k¢ +2(logk)? + 3
for all k£ > ky. Define g : N — N by
9(j) =4"(3 + )" + ko
for all 5 € N. Then g is a polynomial and, for all 7, j,n € N, writing &k = 2",

kY = k2€k2€
k>g(j) = >[4 + D Pk + 2(log k)P + 3)
> 2(j 4+ 1)2(k¢ +2n° +3)

= d;”]’k(A) < e_kf.

o

It follows by Lemma 2.2 that the series ng, j,k(>‘)’ for 7, j € N, are uniformly p-convergent.
k=0

Since 1 < 7/ < 7, it follows by Theorem 2.3 that there is an exact 2(°8 ”)T—martingale d such

that

(o clNe olNe oo o

UU N US4l € 5. (19)

i=0 j=0 t=0 k=t

Now assume that A ¢ WS(2"",n%, 27). Then, by the definition of weak stochasticity,
we can fix i,j € N, functions hy,hy € ADV(n?), and an infinite set J C N such that, for
alln € J, A € Yk hi(n)ho(n)» Where k = 2". For each n € J, then, there is a prefix w C A
such that Cy C Y} x n,(n),he (1), whence

3 (W) = Pr(Yi 5 hi(n) ho(n) Cuw) = 1,

ie, A€ Sl[d’-jk]. This argument shows that

2

o olNe cRNe CRNNe O]

UUN U S" ] uwsE” n’,27m) = C.

i=0j=01=0 k=t
It follows by (19) that

S°d] U WS(2"",n?, 27 = C. 0



The technique of martingale dilation was introduced by Ambos-Spies, Terwijn, and
Zheng [3]. It has also been used by Juedes and Lutz[8] and generalized considerably by
Breutzmann and Lutz [6]. We use the notation of [8] here.

The restriction of a string w = boby---b,—1 € {0,1}* to a language A C {0,1}* is
the string w[A obtained by concatenating the successive bits b; for which s; € A. If
f:{0,1} — {0,1}* is strictly increasing and d is a martingale, then the f-dilation of d is
the function f°d: {0,1}* — [0,00) defined by

frd(w) = d(w|range(f))
for all w € {0, 1}*.

Lemma 2.5 (Martingale Dilation Lemma - Ambos-Spies, Terwijn, and Zheng([3]) If f :
{0,1}* — {0,1}* is strictly increasing and d is a martingale, then f°d is also a martingale.
Moreover, for every language A € {0,1}*, if d succeeds on f~(A), then f d succeeds on A.

Finally, we summarize the most basic ideas of resource-bounded measure in E and E.
A p-martingale is a martingale that is, for some k € N, an n*-martingale. A po-martingale
is a martingale that is, for some k € N, a 20°8™)"_martingale.

Definition (Lutz [9])

1. A set X of languages has p-measure 0, and we write uy(X) = 0, if there is a p-
martingale d such that X C S*[d].

2. A set X of languages has pa-measure 0, and we write pp,(X) = 0, if there is a
p2-martingale d such that X C S*[d].

3. A set X of languages has measure 0 in E, and we write u(X|E) =0, if up(XNE) = 0.

4. A set X of languages has measure 0 in Eo, and we write p(X|Eg) = 0, if pup, (XNEg) =
0.

5. A set X of languages has measure 1 in E, and we write p(X|E) = 1, if p(X°|E) = 0.
In this case, we say that X contains almost every element of E.

6. A set X of languages has measure 1 in Eg, and we write p(X|Eq9) = 1, if un(X¢/Eq) = 0.
In this case, we say that X contains almost every element of Eo.

7. The expression u(X|E) # 0 means that X does not have measure 0 in E. Note that
this does not assert that “u(X|E)” has some nonzero value. Similarly, the expression
(X |E2) # 0 means that X does not have measure 0 in Eg.

It is shown in [9] that these definitions endow E and E5 with internal measure structure.
This structure justifies the intuition that, if u(X|E) = 0, then X N E is a negligibly small
subset of E (and similarly for Eo).

10



3 Results

The key to our main theorem is the following lemma, which says that languages that are
gga_T—reducible to non-dense languages cannot be very stochastic.

Lemma 3.1 (Main Lemma) For all real numbers a <1 and > 1+ «,
P,o_1(DENSE®) N WS(2",n°,22) = 0.

Proof. Let @« < 1 and 8 > 1 4+ «, and assume without loss of generality that o and (§ are
rational. Let A € Ppo_1(DENSE®). It suffices to show that A is not weakly (2",n7,22)-
stochastic.

Since A € Ppa_7(DENSE®), there exist a non-dense language S, a polynomial g(n),
and a g(n)-time-bounded oracle Turing machine M such that A = L(M®) and, for every
z € {0,1}* and B C {0,1}*, M makes exactly ||z|*|queries (all distinct) on input z with
oracle B. Call these queries QP (z,1),...,QP(z,||z|*]) in the order in which M makes
them.

For each B € {0,1}* and n € N, define an equivalence relation ~p, on {0, 11=4() by

umpnve (Yw)u<w<v=[we B]=[uec B
and an equivalence relation =g, on {0,1}" by
T=BnY < (Vi1 <2<n® = QB(x’i) ~Bn QB(yai)]'

Note that ~p ,, has at most 2| B<,(,,)|+1 equivalence classes, so =p 5, has at most (2| B<,) |+
1)™ equivalence classes.
Let € = I_Ta, and let J be the set of all n € N for which the following three conditions
hold.
(i) 2|S<qm)l +1 <27
(i) n*te< L.
(iii)) n%(2n+1) < nb.
Since @ + € < 1 and # > 1 + «, conditions (ii) and (iii) hold for all sufficiently large n.
Since € > 0 and S is not dense, condition (i) holds for infinitely many n. Thus the set J is
infinite.
Define an advice function h : N — {0,1}* as follows. If n ¢ J, then h(n) = A. If
n € J, then let D, be a maximum-cardinality equivalence class of the relation =g ,. For
each 1 <14 < [n®], fix strings yy i, 2n,; € Dy, such that, for all z € Dy,

Q% (yn,iri) < Q°(z,1) < Q% (2n4,1).
Let

>
—_
—_~ Y~ o~

3

3

Yn,1 """ Yn,|n]>

>
)

= Zn1 Zn|no;
= [Q°(yn,1,1) € 1+ [Q% (yn, ne) n%]) € ST,
= h1 (n)hg (n)h3 (n)

>
w
— — — —

11



Note that |h(n)| = [n%](2n + 1) < nf for all n € J, so h € ADV(nP).
For each n € N, let ¢t = |[n®], and let C, be the set of all coded pairs

such that z,y1, ...,y 21, ... ,2¢ € {0,1}", by,... ,by € {0,1}, and, for each 1 <i < ¢,

le"'bt (yz’z) < le..-bt (:E,Z) < le...bt(zi,i),

where Q"% (w, i) denotes the ith query of M on input w when the successive oracle answers
are by,...,b;. Let B, be the set of all such coded pairs in C), such that M accepts on input
xz when the successive oracle answers are by, ... ,b;. Finally, define the languages

B={<zv>v=Aor <m,v>€ By},

C={<z,0>v=Nor <z,vo>€CCy}.

It is clear that B,C € DTIME(2"). Also, by our construction of these sets and the advice
function h, for each n € N, we have

D, iftneJ
(C/h)=n = { {0,1}" ifngJ

and
AND, ifneJd

(B/h)=n = { {0,1}" ifngJ
For each n € J, if k(n) is the number of equivalence classes of =g ,, then

a—+te

R(n) < (2l8<qml + 1" < 27)" =27,

SO n
> 1T 5 0%

M

Dol = )

It follows that [(C/h)=n| > 2% for all n € N.
Finally, for all n € J,

(AA(B/h)N(C/h)=p = (AN (ANDy,))ND, =0.
Since J is infinite, it follows that

(A4 (B/h) N (C/h)=n| 1
[(C/h)=n| 2

as n — oco. Since B,C € DTIME(2"), h € ADV(n?), and |C—,| > 27* for all n € N, this
shows that A is not weakly (27,n°, 2%)—stochastic. O

We now prove our main result.
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Theorem 3.2 (Main Theorem) For every real number o < 1,
top(Pas2 7 (DENSES)) = pip, (Ppa—r(DENSE®)) = 0.

Proof. Let @ < 1, and let 8 = HTO‘, so that 1 + a < # < 2. By Theorem 2.4, there is an

exact 2008 ”)Q—martingale d such that
S®ld] UWS(2",n?,2%) = C.
By Lemma 3.1, we then have
P,o_1(DENSE?) C S*[d].

Since d is a pp-martingale, this implies that jup, (Ppe—1(DENSE®)) = 0.
Define f:{0,1}* — {0,1}* by

fla) =07l

Then f is strictly increasing, so f"d, the f-dilation of d, is a martingale. The time required
to compute fd(w) is
O(Jw|? + 208 1w'D?)

steps, where w' = wlrange(f). (This allows O(Jw|?) steps to compute w’ and then
02008 1¥'D*) steps to compute d(w').)
Now |w'| is bounded above by the number of strings z such that [z|* < |s},(| = |[log(1+

[wl)], so
|wl| < 21+\/10g(1+|w\).
Thus the time required to compute f d(w) is

O(|w|2 +2(1+ log(1+|w\))2) — O(|w|2)

steps, so f'd is an n2-martingale.
Now let A € P,a/2_(DENSE®). Then f!(A) € Ppa_p(DENSE®) C S§[d], so A €
S®[f"d] by Lemma 2.5. This shows that P ., (DENSE®) C S*°[f"d]. Since fd is an

n?-martingale, it follows that pup(P,e/2_(DENSE®)) = 0. O

We now develop a few consequences of the Main Theorem. The first is immediate.
Corollary 3.3 For every real number a < 1,
p(Pas2_p(DENSE®) | E) = p(Ppe _1(DENSE®) | E2) = 0.

The following result on the density of weakly complete (or weakly hard) languages now
follows immediately from Corollary 3.3.

Corollary 3.4 For every real number o < 1, every language that is weakly SEQ/Q_T—hard

for E or weakly Sga_T—hard for Ea is dense.

13



Our final two corollaries concern consequences of the strong hypotheses p,(NP) # 0
and fup, (NP) # 0. The relative strengths of these hypotheses are indicated by the known
implications

j(NP | E) # 0 = p(NP | E) # 0 & pip, (NP) # 0 = 1 (NP) # 0 = P  NP.

(The leftmost implication was proven by Juedes and Lutz[8]. The remaining implications
follow immediately from elementary properties of resource-bounded measure.)

Corollary 3.5 Let o < 1. If up,(NP) # 0, then every language that is SSQ/LT—hard for

NP is dense. If p,,(NP) # 0, then every language that is SEQ_T—hard for NP is dense.

We conclude by considering the densities of languages to which SAT can be adaptively
reduced.
Definition A function g : N — N is subradical if log g(n) = o(logn).

It is easy to see that a function g is subradical if and only if, for all k > 0, g(n) = o(¥/n).
(This is the reason for the name “subradical.”) Subradical functions include very slow-

growing functions such as logn and (logn)®, as well as more rapidly growing functions such
as 2(10g n)0.99 )

Corollary 3.6 If u,(NP) # 0, g : N = N is subradical, and SAT Sg(n)_T H, then H is
dense.

Proof. Assume the hypothesis. Let A € NP. Then there is a <! -reduction f of A to SAT.
Fix a polynomial g(n) such that, for all z € {0,1}*, |f(z)| < ¢(Jz|). Composing f with
the Sgp(n)_T—reduction of SAT to H that we have assumed to exist then gives a Sﬁ(q(n))_T—
reduction of A to H. Since g is subradical, log g(g(n)) = o(logg¢(n)) = o(logn), so for all

sufficiently large n, g(q(n)) < 2% = ni. Thus A SP%{ - H.
ni_
The above argument shows that H is <P, T—hard for NP. Since we have assumed
nid—

pp(NP) # 0, it follows by Corollary 3.5 that H is dense. O

To put the matter differently, Corollary 3.6 tells us that if SAT is polynomial-time
reducible to a non-dense language with at most 9(logn)#* adaptive queries, then NP has
measure 0 in E and in Eo.

4 Questions

As noted in the introduction, the relationships between weak hardness notions for E and E,
under reducibilities such as <}, <P, 1 and <P, |, remain to be resolved. Our main theo-
rem also leaves open the question whether gﬁa _r-hard languages for E must be dense when
% < a < 1. We are in the curious situation of knowing that the classes P,0.99_;; (DENSE)
and P 0401 (DENSE®) have p-measure 0, but not knowing whether P,,0.50_7(DENSE®) has
p-measure 0. Indeed, at this time we cannot even prove that E Z P os0_1(SPARSE).
Further progress on this matter would be illuminating.
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