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Abstract

Given a real number � � �� every language that is weakly �P
n
���
�T

�hard for E or

weakly �P
n
�
�T

�hard for E� is shown to be exponentially dense� This simultaneously
strengthens results of Lutz and Mayordomo������ and Fu�������

� Introduction

In the mid������s� Meyer���	 proved that every �P
m�complete language for exponential

time
in fact� every �P
m�hard language for exponential time
is dense� That is�

E �� Pm�DENSE
c� ��

where E � DTIME��linear� DENSE is the class of all dense languages� DENSEc is the
complement of DENSE� and Pm�DENSE

c is the class of all languages that are �P
m�reducible

to non�dense languages� �A language A � f�� �g� is dense if there is a real number � � �
such that jA�nj � �n

�
for all su�ciently large n� where A�n � A � f�� �g�n� Since that

time� a major objective of computational complexity theory has been to extend Meyer�s
result from �P

m�reductions to �P
T�reductions� i�e�� to prove that every �P

T�hard language for
E is dense� That is� the objective is to prove that

E �� PT�DENSE
c� ��

where PT�DENSE
c is the class of all languages that are �P

T�reducible to non�dense lan�
guages� The importance of this objective derives largely from the fact �noted by Meyer���	
that the class PT�DENSE

c contains all languages that have subexponential circuit�size
complexity� �A language A � f�� �g� has subexponential circuit�size complexity if� for every
real number � � �� for every su�ciently large n� there is an n�input� ��output Boolean
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circuit that decides that the set A�n � A � f�� �gn and has fewer than �n
�
gates� Other�

wise� we say that A has exponential circuit�size complexity� Thus a proof of �� would tell
us that E contains languages with exponential circuit�size complexity� thereby answering a
major open question concerning the relationship between �uniform time complexity and
�nonuniform circuit�size complexity� Of course �� also implies the more modest� but more
famous conjecture� that

E �� PT�SPARSE� ��

where SPARSE is the class of all sparse languages� �A language A � f�� �g� is sparse if
there is a polynomial q�n such that jA�nj � q�n for all n � N� As noted by Meyer���	�
the class PT�SPARSE consists precisely of all languages that have polynomial circuit�size
complexity� so �� asserts that E contains languages that do not have polynomial circuit�size
complexity�

Knowing �� and wanting to prove ��� the natural strategy has been to prove results of
the form

E �� Pr�DENSE
c

for successively larger classes Pr�DENSE
c in the range

Pm�DENSE
c � Pr�DENSE

c � PT�DENSE
c�

The �rst major step beyond �� in this program was the proof by Watanabe���	 that

E �� PO�log n��tt�DENSE
c� ��

i�e�� that every language that is �P
O�log n��tt�hard for E is dense� The next big step was the

proof by Lutz and Mayordomo���	 that� for every real number � � ��

E �� Pn��tt�DENSE
c� ��

This improved Watanabe�s result from O�log n truth�table �i�e�� nonadaptive queries to
n� such queries for � arbitrarily close to � �e�g�� to n���� truth�table queries� Moreover�
Lutz and Mayordomo���	 proved �� by �rst proving the stronger result that for all � � ��

�p�Pn��tt�DENSE
c � �� ��

which implies that every language that is weakly�P
n��tt�hard for E or for E� � DTIME��poly

is dense� �A language A is weakly �P
r �hard for a complexity class C if ��Pr�A j C �� �� i�e��

if Pr�A � C is a nonnegligible subset of C in the sense of the resource�bounded measure
developed by Lutz��	� A language A is weakly �P

r �complete for C if A � C and A is weakly
�P
r �hard for C� See ���	 or ��	 for a survey of resource�bounded measure and weak com�

pleteness� The set of weakly �P
n��tt�hard languages for E is now known to have p�measure

� ��	� hence measure � in the class C of all languages� while the set of all �P
n��tt�hard

languages for E has measure � unless E � BPP ��� �	� Thus� if E �� BPP �which is generally
conjectured to be true� almost every language is weakly �P

n��tt�hard� but not �P
n��tt�hard�

for E� so the result of Lutz and Mayordomo ���	 is much more general than the fact that
every �P

n��tt�hard language for E is dense�
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A word on the relationship between hardness notions for E and E� is in order here� It
is well known that a language is �P

m�hard for E if and only if it is �P
m�hard for E�� this is

because E� � Pm�E� The same equivalence holds for �P
T�hardness� It is also clear that

every language that is �P
n��tt�hard for E� is �P

n��tt�hard for E� However� it is not generally
the case that Pm�Pn��tt�A � Pn��tt�A� so it may well be the case that a language can
be �P

n��tt�hard for E� but not for E�� These same remarks apply to �P
n��T�hardness�

The relationship between weak hardness notions for E and E� is somewhat di�erent�
Juedes and Lutz ��	 have shown that weak �P

m�hardness for E implies weak �P
m�hardness for

E�� and their proof of this fact also works for weak �P
T�hardness� However� Juedes and Lutz

��	 also showed that weak �P
m�hardness for E� does not generally imply weak �P

m�hardness
for E� and it is reasonable to conjecture �but has not been proven that the same holds for
weak �P

T�hardness� We further conjecture that the notions of weak �P
n��tt�hardness for E

and weak �P
n��tt�hardness E� are incomparable� and similarly for weak �P

n��T�hardness�
In any case� �� implies that� for every � � �� every language that is weakly �P

n��tt�hard
for either E or E� is dense�

Shortly after� but independently of ���	� Fu��	 used very di�erent techniques to prove
that� for every � � ��

E �� Pn����T�DENSE
c ��

and

E� �� Pn��T�DENSE
c� ��

That is� every language that is �P
n����T

�hard for E or �P
n��T�hard for E� is dense� These

results do not have the measure�theoretic strength of ��� but they are a major improve�
ment over previous results on the densities of hard languages in that they hold for Turing
reductions� which have adaptive queries�

In the present paper� we prove results which simultaneously strengthen results of Lutz
and Mayordomo���	 and the results of Fu��	� Speci�cally� we prove that� for every � � ��

�p�Pn����T�DENSE
c � � ��

and

�p��Pn��T�DENSE
c � �� ���

These results imply that every language that is weakly �P
n����T

�hard for E or weakly

�P
n����T

�hard for E� is dense� The proof of �� and ��� is not a simple extension of

the proof in ���	 or the proof in ��	� but rather combines ideas from both ���	 and ��	 with
the martingale dilation technique introduced by Ambos�Spies� Terwijn� and Zheng ��	�

Our results also show that the strong hypotheses �p�NP �� � and �p��NP �� � �surveyed
in ���	 and ��	 have consequences for the densities of adaptively hard languages for NP�
Mahaney ���	 proved that

P �� NP� NP �� Pm�SPARSE� ���
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and Ogiwara and Watanabe ���	 improved this to

P �� NP� NP �� Pbtt�SPARSE� ���

That is� if P �� NP� then no sparse language can be �P
btt�hard for NP� Lutz and Mayordomo

���	 used �� to obtain a stronger conclusion from a stronger hypothesis� namely� for all
� � ��

�p�NP �� �� NP �� Pn��tt�DENSE
c� ���

By �� and ���� we now have� for all � � ��

�p�NP �� �� NP �� Pn����T�DENSE
c ���

and

�p��NP �� �� NP �� Pn��T�DENSE
c� ���

Thus� if �p�NP �� �� then every language that is �P
n�����T�hard for NP is dense� If

�p��NP �� �� then every language that is �P
n�����T�hard for NP is dense�

� Preliminaries

The Boolean value of a condition� � is

���		 �

�
� if �
� if not ��

The standard enumeration of f�� �g� is s� � �� s� � �� s� � �� s� � ��� � � � This enumeration
induces a total ordering of f�� �g� which we denote by ��

All languages here are subsets of f�� �g�� The Cantor space is the set C of all languages�
We identify each language A � C with its characteristic sequence� which is the in�nite
binary sequence

��s� � A		��s� � A		��s� � A		 � � � �
where s� � �� s� � �� s� � �� s� � ��� � � � is the standard enumeration of f�� �g�� For
w � f�� �g� and A � C� we write w v A to indicate that w is a pre�x of �the characteristic
sequence of A� The symmetric di�erence of the two languages A and B is A � B �
�A�B 	 �B �A�

The cylinder generated by a string w � f�� �g� is the set

Cw � fA � Cjw v Ag�

Note that C� � C�
In this paper� a set X � C that appears in a probability Pr�X or a conditional proba�

bility Pr�XjCw is regarded as an event in the sample space C with the uniform probability
measure� Thus� for example� Pr�X is the probability that A � X when the language
A � f�� �g� is chosen probabilistically by using an independent toss of a fair coin to decide
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membership of each string in A� In particular� Pr�Cw � ��jwj� The complement of a set
X � C is the set Xc � C�X�

Let d � N and t � N 
 N� A function f � Nd � f�� �g� 
 Q is exactly t�n�time�
computable if there is an algorithm that� on input �k�� � � � � kd� w � Nd � f�� �g�� runs for
at most O�t�k� � � � � � kd � jwj steps and outputs an ordered pair �a� b � Z� Z such
that f�k�� � � � � kd� w � a

b � A function f � Nd � f�� �g� 
 R is t�n�time�computable if

there is an exactly t�n�time�computable function bf � Nd�� � f�� �g� 
 Q such that� for all
r� k�� � � � � kd � N and w � f�� �g��

j bf�r� k�� � � � � kd� w � f�k�� � � � � kd� wj � ��r�

We brie�y review those aspects of martingales and resource�bounded measure that are
needed for our main theorem� The reader is referred to ��	� ��	� ���	� or ���	 for more thorough
discussion�

A martingale is a function d � f�� �g� 
 ���� such that� for all w � f�� �g��

d�w �
d�w� � d�w�

�
�

If t � N 
 N� then a t�n�martingale is a martingale that is t�n�time�computable� and an
exact t�n�martingale is a �rational�valued martingale that is exactly t�n�time�computable�
A martingale d succeeds on a language A � C if� for every c � N� there exists w v A such
that d�w � c� The success set of a martingale d is the set

S��d	 � fA � Cjd succeeds on Ag�

The unitary success set of d is

S��d	 �
�

w�f���g�

d�w���

Cw�

The following result was proven by Juedes and Lutz ��	 and independently by Mayor�
domo ���	�

Lemma ��� �Exact Computation Lemma Let t � N 
 N be nondecreasing with t�n  n��
Then� for every t�n�martingale d� there is an exact n � t��n � ��martingale ed such that
S��d	 � S��ed	�

A sequence
�X
k��

aj�k �j � �� �� �� � � � 

of series of terms aj�k � ���� is uniformly p�convergent if there is a polynomialm � N� 
 N

such that� for all j� r � N�
�X

k�mj�r�

aj�k � ��r� where we write mj�r � m�j� r� The following

su�cient condition for uniform p�convergence is easily veri�ed by routine calculus�
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Lemma ��� Let aj�k � ���� for all j� k � N� If there exist a real number � � � and a

polynomial g � N 
 N such that aj�k � e�k
�
for all j� k � N with k  g�j� then the series

�X
k��

aj�k �j � �� �� �� � � �  are uniformly p�convergent�

A uniform� resource�bounded generalization of the classical �rst Borel�Cantelli lemma
was proved by Lutz ��	� Here we use the following precise variant of this result�

Theorem ��� Let �� e� � R with � � � � e�� and let

d � N � N � f�� �g� 
 Q � ����

be an exactly ��log n�
�
�time�computable function with the following two properties�

�i� For each j� k � N� the function dj�k de�ned by dj�k�w � d�j� k� w is a martingale�

�ii� The series

�X
k��

dj�k �j � �� �� �� � � �  are uniformly p�convergent�

Then there is an exact ��log n�
e�
�martingale e� such that

��
j��

��
t��

��
k�t

S��dj�k	 � S��ed	�
Proof �sketch� Assume the hypothesis� and �x �� � Q such that � � �� � e�� Since

n � ��log��n������ � o���log n�
e�
� it su�ces by Lemma ��� to show that there is a ��log n�

��

�
martingale d� such that

��
j��

��
t��

��
k�t

S��dj�k	 � S��d�	� ���

Fix a polynomial m � N� 
 N testifying that the series

�X
k��

dj�k �j � �� �� �� � � �  are

uniformly p�convergent� and de�ne

d��w �
�X
j��

�X
t��

�X
k�mj��t�

�t�jdj�k�w

for all w � f�� �g�� Then� for each w � f�� �g��

d��w �
�X
j��

�X
t��

�X
k�mj��t�

�t�j�jwjdj�k��

� �jwj
�X
j��

��j
�X
t��

�t � ���t

� �jwj���

�



so d� � f�� �g� 
 ����� It is clear by linearity that d� is a martingale� To see that ���

holds� assume that A �
��
j��

��
t��

��
k�t

S��dj�k	� and let c � N be arbitrary� Then there exist

j � N and k  mj��j � �c such that A � S��dj�k	� Fix w v A such that dj�k�w  �� Then
d��w  �c�j�jdj�k�w  �c� Since c is arbitrary here� it follows that A � S��d�	� con�rming
����

To see that d� is ��log n�
��

�time�computable� de�ne dA� dB � dC � N � f�� �g� 
 ���� as
follows� using the abbreviation s � r � jwj� ��

dA�r� w �
sX

j��

�X
t��

�X
k�mj��t�

�t�jdj�k�w

dB�r� w �

sX
j��

�sX
t��

�X
k�mj��t�

�t�jdj�k�w

dC�r� w �

sX
j��

�sX
t��

mj��s
��	s�t�X

k�mj��t�

�t�jdj�k�w ���

For all r � N and w � f�� �g�� it is clear that
dC�r� w � dB�r� w � dA�r� w � d��w�

and it is routine to verify the inequalities

d��w� dA�r� w � ���r����

dA�r� w � dB�r� w � ���r����

dB�r� w � dC�r� w � ���r����

whence we have

d��w� ��r � dC�r� w � d��w ���

for all r � N and w � f�� �g�� Using formula ���� the time required to compute dC�r� w
exactly is no greater than

O��s� ���s � �m�s� �s� � �s� �s��log n�
�
 � O�q�n � ��log n���

where n � r � jwj and q is a polynomial� Since q�n � ��log n�� � o���log n�
��

� it follows that

dC�r� w is exactly ��log n�
��

�time�computable� By ���� then� d� is a ��log n�
��

�martingale� �

The proof of our main theorem uses the techniques of weak stochasticity and martingale
dilation� which we brie�y review here�

As usual� an advice function is a function h � N 
 f�� �g�� Given a function q � N 
 N�
we write ADV�q for the set of all advice functions h such that jh�nj � q�n for all n � N�
Given a language B and an advice function h� we de�ne the language

B	h � fx � f�� �g� j� x� h�jxj �� Bg�

�



where � � � � � is a standard string�pairing function� e�g�� � x� y �� �jxj�xy� Given
functions t� q � N 
 N � we de�ne the advice class

DTIME�t	ADV�q � fB	h j B � DTIME�t and h � ADV�qg�

De�nition �Lutz and Mayordomo���	� Lutz���	 For t� q� 
 � N 
 N� a language A is

weakly �t� q� 
�stochastic if� for all B�C � DTIME�t	ADV�q such that jC�nj  
�n for
all su�ciently large n�

lim
n��

j�A�B � C�nj
jC�nj �

�

�
�

We write WS�t� q� 
 for the set of all weakly �t� q� 
�stochastic languages�
The following result resembles the weak stochasticity theorems proved by Lutz and

Mayordomo ���	 and Lutz ���	� but gives a more careful upper bound on the time complexity
of the martingale�

Theorem ��� �Weak Stochasticity Theorem Assume that �� �� ��  � R satisfy �  �� � 
�� � � �� and  � ��� Then there is an exact ��log n�

�
�martingale d such that

S��d	 	WS��n
�
� n�� ��n � C�

Proof� Assume the hypothesis� and assume without loss of generality that �� �� ��  � Q �

Fix ���  ��  �� � Q such that � � �� and ��� �  �� �  � �  � Let U � DTIME��n
��

 be a
language that is universal for DTIME��n

�
�DTIME��n

�
 in the following sense� For each

i � N� let
Ci � fx � f�� �g�j � si� �x �� Ug�
Di � fx � f�� �g�j � si� �x �� Ug�

Then DTIME��n
�
�DTIME��n

�
 � f�Ci�Diji � Ng�

De�ne a function d� � N� �f�� �g� 
 Q � ���� as follows� If k is not a power of �� then
d�i�j�k�w � �� Otherwise� if k � �n� where n � N� then

d�i�j�k�w �
X

y�z�f���g�n�

Pr�Yi�j�k�y�zjCw�

where the sets Yi�j�k�y�z are de�ned as follows� If j�Ci	y�nj � ��n� then Yi�j�k�y�z � �� If
j�Ci	y�nj  ��n� then Yi�j�k�y�z is the set of all A � C such that���� j�A� �Di	z � �Ci	y�nj

j�Ci	y�nj � �

�

����  �

j � �
�

The de�nition of conditional probability immediately implies that� for each i� j� k � N� the

function d�i�j�k is a martingale� Since U � DTIME��n
��

 and ��� �  ��� the time required

to compute each Pr�Yi�j�k�y�zjCw using binomial coe�cients is at most O���log�i�j�k��
� ��



steps� so the time required to compute d�i�j�k�w is at most O���n
�
� �� � ��log�i�j�k��� ��  �

O���log�i�j�k��
� �

 steps� Thus d� is exactly ��log n�
� �

�time�computable�

�



As in ���	 and ���	� the Cherno� bound tells us that� for all i� j� n � N and y� z �
f�� �g�n� � writing k � �n�

Pr�Yi�j�k�y�z � �e�k
����j���� �

whence

d�i�j�k�� � ��n
�
� �� � �e�k����j����

� e�n
����k����j���� �

Let a � d �� e� let � � �
	 � and �x k� � N such that

k�� � k� � ��log k� � �

for all k  k�� De�ne g � N 
 N by

g�j � �a�j � �	a � k�

for all j � N� Then g is a polynomial and� for all i� j� n � N� writing k � �n�

k  g�j �
��
�

k� � k��k��

� ��a�j � �	a	���k� � ��log k� � �
 ��j � ���k� � �n� � �

� d�i�j�k�� � e�k
�
�

It follows by Lemma ��� that the series

�X
k��

d�i�j�k��� for i� j � N� are uniformly p�convergent�

Since � �  � �  � it follows by Theorem ��� that there is an exact ��log n�
�
�martingale d such

that

��
i��

��
j��

��
t��

��
k�t

S��d�i�j�k	 � S��d	� ���

Now assume that A �� WS��n
�
� n�� ��n� Then� by the de�nition of weak stochasticity�

we can �x i� j � N� functions h�� h� � ADV�n�� and an in�nite set J � N such that� for
all n � J � A � Yi�j�k�h��n��h��n�� where k � �n� For each n � J � then� there is a pre�x w v A
such that Cw � Yi�j�k�h��n��h��n� whence

d�i�j�k�w  Pr�Yi�j�k�h��n��h��n�jCw � ��

i�e�� A � S��d�i�j�k	� This argument shows that

��
i��

��
j��

��
t��

��
k�t

S��d�i�j�k	 	WS��n
�
� n� � ��n � C�

It follows by ��� that

S��d	 	WS��n
�
� n�� ��n � C� �

�



The technique of martingale dilation was introduced by Ambos�Spies� Terwijn� and
Zheng ��	� It has also been used by Juedes and Lutz��	 and generalized considerably by
Breutzmann and Lutz ��	� We use the notation of ��	 here�

The restriction of a string w � b�b� � � � bn�� � f�� �g� to a language A � f�� �g� is
the string w�A obtained by concatenating the successive bits bi for which si � A� If
f � f�� �g� 
 f�� �g� is strictly increasing and d is a martingale� then the f �dilation of d is
the function f�d � f�� �g� 
 ���� de�ned by

f�d�w � d�w�range�f

for all w � f�� �g��

Lemma ��� �Martingale Dilation Lemma � Ambos�Spies� Terwijn� and Zheng��	 If f �
f�� �g� 
 f�� �g� is strictly increasing and d is a martingale� then f�d is also a martingale�

Moreover� for every language A � f�� �g�� if d succeeds on f���A� then f�d succeeds on A�

Finally� we summarize the most basic ideas of resource�bounded measure in E and E��
A p�martingale is a martingale that is� for some k � N� an nk�martingale� A p��martingale

is a martingale that is� for some k � N� a ��log n�
k
�martingale�

De�nition �Lutz ��	

�� A set X of languages has p�measure �� and we write �p�X � �� if there is a p�
martingale d such that X � S��d	�

	� A set X of languages has p��measure �� and we write �p��X � �� if there is a

p��martingale d such that X � S��d	�


� A set X of languages has measure � in E� and we write ��XjE � �� if �p�X�E � ��

�� A set X of languages has measure � in E�� and we write ��XjE� � �� if �p��X�E� �
��

�� A set X of languages has measure � in E� and we write ��XjE � �� if ��XcjE � ��
In this case� we say that X contains almost every element of E�

� A set X of languages has measure � in E�� and we write ��XjE� � �� if ��XcjE� � ��
In this case� we say that X contains almost every element of E��

�� The expression ��XjE �� � means that X does not have measure � in E� Note that

this does not assert that ���XjE� has some nonzero value� Similarly� the expression

��XjE� �� � means that X does not have measure � in E��

It is shown in ��	 that these de�nitions endow E and E� with internal measure structure�
This structure justi�es the intuition that� if ��XjE � �� then X � E is a negligibly small

subset of E �and similarly for E��

��



� Results

The key to our main theorem is the following lemma� which says that languages that are
�P
n��T�reducible to non�dense languages cannot be very stochastic�

Lemma ��� �Main Lemma For all real numbers � � � and � � � � ��

Pn��T�DENSE
c �WS��n� n�� �

n
�  � ��

Proof� Let � � � and � � � � �� and assume without loss of generality that � and � are
rational� Let A � Pn��T�DENSE

c� It su�ces to show that A is not weakly ��n� n�� �
n
� �

stochastic�
Since A � Pn��T�DENSE

c� there exist a non�dense language S� a polynomial q�n�
and a q�n�time�bounded oracle Turing machine M such that A � L�MS and� for every
x � f�� �g� and B � f�� �g�� M makes exactly bjxj�cqueries �all distinct on input x with
oracle B� Call these queries QB�x� �� � � � � QB�x� bjxj�c in the order in which M makes
them�

For each B � f�� �g� and n � N� de�ne an equivalence relation �B�n on f�� �g�q�n� by

u �B�n v � ��w�u � w � v � ��w � B		 � ��u � B			

and an equivalence relation �B�n on f�� �gn by

x �B�n y � ��i�� � i � n� � QB�x� i �B�n Q
B�y� i	�

Note that �B�n has at most �jB�q�n�j�� equivalence classes� so�B�n has at most ��jB�q�n�j�
�n

�
equivalence classes�

Let � � ���
� � and let J be the set of all n � N for which the following three conditions

hold�
�i �jS�q�n�j� � � �n

�
�

�ii n��� � n
� �

�iii n���n� � � n��
Since � � � � � and � � � � �� conditions �ii and �iii hold for all su�ciently large n�
Since � � � and S is not dense� condition �i holds for in�nitely many n� Thus the set J is
in�nite�

De�ne an advice function h � N 
 f�� �g� as follows� If n �� J � then h�n � �� If
n � J � then let Dn be a maximum�cardinality equivalence class of the relation �S�n� For
each � � i � bn�c� �x strings yn�i� zn�i � Dn such that� for all x � Dn�

QS�yn�i� i � QS�x� i � QS�zn�i� i�

Let

h��n � yn�� � � � yn�bn�c�
h��n � zn�� � � � zn�bn�c�
h��n � ��QS�yn��� � � S		 � � � ��QS�yn�bn�c� bn�c � S		�

h�n � h��nh��nh��n�

��



Note that jh�nj � bn�c��n� � � n� for all n � J � so h � ADV�n��
For each n � N� let t � bn�c� and let Cn be the set of all coded pairs

� x� y� � � � ytz� � � � ztb� � � � bt �

such that x� y�� � � � � yt� z�� � � � � zt � f�� �gn� b�� � � � � bt � f�� �g� and� for each � � i � t�

Qb����bt�yi� i � Qb����bt�x� i � Qb����bt�zi� i�

whereQb����bt�w� i denotes the ith query ofM on input w when the successive oracle answers
are b�� � � � � bt� Let Bn be the set of all such coded pairs in Cn such that M accepts on input
x when the successive oracle answers are b�� � � � � bt� Finally� de�ne the languages

B � f� x� v �j v � � or � x� v �� Bjxjg�

C � f� x� v �j v � � or � x� v �� Cjxjg�
It is clear that B�C � DTIME��n� Also� by our construction of these sets and the advice
function h� for each n � N� we have

�C	h�n �

�
Dn if n � J
f�� �gn if n �� J

and

�B	h�n �

�
A �Dn if n � J
f�� �gn if n �� J

�

For each n � J � if ��n is the number of equivalence classes of �S�n� then

��n � ��jS�q�n�j� �n
� � ��n

�
n

�
� �n

���
�

so

jDnj  �n

��n
 �n�n

���  �
n
� �

It follows that j�C	h�nj  �
n
� for all n � N�

Finally� for all n � J �

�A� �B	h � �C	h�n � �A� �A �Dn �Dn � ��

Since J is in�nite� it follows that

j�A� �B	h � �C	h�nj
j�C	h�nj �
 �

�

as n 
 �� Since B�C � DTIME��n� h � ADV�n�� and jC�nj  �n
�
for all n � N� this

shows that A is not weakly ��n� n�� �
n
� �stochastic� �

We now prove our main result�

��



Theorem ��� �Main Theorem For every real number � � ��

�p�Pn����T�DENSE
c � �p��Pn��T�DENSE

c � ��

Proof� Let � � �� and let � � ���
� � so that � � � � � � �� By Theorem ���� there is an

exact ��log n�
�
�martingale d such that

S��d	 	WS��n� n�� �
n
�  � C�

By Lemma ���� we then have

Pn��T�DENSE
c � S��d	�

Since d is a p��martingale� this implies that �p��Pn��T�DENSE
c � ��

De�ne f � f�� �g� 
 f�� �g� by

f�x � �jxj
��jxj���x�

Then f is strictly increasing� so f�d� the f �dilation of d� is a martingale� The time required
to compute f�d�w is

O�jwj� � ��log jw
�j��

steps� where w� � w�range�f� �This allows O�jwj� steps to compute w� and then
O���log jw

�j�� steps to compute d�w��
Now jw�j is bounded above by the number of strings x such that jxj� � jsjwjj � blog���

jwjc� so
jw�j � ���

p
log���jwj��

Thus the time required to compute f�d�w is

O�jwj� � ����
p

log���jwj� �� � O�jwj�

steps� so f�d is an n��martingale�
Now let A � Pn����T�DENSE

c� Then f���A � Pn��T�DENSE
c � S��d	� so A �

S��f�d	 by Lemma ���� This shows that Pn����T�DENSE
c � S��f�d	� Since f�d is an

n��martingale� it follows that �p�Pn����T�DENSE
c � �� �

We now develop a few consequences of the Main Theorem� The �rst is immediate�

Corollary ��� For every real number � � ��

��Pn����T�DENSE
c j E � ��Pn��T�DENSE

c j E� � ��

The following result on the density of weakly complete �or weakly hard languages now
follows immediately from Corollary ����

Corollary ��� For every real number � � �� every language that is weakly �P
n����T

�hard

for E or weakly �P
n��T�hard for E� is dense�

��



Our �nal two corollaries concern consequences of the strong hypotheses �p�NP �� �
and �p��NP �� �� The relative strengths of these hypotheses are indicated by the known
implications

��NP j E �� �� ��NP j E� �� �� �p��NP �� �� �p�NP �� �� P �� NP�

�The leftmost implication was proven by Juedes and Lutz��	� The remaining implications
follow immediately from elementary properties of resource�bounded measure�

Corollary ��� Let � � �� If �p�NP �� �� then every language that is �P
n����T

�hard for

NP is dense� If �p��NP �� �� then every language that is �P
n��T�hard for NP is dense�

We conclude by considering the densities of languages to which SAT can be adaptively
reduced�
De�nition A function g � N 
 N is subradical if log g�n � o�log n�

It is easy to see that a function g is subradical if and only if� for all k � �� g�n � o� k
p
n�

�This is the reason for the name �subradical�� Subradical functions include very slow�
growing functions such as log n and �log n
� as well as more rapidly growing functions such
as ��log n�

����
�

Corollary ��� If �p�NP �� �� g � N 
 N is subradical� and SAT �P
g�n��T H� then H is

dense�

Proof� Assume the hypothesis� Let A � NP� Then there is a �P
m�reduction f of A to SAT�

Fix a polynomial q�n such that� for all x � f�� �g�� jf�xj � q�jxj� Composing f with
the �P

g�n��T�reduction of SAT to H that we have assumed to exist then gives a �P
g�q�n���T�

reduction of A to H� Since g is subradical� log g�q�n � o�log q�n � o�log n� so for all

su�ciently large n� g�q�n � �
log n
� � n

�
� � Thus A �P

n
�
��T

H�

The above argument shows that H is �P

n
�
��T

�hard for NP� Since we have assumed

�p�NP �� �� it follows by Corollary ��� that H is dense� �

To put the matter di�erently� Corollary ��� tells us that if SAT is polynomial�time
reducible to a non�dense language with at most ��log n�

����
adaptive queries� then NP has

measure � in E and in E��

� Questions

As noted in the introduction� the relationships between weak hardness notions for E and E�

under reducibilities such as �P
T��P

n��T� and �P
n��tt remain to be resolved� Our main theo�

rem also leaves open the question whether �P
n��T�hard languages for E must be dense when

�
� � � � �� We are in the curious situation of knowing that the classes Pn�����tt�DENSE

c
and Pn�����T�DENSE

c have p�measure �� but not knowing whether Pn�����T�DENSE
c has

p�measure �� Indeed� at this time we cannot even prove that E �� Pn�����T�SPARSE�
Further progress on this matter would be illuminating�

��
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