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Abstract

We use nontrivial connections between
the theory of computing and the fine-
scale geometry of Euclidean space to give
a complete analysis of the dimensions of
individual points in fractals that are com-
putably self-similar.

1 Introduction

This paper analyzes the dimensions of
points in the most widely known type
of fractals, the self-similar fractals. Our
analysis uses nontrivial connections be-
tween the theory of computing and the
fine-scale geometry of Euclidean space. In
order to explain our results, we briefly re-
view self-similar fractals and the dimen-
sions of points.
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1.1 Self-Similar Fractals

The class of self-similar fractals includes
such famous objects as the Sierpinski
triangle, the Cantor set, the von Koch
curve, and the Menger sponge, along with
many more exotic sets in Euclidean space
[2, 9, 10, 12]. To be concrete, consider the
Sierpinski triangle, which is constructed
by the process illustrated in Figure 1.
We start (at the left) with the equilateral
triangle D whose vertices are the points
v0 = (0, 0), v1 = (1, 0), and v2 = (1

2
,
√

3
2

)in
R2 (together with this triangle’s interior).
The construction is carried out by three
functions S0, S1, S2 : R2 → R2 defined by

Si(x) = vi +
1

2
(x− vi)

for each x ∈ R2 and i = 0, 1, 2. Note that
|Si(x)−Si(y)| = 1

2
|x−y| always holds, i.e.,

each Si is a contracting similarity with
contraction ratio ci = 1

2
. Note also that

each Si maps the triangleD onto a similar
subtriangle containing the vertex vi.

We use the alphabet Σ = {0, 1, 2}
to specify the contracting similarities
S0, S1, S2. Each infinite sequence T ∈ Σ∞

over this alphabet codes a point S(T )
in the Sierpinski triangle via the follow-
ing recursion. (See Figure 1.) We start
at time t = 0 in the triangle ∆0 = D.
At time t + 1, we move into the sub-
triangle ∆t+1 of ∆t given by the (ap-
propriately rescaled) contracting similar-

ity ST [t], where T [t] is the tth symbol in
T . The point S(T ) is then the unique
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Figure 1. A sequence T ∈ {0, 1, 2}∞ codes a point S(T ) in the Sierpinski triangle.

point in R2 lying in all the triangles
∆0,∆1,∆2, . . .. Finally, the Sierpinski tri-
angle is the set

F (S) = {S(T ) | T ∈ Σ∞k }

of all points coded in this fashion.
Self-similar fractals are defined by gen-

eralizing the above construction. We
work in a Euclidean space Rn. An it-
erated function system (IFS) is a list
S = (S0, ..., Sk−1) of two or more contract-
ing similarities Si : Rn → Rn that map
an initial nonempty, closed set D ⊆ Rn

into itself. Each Si has a contraction ra-
tio ci ∈ (0, 1). (The contraction ratios
c0, . . . , ck−1 need not be the same.) The
alphabet Σk = {0, . . . , k − 1} is used to
specify the contracting similarities in S,
and each sequence T ∈ Σ∞k codes a point
S(T ) ∈ Rn in the now-obvious manner.
The attractor of the IFS S is the set

F (S) = {S(T ) | T ∈ Σ∞k } .

In general, the sets S0(D), . . . , Sk−1(D)
may not be disjoint, so a point x ∈ F (S)
may have many coding sequences, i.e.,

many sequences T for which S(T ) = x.
A self-similar fractal is a set F ⊆ Rn that
is the attractor of an IFS S that satis-
fies a technical open set condition (defined
in section 3), which ensures that the sets
S0(D), ..., Sk−1(D) are “nearly” disjoint.

The similarity dimension of a self-
similar fractal F is the (unique) solution
sdim(F ) of the equation

k−1∑
i=0

c
sdim(F )
i = 1, (1.1)

where c0, . . . , ck−1 are the contraction ra-
tios of any IFS S satisfying the open set
condition and F (S) = F . A classical the-
orem of Moran [33] and Falconer [11] says
that, for any self-similar fractal F ,

dimH(F ) = DimP(F ) = sdim(F ), (1.2)

i.e., the Hausdorff and packing dimen-
sions of F coincide with its similarity di-
mension. In addition to its theoretical in-
terest, the Moran-Falconer theorem has
the pragmatic consequence that the Haus-
dorff and packing dimensions of a self-
similar fractal are easily computed from
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the contraction ratios by solving equation
(1.1).

1.2 Dimensions of Points

The theory of computing has recently
been used to provide a meaningful notion
of the dimensions of individual points in
Euclidean space [29, 1, 17, 30]. These
dimensions are robust in that they have
many equivalent characterizations. For
the purposes of this paper, we define
these dimensions in terms of Kolmogorov
complexities of rational approximations
in Euclidean space.

For each x ∈ Rn and r ∈ N, we de-
fine the Kolmogorov complexity of x at
precision r to be the natural number

Kr(x) = min{K(q) | q ∈ Qn and

|q − x| ≤ 2−r},

where K(q) is the Kolmogorov complexity
of the rational point q [25]. That is, Kr(x)
is the minimum length of any program
π ∈ {0, 1}∗ for which U(π) – the output
of a fixed universal Turing machine on in-
put π – is a rational approximation of x
to within 2−r. (Related notions of ap-
proximate Kolmogorov complexity have
recently been considered by Vitanyi and
Vereshchagin [42] and Fortnow, Lee and
Vereshchagin [15].)
Definition. Let x ∈ Rn.

1. The dimension of the point x is

dim(x) = lim inf
r→∞

Kr(x)

r
. (1.3)

2. The strong dimension of the point x
is

Dim(x) = lim sup
r→∞

Kr(x)

r
. (1.4)

Intuitively, dim(x) and Dim(x) are the
lower and upper asymptotic information
densities of the point x ∈ Rn.

It is easy to see that 0 ≤ dim(x) ≤
Dim(x) ≤ n for all x ∈ Rn. In fact,
this is the only restriction that holds in
general, i.e., for any two real numbers
0 ≤ α ≤ β ≤ n, there is a point x ∈
Rn with dim(x) = α and Dim(x) = β
[1]. Points x that are computable have
dim(x) = Dim(x) = 0, while points x
that are random (in the sense of Martin-
Löf [31]) have dim(x) = Dim(x) = n.

The dimensions dim(x) and Dim(x) are
well defined and robust, but are they ge-
ometrically meaningful? Prior work al-
ready indicates an affirmative answer. By
Hitchcock’s correspondence principle for
constructive dimension ([20], extending a
result of [39]), together with the absolute
stability of constructive dimension [29], if
X ⊆ Rn is any countable (not necessar-
ily effective) union of computably closed,
i.e., Π0

1, sets, then

dimH(X) = sup
x∈X

dim(x). (1.5)

That is, the classical Hausdorff dimension
[12] of any such set is completely deter-
mined by the dimensions of its individual
points. Many, perhaps most, of the sets
which arise in “standard” mathematical
practice are unions of computably closed
sets, so (1.5) constitutes strong prima fa-
cie evidence that the dimensions of in-
dividual points are indeed geometrically
meaningful.

Appendix B shows that the definitions
(1.3) and (1.4) are equivalent to the origi-
nal definitions of dimension and strong di-
mension [29, 1] and are thus constructive
versions of the two most important classi-
cal fractal dimensions, namely Hausdorff
dimension and packing dimension, respec-
tively.
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1.3 Our Results

Our main theorem concerns the dimen-
sions of points in fractals that are com-
putably self-similar, meaning that they
are attractors of computable iterated
function systems satisfying the open set
condition. (We note that most self-similar
fractals occurring in practice – including
the four famous examples mentioned in
section 1.1 – are, in fact, computably self-
similar.) Our main theorem says that, if
F is any fractal that is computably self-
similar with the IFS S as witness, then,
for every point x ∈ F and every coding se-
quence T for x, the dimension and strong
dimension of the point x are given by the
dimension formulas

dim(x) = sdim(F )dimπS(T ) (1.6)

and

Dim(x) = sdim(F )DimπS(T ), (1.7)

where dimπS(T ) and DimπS(T ) are the di-
mension and strong dimension of T with
respect to the probability measure πS on
the alphabet Σk defined by

πS(i) = c
sdim(F )
i (1.8)

for all i ∈ Σk. (We define dimπS(T ) and
DimπS(T ) in the next paragraph.) This
theorem gives a complete analysis of the
dimensions of points in computably self-
similar fractals and the manner in which
the dimensions of these points arise from
the dimensions of their coding sequences.

In order to understand the right-hand
sides of equations (1.6) and (1.7), we
now define the dimensions dimπS(T ) and
DimπS(T ).
Definition. Let Σ be an alphabet with
2 ≤ |Σ| < ∞, and let π be a positive
probability measure on Σ. Let w ∈ Σ∗

and T ∈ Σ∞.

1. The Shannon self-information of w
with respect to π is

Iπ(w) = log
1

π(w)
=

|w|−1∑
i=0

log
1

π(w[i])
,

(1.9)
where the logarithm is base-2 [8].

2. The dimension of T with respect to
π is

dimπ(T ) = lim inf
j→∞

K(T [0..j − 1])

Iπ(T [0..j − 1])
.

(1.10)

3. The strong dimension of T with re-
spect to π is

Dimπ(T ) = lim sup
j→∞

K(T [0..j − 1])

Iπ(T [0..j − 1])
.

(1.11)

The dimensions dimπ(T ) and Dimπ(T )
are measures of the algorithmic informa-
tion density of T , but the “density” here
is now an information-to-cost ratio. In
this ratio, the “information” is algorith-
mic information, i.e., Kolmogorov com-
plexity, and the “cost” is the Shannon
self-information. To see why this makes
sense, consider the case of interest in our
main theorem. In this case, (1.8) says
that the cost of a string w ∈ Σ∗k is

Iπ(w) = sdim(F )

|w|−1∑
j=0

log
1

cw[j]

,

i.e., the sum of the costs of the symbols
in w, where the cost of a symbol i ∈ Σk

is sdim(F ) log(1/ci). These symbol costs
are computational and realistic. A sym-
bol i with high cost invokes a similarity Si

with a small contraction ratio ci, thereby
necessitating a high-precision computa-
tion.

Appendix A shows that definitions
(1.10) and (1.11) are equivalent to “gale
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characterizations” of these dimensions,
and hence that dimπ(T ) is a constructive
version of Billingsley dimension [3, 7].

Although our main theorem only ap-
plies directly to computably self-similar
fractals, we use relativization to show that
the Moran-Falconer theorem (1.2) for ar-
bitrary self-similar fractals is an easy con-
sequence of our main theorem. Hence, as
is often the case, a theorem of computable
analysis (i.e., the theoretical foundations
of scientific computing [5]) has an imme-
diate corollary in classical analysis.

The proof of our main theorem has
some geometric and combinatorial simi-
larities with the classical proofs of Moran
[33] and Falconer [11], but the argument
here is information-theoretic. As such,
it gives a more clear understanding of
the computational aspects of dimension
in self-similar fractals, even in the classi-
cal case.

We note that Cai and Hartmanis [6]
and Fernau and Staiger [14] have con-
ducted related investigations of Hausdorff
dimension in iterated function fractals
and their coding spaces, but with different
motivations and results. Our focus here is
on a pointwise analysis of dimensions.

Some of the most difficult open prob-
lems in geometric measure theory involve
establishing lower bounds on the fractal
dimensions of various sets. Kolmogorov
complexity has proven to be a power-
ful tool for lower-bound arguments, lead-
ing to the solution of many long-standing
open problems in discrete mathematics
[25]. There is thus reason to hope that
our pointwise approach to fractal dimen-
sion, coupled with the introduction of
Kolmogorov complexity techniques, will
lead to progress in this classical area. In
any case, our results extend computable
analysis [34, 22, 44] in a new, geometric
direction.

2 Preliminaries

Given a finite alphabet Σ, we write Σ∗ for
the set of all (finite) strings over Σ and
Σ∞ for the set of all (infinite) sequences
over Σ. If ψ ∈ Σ∗ ∪ Σ∞ and 0 ≤ i ≤
j < |ψ|, where |ψ| is the length of ψ, then
ψ[i] is the ith symbol in ψ (where ψ[0]
is the leftmost symbol in ψ), and ψ[i..j]
is the string consisting of the ith through
the jth symbols in ψ. If w ∈ Σ∗ and
ψ ∈ Σ∗ ∪Σ∞, then w is a prefix of ψ, and
we write w v ψ, if there exists i ∈ N such
that w = ψ[0..i− 1].

For functions on Euclidean space, we
use the computability notion formulated
by Grzegorczyk [16] and Lacombe [23] in
the 1950’s and exposited in the mono-
graphs by Pour-El and Richards [34], Ko
[22], and Weihrauch [44] and in the recent
survey paper by Braverman and Cook
[5]. A function f : Rn → Rn is com-
putable if there is an oracle Turing ma-
chine M with the following property. For
all x ∈ Rn and r ∈ N, if M is given a
function oracle ϕx : N → Qn such that,
for all k ∈ N, |ϕx(k) − x| ≤ 2−k, then
M , with oracle ϕx and input r, outputs
a rational point Mϕx(r) ∈ Qn such that
|Mϕx(r)− f(x)| ≤ 2−r.

A point x ∈ Rn is computable if there is
a computable function ψx : N → Qn such
that, for all r ∈ N, |ψx(r)− x| ≤ 2−r.

For subsets of Euclidean space, we use
the computability notion introduced by
Brattka and Weihrauch [4] (see also [44,
5]). A set X ⊆ Rn is computable if there
is a computable function fX : Qn × N →
{0, 1} that satisfies the following two con-
ditions for all q ∈ Qn and r ∈ N.

(i) If there exists x ∈ X such that |x −
q| ≤ 2−r, then fX(q, r) = 1.

(ii) If there is no x ∈ X such that |x −
q| ≤ 21−r, then fX(q, r) = 0.
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The following two observations are well
known and easy to verify.

Observation 2.1 A set X ⊆ Rn is com-
putable if and only if the associated dis-
tance function

ρX : Rn → [0,∞)

ρX(y) = infx∈X |x− y|

is computable.

Observation 2.2 If X ⊆ Rn is both
computable and closed, then X is a com-
putably closed, i.e., Π0

1, set.

All logarithms in this paper are base-2.

3 More on Self-Similar

Fractals

This expository section reviews a frag-
ment of the theory of self-similar frac-
tals that is adequate for understanding
our main theorem and its proof. Our
treatment is self-contained, but of course
far from complete. The interested reader
is referred to any of the standard texts
[2, 9, 10, 12] for more extensive discus-
sion.
Definition. An iterated function
system (IFS) is a finite sequence S =
(S0, . . . , Sk−1) of two or more contract-
ing similarities on a nonempty, closed set
D ⊆ Rn. We call D the domain of S,
writing D = dom(S).

We use the standard notation K(D)
for the set of all nonempty compact
(i.e., closed and unbounded) subsets of a
nonempty closed set D ⊆ Rn. For each
IFS S, we write K(S) = K(dom(S)).

For each IFS S = (S0, . . . , Sk−1), we de-
fine the transformation S : K(S) → K(S)
by

S(A) =
k−1⋃
i=0

Si(A)

for all A ∈ K(S), where Si(A) is the image
of A under the contracting similarity Si.

Observation 3.1 For each IFS S, there
exists A ∈ K(S) such that S(A) ⊆ A.

For each IFS S = (S0, . . . , Sk−1) and
each set A ∈ K(S) satisfying S(A) ⊆ A,
we define the function SA : Σ∗k → K(S)
by the recursion

SA(λ) = A;

SA(iw) = Si(SA(w))

for all w ∈ Σ∗k and i ∈ Σk.
If c = max{c0, . . . , ck−1}, where

c0, . . . , ck−1 are contraction ratios of
S0, . . . , Sk−1, respectively, then routine in-
ductions establish that, for all w ∈ Σ∗k and
i ∈ Σk,

SA(iw) ⊆ SA(w) (3.1)

and

diam(SA(w)) ≤ c|w|diam(A). (3.2)

Since c ∈ (0, 1), it follows that, for each
sequence T ∈ Σ∞k , there is a unique point
SA(T ) ∈ Rn such that⋂

wvT

SA(w) = {SA(T )}. (3.3)

In this manner, we have defined a func-
tion SA : Σ∞k → Rn. The following obser-
vation shows that this function does not
really depend on the choice of A.

Observation 3.2 Let S be an IFS. If
A,B ∈ K(S) satisfy S(A) ⊆ A and
S(B) ⊆ B, then SA = SB.

For each IFS S, we define the induced
function S : Σ∞k → Rn by setting S = SA,
where A is any element of K(S) satisfying
S(A) ⊆ A. By Observations 3.1 and 3.2,
this induced function S is well-defined.
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We now have the machinery to define a
rich collection of fractals in Rn.
Definition. The attractor (or invariant
set) of an IFS S = (S0, . . . , Sk−1) is the
set

F (S) = S(Σ∞k ),

i.e., the range of the induced function S :
Σ∞k → Rn.

It is well-known that the attractor F (S)
is the unique fixed point of the induced
transformation S : K(S) → K(S), but we
do not use this fact here.

For each T ∈ Σ∞k , we call T a cod-
ing sequence, or an S-code, of the point
S(T ) ∈ F (S).

In general, the attractor of an IFS S =
(S0, . . . , Sk−1) is easiest to analyze when
the sets S0(dim(S)), . . . , Sk−1(dim(S))
are “nearly disjoint”. (Intuitively, this
prevents each point x ∈ F (S) from having
“too many” coding sequences T ∈ Σ∞k .)
The following definition makes this notion
precise.
Definition. An IFS S = (S0, . . . , Sk−1)
with domain D satisfies the open set
condition if there exists a nonempty,
bounded, open set G ⊆ D such that
S0(G), . . . , Sk−1(G) are disjoint subsets of
G.

We now define the most widely known
type of fractal.
Definition. A self-similar fractal is a
set F ⊆ Rn that is the attractor of an IFS
that satisfies the open set condition.

4 Pointwise Analysis of

Dimensions

In this section we prove our main theo-
rem, which gives a precise analysis of the
dimensions of individual points in com-
putably self-similar fractals. We first re-
call the known fact that such fractals are

computable.
Definition. An IFS S = (S0, . . . , Sk−1)
is computable if dom(S) is a computable
set and the functions S0, . . . , Sk−1 are
computable.

Theorem 4.1 (Kamo and Kawamura
[21]). For every computable IFS S, the
attractor F (S) is a computable set.

One consequence of Theorem 4.1 is the
following.

Corollary 4.2 For every computable
IFS S, cdim(F (S)) = dimH(F (S)).

We next present three lemmas that we
use in the proof of our main theorem. The
first is a well-known geometric fact (e.g.,
it is Lemma 9.2 in [12]).

Lemma 4.3 Let G be a collection of dis-
joint open sets in Rn, and let r, a, b ∈
(0,∞). If every element of G contains a
ball of radius ar and is contained in a ball
of radius br, then no ball of radius r meets
more than

(
1+2b

a

)n
of the closures of the

elements of G.

Our second lemma gives a computable
means of assigning rational “hubs” to the
various open sets arising from a com-
putable IFS satisfying the open set con-
dition.
Definition. A hub function for an IFS
S = (S0, . . . , Sk−1) satisfying the open set
condition with G as witness is a function
h : Σ∗k → Rn such that h(w) ∈ SG(w) for
all w ∈ Σ∗k. In this case, we call h(w) the
hub that h assigns to the set SG(w).

Lemma 4.4 If S = (S0, . . . , Sk−1) is a
computable IFS satisfying the open set
condition with G as witness, then there
is an exactly computable, rational-valued
hub function h : Σ∗k → Qn for S and G.
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For w ∈ Σ∗k, we use the abbreviation
IS(w) = IπS

(w), where πS is the proba-
bility measure defined in section 1.3.

Our third lemma provides a decidable
set of well-behaved “canonical prefixes” of
sequences in Σ∞k .

Lemma 4.5 Let S = (S0, . . . , Sk−1) be a
computable IFS, and let cmin be the min-
imum of the contraction ratios of S =
(S0, . . . , Sk−1). For any real number

α > sdim(S) log
1

cmin

, (4.1)

there exists a decidable set A ⊆ N × Σ∗k
such that, for each r ∈ N, the set

Ar = {w ∈ Σ∗k | (r, w) ∈ A}

has the following three properties.

(i) No element of Ar is a proper prefix of
any element of Ar′ for any r′ ≤ r.

(ii) Each sequence in Σ∞k has a (unique)
prefix in Ar.

(iii) For all w ∈ Ar,

rsdim(S) < IS(w) < rsdim(S) + α.
(4.2)

Our main theorem concerns the follow-
ing type of fractal.

Definition. A computably self-similar
fractal is a set F ⊆ Rn that is the at-
tractor of an IFS that is computable and
satisfies the open set condition.

Most self-similar fractals occurring in
the literature are, in fact, computably
self-similar.

We now have the machinery to give
a complete analysis of the dimensions of
points in computably self-similar fractals.

Theorem 4.6 (main theorem). If F ⊆
Rn is a computably self-similar fractal and
S is an IFS testifying this fact, then, for
all points x ∈ F and all S-codes T of x,

dim(x) = sdim(F )dimπS(T ) (4.3)

and

Dim(x) = sdim(F )DimπS(T ). (4.4)

Proof. Assume the hypothesis, with
S = (S0, . . . , Sk−1). Let c0, . . . , ck−1 be
the contraction ratios of S0, . . . , Sk−1, re-
spectively, and let G be a witness to the
fact that S satisfies the open set condi-
tion, and let
l = max{0, dlog diam(G)e}. Let h :
Σ∗k → Qn be an exactly computable,
rational-valued hub function for S and
G as given by Lemma 4.4. Let
α = 1 + sdim(F ) log 1

cmin
, for cmin =

min{c0, . . . , ck−1}, and choose a decidable
set A for S and α as in Lemma 4.5.

For all w ∈ Σ∗k, we have

diam(SG(w)) = diam(G)

|w|−1∏
i=0

cw[i]

= diam(G)πS(w)
1

sdim(F ) .

It follows by (4.2) that, for all r ∈ N and
w ∈ Ar+l,

2−ra1 ≤ diam(SG(w)) ≤ 2−r, (4.5)

where a1 = 2−
l+α

sdim(F ) diam(G).
Let x ∈ F , and let T ∈ Σ∞k be an S-

code of x, i.e., S(T ) = x. For each r ∈ N,
let wr be the unique element of Ar+l that
is a prefix of T . Much of this proof is de-
voted to deriving a close relationship be-
tween the Kolmogorov complexities Kr(x)
and K(wr). Once we have this relation-
ship, we will use it to prove (4.3) and
(4.4).
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Since the hub function h is computable,
there is a constant a2 such that, for all
w ∈ Σ∗k,

K(h(w)) ≤ K(w) + a2. (4.6)

Since h(wr) ∈ SG(wr) and x = S(T ) ∈
SG(wr) = SG(wr), (4.5) tells us that

|h(wr)− x| ≤ diam(SG(wr)) ≤ 2−r,

whence

Kr(x) ≤ K(h(wr))

for all r ∈ N. It follows by (4.6) that

Kr(x) ≤ K(wr) + a2 (4.7)

for all r ∈ N. Combining (4.7) and the
right-hand inequality in (4.2) gives

Kr(x)

rsdim(F )
≤ K(wr) + a2

IS(wr)− α
(4.8)

for all r ∈ N.
Let E be the set of all triples (q, r, w)

such that q ∈ Qn, r ∈ N, w ∈ Ar+l, and

|q − h(w)| ≤ 21−r. (4.9)

Since the set A and the condition (4.9)
are decidable, the set E is decidable.

For each q ∈ Qn and r ∈ N, let

Eq,r = {w ∈ Σ∗k | (q, r, w) ∈ E } .

We prove two key properties of the sets
Eq,r. First, for all q ∈ Qn and r ∈ N,

|q − x| ≤ 2−r ⇒ wr ∈ Eq,r. (4.10)

To see that this holds, assume that |q −
x| ≤ 2−r. Since x = S(T ) ∈ SG(wr) =

SG(wr), the right-hand inequality in (4.5)
tells us that

|q − h(wr)| ≤ |q − x|+ |x− h(wr)|

≤ 2−r + diam(SG(wr)) ≤ 21−r,

confirming (4.10).
The second key property of the sets Eq,r

is that they are small, namely, that

|Eq,r| ≤ γ (4.11)

holds for all q ∈ Qn and r ∈ N, where
γ is a constant that does not depend on
q or r. To see this, let w ∈ Eq,r. Then
w ∈ Ar+l and |q − h(w)| ≤ 21−r, so
h(w) ∈ SG(w) ∩ B(q, 21−r). This argu-
ment establishes that

w ∈ Eq,r ⇒ B(q, 21−r) meets SG(w).
(4.12)

Now let

Gr = {SG(w) | w ∈ Ar+l} .

By our choice of G, Gr is a collection of
disjoint open sets in Rn. By the right-
hand inequality in (4.5), each element of
Gr is contained in a closed ball of radius
2−r. Since G is open, it contains a closed
ball of some radius a3 > 0. It follows
by the left-hand inequality in (4.5) that
SG(w), being a contraction of G, contains
a closed ball of radius 21−ra4, where a4 =

a1a3

2diam(G)
. By Lemma 4.3, this implies that

B(q, 21−r) meets no more than γ of the
(closures of the) elements of Gr, where γ =(

2
a4

)n

. By (4.12), this confirms (4.11).

Now let M be a prefix Turing machine
with the following property. If U(π) =
q ∈ Qn (where U is the universal prefix
Turing machine), sr is the rth string in a
standard enumeration s0, s1, . . . of {0, 1}∗,
and 0 ≤ m < |Eq,r|, thenM(π0|sr|1sr0

m1)
is the mth element of Eq,r. There is a con-
stant a5 such that, for all w ∈ Σ∗k,

K(w) ≤ KM(w) + a5. (4.13)

Taking π to be a program testifying to the
value of Kr(x) and applying (4.10) and
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(4.11) shows that

KM(wr) ≤ Kr(x) + 2 log(r + 1) + |Eq,r|+ 1

≤ Kr(x) + 2 log(r + 1) + γ + 1,

whence (4.13) tells us that

K(wr) ≤ Kr(x) + ε(r) (4.14)

for all r ∈ N, where ε(r) = 2 log(r + 1) +
a5+γ+1. Combining (4.14) and the right-
hand inequality in (4.2) gives

Kr(x)

rsdim(F )
≥ K(wr)− ε(r)

IS(wr)
(4.15)

for all r ∈ N. Note that ε(r) = o(IS(wr))
as r →∞.

By (4.8) and (4.15), we now have

K(wr)− ε(r)

IS(wr)− α
≤ Kr(x)

rsdim(F )
≤ K(wr) + a1

IS(wr)− β
(4.16)

for all r ∈ N. In order to use this re-
lationship between Kr(x) and K(wr), we
need to know that the asymptotic behav-
ior of K(wr)

IS(wr)
for r ∈ N is the same as the

asymptotic behavior of K(w)
IS(w)

for arbitrary
prefixes w of T . Our verification of this
fact makes repeated use of the additivity
of IS, by which we mean that

IS(uv) = IS(u) + IS(v) (4.17)

holds for all u, v ∈ Σ∗k.
Let r ∈ N, and let wr v w v wr+1,

writing w = wru and wr+1 = wv. Then
(4.17) tells us that

IS(wr) ≤ IS(w) ≤ IS(wr+1),

and (4.2) tells us that

IS(wr+1)− IS(wr) ≤ sdim(F ) + α,

so we have

IS(wr) ≤ IS(w) ≤ IS(wr) + a6, (4.18)

where a6 = sdim(F ) + α. We also have

a6 ≥ IS(wr+1)− IS(wr)

= IS(uv)

= log
1

πS(uv)

≥ log c
−sdim(F )|uv|
min

= |uv|sdim(F ) log
1

cmin

,

i.e.,
|wr+1| − |wr| ≤ a7, (4.19)

where a7 = a6

sdim(F ) log 1
cmin

.

Since (4.19) holds for all r ∈ N and a7

does not depend on r, there is a constant
a8 such that, for all r ∈ N and wr v w v
wr+1,

|K(w)−K(wr)| ≤ a8. (4.20)

It follows by (4.18) that

K(wr)− a8

IS(wr) + a6

≤ K(w)

IS(w)
≤ K(wr) + a8

IS(wr)
(4.21)

holds for all r ∈ N and wr v w v wr+1.
By (4.16), (4.21), Theorem B.5, and

Theorem B.1, we now have

dim(x) = lim inf
r→∞

Kr(x)

r

= sdim(F ) lim inf
r→∞

K(wr)

IS(wr)

= sdim(F ) lim inf
j→∞

K(T [0..j − 1])

IS(T [0..j − 1])

= sdim(F )dimπS(T )

and, similarly,
Dim(x) = sdim(F )DimπS(T ). 2

Finally, we use relativization to derive
the following well-known classical theo-
rem from our main theorem.

Corollary 4.7 (Moran [33], Falconer
[11]). For every self-similar fractal F ⊆
Rn,

dimH(F ) = DimP(F ) = sdim(F ).

10
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Technical Appendix

A Dimensions relative to probability measures

Here we develop the basic theory of constructive fractal dimension on a sequence space
Σ∞ with respect to a suitable probability measure on Σ∞. We first review the classical
Hausdorff and packing dimensions.

Let ρ be a metric on a set X . We use the following standard terminology. The
diameter of a set X ⊆ X is

diam(X) = sup {ρ(x, y) | x, y ∈ X }

(which may be ∞). For each x ∈ X and r ∈ R, the closed ball of radius r about x is
the set

B(x, r) = {y ∈ X | ρ(y, x) ≤ r} ,
and the open ball of radius r about x is the set

Bo(x, r) = {y ∈ X | ρ(y, x) < r} .

A ball is any set of the form B(x, r) or Bo(x, r). A ball B is centered in a set X ⊆ X
if B = B(x, r) or B = Bo(x, r) for some x ∈ X and r ≥ 0.

For each δ > 0, we let Cδ be the set of all countable collections B of balls such that
diam(B) ≤ δ for all B ∈ B, and we let Dδ be the set of all B ∈ Cδ such that the balls
in B are pairwise disjoint. For each X ⊆ X and δ > 0, we define the sets

Hδ(X) =

{
B ∈ Cδ

∣∣∣∣∣ X ⊆
⋃
B∈B

B

}
,

Pδ(X) = {B ∈ Dδ | (∀B ∈ B)B is centered in X } .

If B ∈ Hδ(X), then we call B a δ-cover of X. If B ∈ Pδ(X), then we call B a δ-packing
of X. For X ⊆ X , δ > 0 and s ≥ 0, we define the quantities

Hs
δ (X) = inf

B∈Hδ(X)

∑
B∈B

diam(B)s,

P s
δ (X) = sup

B∈Pδ(X)

∑
B∈B

diam(B)s.

Since Hs
δ (X) and P s

δ (X) are monotone as δ → 0, the limits

Hs(X) = lim
δ→0

Hs
δ (X),

P s
0 (X) = lim

δ→0
P s

δ (X)

exist, though they may be infinite. Let

P s(X) = inf

{
∞∑
i=0

P s
0 (Xi)

∣∣∣∣∣ X ⊆
∞⋃
i=0

Xi

}
. (A.1)
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It is routine to verify that the set functions Hs and P s are outer measures [12]. The
quantities Hs(X) and P s(X) – which may be infinite – are called the s-dimensional
Hausdorff (outer) ball measure and the s-dimensional packing (outer) ball measure of
X, respectively. The optimization (A.1) over all countable partitions of X is needed
because the set function P s

0 is not an outer measure.
Definition. Let ρ be a metric on a set X , and let X ⊆ X .

1. (Hausdorff [18]). The Hausdorff dimension of X with respect to ρ is

dim
(ρ)
H (X) = inf {s ∈ [0,∞) | Hs(X) = 0} .

2. (Tricot [41], Sullivan [40]). The packing dimension of X with respect to ρ is

Dim
(ρ)
P (X) = inf {s ∈ [0,∞) | P s(X) = 0} .

When X is a Euclidean space Rn and ρ is the usual Euclidean metric on Rn, dim
(ρ)
H

and Dim
(ρ)
P are the ordinary Hausdorff and packing dimensions, also denoted by dimH

and DimP, respectively.
We now focus our attention on sequence spaces. Let Σ be a finite alphabet with

|Σ| ≥ 2. A (Borel) probability measure on Σ∞ is a function ν : Σ∗ → [0, 1] such that
ν(λ) = 1 and ν(w) =

∑
a∈Σ ν(wa) for all w ∈ Σ∗. Intuitively, ν(w) is the probability

that w v S when a sequence S ∈ Σ∞ is chosen according to the probability measure
ν. A probability measure ν on Σ∞ is strongly positive if there exists δ > 0 such that,
for all w ∈ Σ∗ and a ∈ Σ, ν(wa) > δν(w).

The following type of probability measure is used in our main theorem.

Example A.1 Let π be a probability measure on the alphabet Σ, i.e., a function π :
Σ → [0, 1] such that

∑
a∈Σ π(a) = 1. Then π induces the product probability measure

π on Σ∞ defined by

π(w) =

|w|−1∏
i=0

π(w[i])

for all w ∈ Σ∗. If π is positive on Σ, i.e., π(a) > 0 for all a ∈ Σ, then the probability
measure π on Σ∞ is strongly positive.

Example A.2 We reserve the symbol µ for the uniform probability measure on Σ∞,
which is the function µ : Σ∗ → [0,∞) defined by

µ(w) = |Σ|−|w|

for all w ∈ Σ∗. Note that this is the special case of Example A.1 in which π(a) = 1/|Σ|
for each a ∈ Σ.

Definition. The metric induced by a strongly positive probability measure ν on Σ∞

is the function ρν : Σ∞ × Σ∞ → [0, 1] defined by

ρν(S, T ) = inf {ν(w) | w v S and w v T }

for all S, T ∈ Σ∞.
The following fact is easily verified.
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Observation A.3 For every strongly positive probability measure ν on Σ∞, the func-
tion ρν is a metric on Σ∞.

Hausdorff and packing dimensions with respect to probability measures on sequence
spaces are defined as follows.
Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a strongly positive
probability measure on Σ∞, and let X ⊆ Σ∞.

1. The Hausdorff dimension of X with respect to ν (also called the Billingsley di-
mension of X with respect to ν [3, 7]) is

dimν
H(X) = dim

(ρν)
H (X).

2. The packing dimension of X with respect to ν is

Dimν
P(X) = Dim

(ρν)
P (X).

Note: We have assumed strong positivity here for clarity of presentation, but this
assumption can be weakened in various ways for various results.

When ν is the probability measure µ, it is generally omitted from the terminology.
Thus, the Hausdorff dimension ofX is dimH(X) = dimµ

H(X), and the packing dimension
of X is DimP(X) = Dimµ

P(X).
It was apparently Rey [35] who first noticed that the metric ρν could be used to

make Billingsley dimension a special case of Hausdorff dimension. Fernau and Staiger
[14] have also investigated this notion.

We now develop gale characterizations of dimν
H and Dimν

P.
Definition. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a probability measure
on Σ∞, and let s ∈ [0,∞).

1. A ν-s-supergale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w)ν(w)s ≥
∑
a∈Σ

d(wa)ν(wa)s (A.2)

for all w ∈ Σ∗.

2. A ν-s-gale is a ν-s-supergale that satisfies (A.2) with equality for all w ∈ Σ∗.

3. A ν-supermartingale is a ν-1-supergale.

4. A ν-martingale is a ν-1-gale.

5. An s-supergale is a µ-s-supergale.

6. An s-gale is a µ-s-gale.

7. A supermartingale is a 1-supergale.

8. A martingale is a 1-gale.
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The following observation shows how gales and supergales are affected by variation
of the parameter s.

Observation A.4 [29]. Let ν be a probability measure on Σ∞, let s, s′ ∈ [0,∞) and
let d, d′ : Σ∗ → [0,∞). Assume that

d(w)ν(w)s = d′(w)ν(w)s′

holds for all w ∈ Σ∗.

1. d is a ν-s-supergale if and only if d′ is a ν-s′-supergale.

2. d is a ν-s-gale if and only if d′ is a ν-s′-gale.

For example, if the probability measure ν is positive, then a function d : Σ∗ → [0,∞)
is a ν-s-gale if and only if the function d′ : Σ∗ → [0,∞) defined by d′(w) = ν(w)s−1d(w)
is a ν-martingale.

Martingales were introduced by Lévy [24] and Ville [43]. They have been used
extensively by Schnorr [36, 37, 38] and others in investigations of randomness and by
Lutz [26, 27] and others in the development of resource-bounded measure. Gales are a
convenient generalization of martingales introduced by Lutz [28, 29] in the development
of effective fractal dimensions.

The following generalization of Kraft’s inequality [8] is often useful.

Lemma A.5 [29] Let d be a ν-s-supergale, where ν is a probability measure on Σ∞

and s ∈ [0,∞). Then, for all w ∈ Σ∗ and all prefix sets B ⊆ Σ∗,∑
u∈B

d(wu)ν(wu)s ≤ d(w)ν(w)s.

Intuitively, a ν-s-gale d is a strategy for betting on the successive symbols in a
sequence S ∈ Σ∞. We regard the value d(w) as the amount of money that a gambler
using the strategy d will have after betting on the symbols in w, is w is a prefix of S.
If s = 1, then the ν-s-gale identity,

d(w)ν(w)s =
∑
a∈Σ

d(wa)ν(wa)s, (A.3)

ensures that the payoffs are fair in the sense that the conditional ν-expected value of the
gambler’s capital after the symbol following w, given that w has occurred, is precisely
d(w), the gambler’s capital after w. If s < 1, then (A.3) says that the payoffs are less
than fair. If s > 1, then (A.3) says that the payoffs are more than fair. Clearly, the
smaller s is, the more hostile the betting environment is.

There are two important notions of success for a supergale.
Definition. Let d be a ν-s-supergale, where ν is a probability measure on Σ∞ and
s ∈ [0,∞), and let S ∈ Σ∞.

1. We say that d succeeds on S, and we write S ∈ S∞[d], if
lim supt→∞ d(S[0..t− 1]) = ∞.
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2. We say that d succeeds strongly on S, and we write S ∈ S∞str[d], if lim inft→∞ d(S[0..t−
1]) = ∞.

Notation.
Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.

1. Gν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for which
X ⊆ S∞[d].

2. Gν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for which
X ⊆ S∞str[d].

3. Ĝν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale d for which
X ⊆ S∞[d].

4. Ĝν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale d for which
X ⊆ S∞str[d].

The following theorem gives useful characterizations of the classical Hausdorff and
packing dimensions with respect to probability measures on sequence spaces.

Theorem A.6 (gale characterizations of dimH
ν(X) and DimP

ν(X)). If ν is a strongly
positive probability measure on Σ∞, then, for all X ⊆ Σ∞,

dimH
ν(X) = inf Gν(X) = inf Ĝν(X) (A.4)

and
DimP

ν(X) = inf Gν,str(X) = inf Ĝν,str(X). (A.5)

Proof. In this proof we will use the following notation, for each w ∈ Σ∗, Cw =
{S ∈ Σ∞ | w v S }.

Notice that for each S ∈ Σ∞, r > 0, the balls B(S, r) = Cv, B
o(S, r) = Cw for

some v, w ∈ Σ∗. Therefore two balls Cw, Cw′ are either disjoint or one contained in
the other.

In order to prove (A.4) it suffices to show that for all s ∈ [0,∞),

Hs(X) = 0 ⇐⇒ s ∈ Gν(X)

First, assume that Hs(X) = 0. Then Hs
1(X) = 0, which implies that for each

r ∈ N, there is a disjoint cover B ∈ B1 such that
∑

B∈B diam(B)s < 2−r. Let Ar =
{w ∈ Σ∗ | Cw ∈ B}.

We define a function d : Σ∗ → [0,∞) as follows. Let w ∈ Σ∗. If there exists v v w
such that v ∈ Ar then

dr(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dr(w) =
∑
u,

wu∈Ar

(
ν(wu)

ν(w)

)s

.

It is routine to verify that the following conditions hold for all r ∈ N.
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(i) dr is a ν-s-gale.

(ii) dr(λ) < 2−r.

(iii) For all w ∈ Ar, dr(w) = 1.

Let d =
∑∞

r=0 2rd2r. Notice that d is a ν-s-gale. To see that X ⊆ S∞[d], let T ∈ X,
and let r ∈ N be arbitrary. Since B covers X, there exists w ∈ A2r such that w v T .
Then by (iii) above, d(w) ≥ 2rd2r(w) = 2r. Since r ∈ N is arbitrary, this shows that
T ∈ S∞[d], confirming that X ⊆ S∞[d].

We have now shown that d is a ν-s-gale such that X ⊆ S∞[d], whence s ∈ Gν(X).

Conversely, assume that s ∈ Ĝν(X). To see that Hs(X) = 0, let δ > 0, r ∈ N. It
suffices to show that Hs(X) ≤ 2−r. If X = ∅ this is trivial, so assume that X 6= ∅.

Since s ∈ Ĝν(X), there is a ν-s-supergale d such that X ⊆ S∞[d]. Note that
d(λ) > 0 because X 6= ∅. Let

A = {w ∈ Σ∗ | ν(w) < δ, d(w) ≥ 2rd(λ) and (∀v)[v < w =⇒ v 6∈ A]} .

It is clear that A is a prefix set. It is also clear that B = {Cw | w ∈ A} is a δ-cover
of S∞[d], and since X ⊆ S∞[d], B is also a δ-cover of X. By Lemma A.5 and the
definition of A, we have

d(λ) ≥
∑
w∈A

ν(w)sd(w) ≥ 2rd(λ)
∑
w∈A

ν(w)s.

Since B ∈ Cδ(X) and d(λ) > 0, it follows that

Hs
δ (X) ≤

∑
w∈A

ν(w)s ≤ 2−r.

This completes the proof of (A.4).
The proof of (A.5) is based on the following three claims.

Claim 1. For each family Xi ⊆ Σ∞, i ∈ N

inf Gν,str(∪iXi) = sup
i

inf Gν,str(Xi).

Claim 2. For each X ⊆ Σ∞, if P s
0 (X) <∞ then inf Gν,str(X) ≤ s.

Claim 3. For each X ⊆ Σ∞, if s > inf Ĝν,str(X) then P s(X) = 0.
Proof of Claim 1. The ≥ inequality follows from the definition of Gν,str(). To prove
that inf Gν,str(∪iXi) ≤ supi inf Gν,str(Xi), let s > supi inf Gν,str(Xi). Assume that Xi 6= ∅
for every i, since otherwise the proof is similar taking only nonempty Xi’s. Then for
each i ∈ N there is a ν-s-gale di such that Xi ⊆ S∞str[di]. We define a ν-s-gale d by

d(w) =
∑

i

2−i

di(λ)
di(w)
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for all w ∈ Σ∗. Then for each i, for any S ∈ Xi, we have

d(S[0..n− 1]) ≥ 2−i

di(λ)
di(S[0..n− 1])

for all n, so S ∈ S∞str[d]. Therefore ∪iXi ⊆ S∞str[d] and the claim follows. 2

Proof of Claim 2. Assume that P s
0 (X) <∞. Let ε > 0. Let

A = {w | w ∈ Σ∗ and Cw ∩X 6= ∅} .

Notice that there is a constant c such that for every n,
∑

w∈A=n ν(w)s < c and that for
each T ∈ X, for every n, T [0..n − 1] ∈ A. For each n ∈ N we define dn : Σ∗ → [0,∞)
similarly to the first part of this proof, that is, let w ∈ Σ∗. If there exists v v w such
that v ∈ A=n then

dn(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dn(w) =
∑
u,

wu∈A=n

(
ν(wu)

ν(w)

)s

.

dn is a ν-s-gale, dn(λ) =
∑

u∈A=n ν(u)s and for all w ∈ A=n, dn(w) = 1.
Let d(w) =

∑∞
n=0 ν(w)−εdn(w). Notice that d is a ν-(s + ε)-gale. To see that

X ⊆ S∞str[d], let T ∈ X and let n be arbitrary. Since T [0..n− 1] ∈ A,

d(T [0..n− 1]) ≥ ν(T [0..n− 1])−εdn(T [0..n− 1]) ≥ ν(T [0..n− 1])−ε.

Since ν(T [0..n − 1])
n→∞−→ 0 this shows that T ∈ S∞str[d]. Therefore X ⊆ S∞str[d] and

inf Gν,str(X) ≤ s+ ε for arbitrary ε, so the claim follows. 2

Proof of Claim 3. Let s > t > inf Ĝν,str(X). To see that P s(X) = 0, let d be a
ν-t-supergale such that X ⊆ S∞str[d]. Let i ∈ N and

Xi = {T | ∀n ≥ i, d(T [0..n− 1]) > d(λ)} .

Then X ⊆ ∪iXi. For each i ∈ N we prove that P s
0 (Xi) = 0.

Let δi = min|w|≤i ν(w). Let δ < δi and B be a δ-packing of Xi, then B ⊆
{w | d(w) > d(λ)} and

∑
w∈B ν(w)t ≤ 1. Therefore P t

0(Xi) ≤ 1 and P s
0 (Xi) = 0 (since∑

w∈B ν(w)s ≤ δs−t δ→0−→ 0). Therefore P s(X) = 0 and the claim follows. 2

We next prove (A.5). inf Gν,str(X) ≤ DimP
ν(X) follows from Claims 1 and 2, and

DimP
ν(X) ≤ Ĝν,str(X) from Claim 3. 2

We note that the case ν = µ of (A.4) was proven by Lutz [28], and the case ν = µ
of (A.5) was proven by Athreya, Hitchcock, Lutz, and Mayordomo [1].

Guided by Theorem A.6, we now develop the constructive fractal ν-dimensions.
Definition. A ν-s-supergale d is constructive if it is lower semicomputable, i.e.,
if there is an exactly computable function d̂ : Σ∗ × N → Q with the following two
properties.

(i) For all w ∈ Σ∗ and t ∈ N, d̂(w, t) ≤ d̂(w, t+ 1) < d(w).
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(ii) For all w ∈ Σ∗, limt→∞ d̂(w, t) = d(w).

Notation. For each probability measure ν on Σ∞ and each set X ⊆ Σ∞, we define
the sets Gν

constr(X), Gν,str
constr(X), Ĝν

constr(X), and Ĝν,str
constr(X) exactly like the sets Gν(X),

Gν,str(X), Ĝν(X), and Ĝν,str(X), respectively, except that the gales and supergales d are
now required to be constructive.
Definition. Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.

1. The constructive ν-dimension of X is cdimν(X) = inf Ĝν
constr(X).

2. The constructive strong ν-dimension of X is cDimν(X) = inf Ĝν,str
constr(X).

3. The constructive dimension of X is cdim(X) = cdimµ(X).

4. The constructive strong dimension of X is cDim(X) = cDimµ(X).

The fact that the “unhatted” G-classes can be used in place of the “hatted” Ĝ-classes
is not as obvious in the constructive case as in the classical case. Nevertheless, Fenner
[13] proved that this is the case for constructive ν-dimension. (Hitchcock [19] proved
this independently for the case ν = µ.) The case of strong ν-dimension also holds with
a more careful argument [1].

Theorem A.7 (Fenner [13]). If ν is a strongly positive, computable probability mea-
sure on Σ∞, then, for all X ⊆ Σ∞,

cdimν(X) = inf Gν
constr(X)

and
cDimν(X) = inf Gν,str

constr(X).

A correspondence principle for an effective dimension is a theorem stating that
the effective dimension coincides with its classical counterpart on sufficiently “simple”
sets. The following such principle, proven by Hitchcock [20], extended a correspondence
principle for computable dimension that was implicit in results of Staiger [39].

Theorem A.8 (correspondence principle for constructive dimension [20]). If X ⊆
Σ∞ is any union (not necessarily effective) of computably closed, i.e., Π0

1, sets, then
cdim(X) = dimH(X).

We now define the constructive dimensions of individual sequences.
Definition. Let ν be a probability measure on Σ∞, and let S ∈ Σ∞. Then the
ν-dimension of S is

dimν(S) = cdimν({S}),

and the strong ν-dimension of S is

Dimν(S) = cDimν({S}).
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B Kolmogorov Complexity Characterizations

In this section we prove characterizations of constructive ν-dimension and constructive
strong ν-dimension in terms of Kolmogorov complexity. These characterizations are
used in the proof of our main theorem in section 6.

Let Σ be a finite alphabet, with |Σ| ≥ 2. The Kolmogorov complexity of a string
w ∈ Σ∗ is the natural number

K(w) = min {|π| | π ∈ {0, 1}∗ and U(π) = w} ,

where U is a fixed optimal universal prefix Turing machine. This is a standard notion of
(prefix) Kolmogorov complexity. The reader is referred to the standard text by Li and
Vitanyi [25] for background on prefix Turing machines and Kolmogorov complexity.

If ν is a probability measure on Σ∞, then the Shannon self information of a string
w ∈ Σ∗ with respect to ν is

Iν(w) = log
1

ν(w)
.

Note that 0 ≤ Iν(w) ≤ ∞. Equality holds on the left here if and only if ν(w) = 1,
and equality holds on the right if and only if ν(w) = 0. Since our results here concern
strongly positive probability measures, we will have 0 < Iν(w) <∞ for all w ∈ Σ+.

The following result is the main theorem of this section. It gives characterizations
of the ν-dimensions and the strong ν-dimensions of sequences in terms of Kolmogorov
complexity.

Theorem B.1 If ν is a strongly positive, computable probability measure on Σ∞, then,
for all S ∈ Σ∞,

dimν(S) = lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
(B.1)

and

Dimν(S) = lim sup
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
. (B.2)

Proof. Let S ∈ Σ∞. Let s > s′ > lim infm
K(S[0..m−1])
Iν(S[0..m−1])

. For infinitely many m,

K(S[0..m− 1]) < s′ Iν(S[0..m− 1]), so ν(S[0..m− 1])s′ < 2−K(S[0..m−1]).
Let m ∈ N. We define the computably enumerable (c.e.) set

A = {w | K(w) < s′ Iν(w)} ,

and the ν-s-constructive supergale dm as follows. If there exists v v w such that
v ∈ A=m then

dm(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dm(w) =
∑
u,

wu∈A=m

(
ν(wu)

ν(w)

)s

.
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First notice that dm is well-defined since

dm(λ) =
∑

u∈A=m

ν(u)s ≤
∑

u∈A=m

2−K(u)(1− δ)m(s−s′) ≤ (1− δ)m(s−s′)

for δ ∈ (0, 1) a constant testifying that ν is strongly positive.
We define the ν-s-constructive supergale

d(w) =
∑
m

(1− δ)−m(s−s′)d2m(w) +
∑
m

(1− δ)−m(s−s′)d2m+1(w).

Notice that the fact that A is c.e. is necessary for the constructivity of d. Since for
w ∈ A, d|w|(w) = 1 we have that d(w) ≥ (1−δ)−|w|(s−s′)/2 for w ∈ A. Since for infinitely
many m, S[0..m− 1] ∈ A we have that S ∈ S∞[d] and dimν(S) ≤ s. This finishes the
proof of the first inequality of (B.1).

For the other direction, let s > dimν(S). Let d be a ν-s-constructive gale succeeding
on S. Let c ≥ d(λ) be a rational number.

Let B = {w | d(w) > c}, notice that B is c.e. For every m,∑
w∈B=m

ν(w)s ≤ 1.

Let θm : B=m → {0, 1}∗ be the Shannon-Fano-Elias code (see for example [8]) given by
the probability submeasure p defined as p(w) = ν(w)s for w ∈ B=m. Specifically, for

each w ∈ B=m, θm(w) is defined as the most significant 1 +
⌈
log 1

p(w)

⌉
bits of the real

number ∑
|v|=m,
v<B u

p(v) +
1

2
p(w)

where <B corresponds to the words in B ordered according to their appearance in the
computable enumeration of B.

Then

|θm(w)| = 1 +

⌈
log

1

p(w)

⌉
= 1 + ds Iν(w)e

for w ∈ B=m.
Since B is c.e. codification and decodification can be computed given the length,

that is, every w ∈ B can be computed from |w| and θ|w|(w). Therefore if w ∈ B,
K(w) ≤ 2 + s Iν(w) + 2 log(|w|).

Notice that since ν is strongly positive, Iν(w) = Ω(|w|) and since there exist in-
finitely many m for which S[0..m− 1] ∈ B,

lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
≤ s.

The proof of (B.2) is analogous. 2

If ν is a strongly positive probability measure on Σ∞, then there is a real constant
α > 0 such that, for all w ∈ Σ∗, Iν(w) ≥ α|w|. Since other notions of Kolmogorov
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complexity, such as the plain complexity C(w) and the monotone complexity Km(w)
[25], differ from K(w) by at most O(log |w|), it follows that Theorem B.1 also holds
with K(S[0..m− 1]) replaced by C(S[0..m− 1]), Km(S[0..m− 1]), etc.

The following known characterizations of dimension and strong dimension are simply
the special case of Theorem B.1 in which Σ = {0, 1} and ν = µ.

Corollary B.2 [32, 1] For all S ∈ {0, 1}∞,

dim(S) = lim inf
m→∞

K(S[0..m− 1])

m

and

Dim(S) = lim sup
m→∞

K(S[0..m− 1])

m
.

Although the constructive dimensions have primarily been investigated in sequence
spaces Σ∞, they work equally well in Euclidean spaces Rn. One of several equivalent
ways to achieve this is to fix a base k ≥ 2 in which to expand the coordinates of
each point x = (x1, . . . , xn) ∈ Rn. If the expansions of the fractional parts of these
coordinates are S1, . . . , Sn ∈ Σ∞k , respectively, where Σk = {0, . . . , k − 1}, and if S is
the interleaving of these sequences, i.e.,

S = S1[0]S2[0] . . . Sn[0]S1[1]S2[1] . . . Sn[1]S1[2]S2[2] . . . ,

then the dimension of the point x is

dim(x) = n dim(S), (B.3)

and the strong dimension of x is

Dim(x) = nDim(S). (B.4)

We define the dimension and strong dimension of a point x in Euclidean space
as in (B.3) and (B.4). It is convenient to characterize these dimensions in terms of
Kolmogorov complexity of rational approximations in Euclidean space. Specifically, for
each x ∈ Rn and r ∈ N, we define the Kolmogorov complexity of x at precision r to be
the natural number

Kr(x) = min
{
K(q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
.

That is, Kr(x) is the minimum length of any program π ∈ {0, 1}∗ for which U(π) ∈
Qn∩B(x, 2−r). (Related notions of approximate Kolmogorov complexity have recently
been considered by Vitanyi and Vereshchagin [42] and Fortnow, Lee and Vereshchagin
[15].) We also mention the quantity

Kr(r, x) = min
{
K(r, q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
,

in which the program π must specify the precision parameter r as well as a rational
approximation q of x to within 2−r. The following relationship between these two
quantities is easily verified by standard techniques.
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Observation B.3 There exist constants a, b ∈ N such that, for all x ∈ Rn and r ∈ N,

Kr(x)− a ≤ Kr(r, x) ≤ Kr(x) + K(r) + b.

We now show that the quantity Kr(r, x) is within a constant of the Kolmogorov
complexity of the first nr bits of an interleaved binary expansion of the fractional part
of the coordinates of x, which was defined in section 1, together with the integer part
of x.

Lemma B.4 There is a constant c ∈ N such that, for all x = (x1, . . . , xn) ∈ Rn, all
interleaved binary expansions S of the fractional parts of x1, . . . , xn, and all r ∈ N,

|Kr(r, x)−K(bxc, S[0..nr − 1])| ≤ c. (B.5)

where bxc is the interleaved binary expansion of (bx1c, . . . , bxnc)

Proof. We first consider the case x ∈ [0, 1]n. For convenience, let l = d log n
2
e (notice

that both n and l are constants). Let M be a prefix Turing machine such that, if
π ∈ {0, 1}∗ is a program such that U(π) = w ∈ {0, 1}∗ and |w| is divisible by n,
and if v ∈ {0, 1}nl, then M(πv) = (|w|/n, q), where q ∈ Qn is the dyadic rational
point whose interleaved binary expansion is wv. Let c1 = nl + cM , where cM is an
optimality constant for M . Let x ∈ Rn, let S be an interleaved binary expansion of
x, and let r ∈ N. Let π ∈ {0, 1}∗ be a witness to the value of Kr(S[0..nr − 1]), and
let v = S[nr..n(r + l) − 1]. Then M(πv) = (r, q), where q is the dyadic rational point
whose interleaved binary expansion is S[0, , n(l + r)− 1]. Since

|q − x| =
√
n(2−(r+l))2 = 2−(r+l)

√
n ≤ 2−r,

it follows that
Kr(r, x) ≤ |πv|+ cM = K(S[0..nr − 1]) + c1, (B.6)

which is one of the inequalities we need to get (B.5).
We now turn to the reverse inequality. For each r ∈ N and q ∈ Qn, let Ar,q be the

set of all r-dyadic points within 2l−r + 2r of q. That is, Ar,q is the set of all points
q′ = (q′1, . . . , q

′
n) ∈ Qn such that |q − q′| ≤ 2l−r + 2r and each q′i is of the form 2−ra′i for

some integer a′i.
Let q′, q′′ ∈ Ar,q. For each 1 ≤ i ≤ n, let q′i = 2−ra′i and q′′i = 2−ra′′i be the ith

coordinates of q′ and q′′, respectively. Then, for each 1 ≤ i ≤ n, we have

|a′i − a′′i | = 2r|q′i − q′′i |
≤ 2r(|q′ − q|+ |q′′ − q|)
≤ 2r+1(2l−r + 2−r)

= 2l+1 + 2.

This shows that there are at most 2l+1 + 3 possible values of a′i. It follows that

|Ar,q| ≤ (2l+1 + 3)n. (B.7)
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Let M ′ be a prefix Turing machine such that, if π ∈ {0, 1}∗ is a program such that
U(π) = (r, q) ∈ N × Qn, 0 ≤ m < |Ar,q|, and sm is the mth string in the standard
enumeration s0, s1, s2, . . . of {0, 1}∗, then M ′(π0|sm|1sm) is the nr-bit interleaved binary
expansion of the fractional points of the coordinates of the mth element of a canonical
enumeration of Ar,q. Let c2 = n(2l′ + 1) + cM ′ , where l′ = dlog(2l+1 + 3)e and cM ′ is an
optimality constant for M ′.

Let x ∈ Rn, let S be an interleaved binary expansion of x, and let r ∈ N. Let q′ be
the r-dyadic point whose interleaved binary expansion is S[0..nr−1], and let π ∈ {0, 1}∗
be a witness to the value of Kr(r, x). Then U(π) = (r, q) for some q ∈ Qn ∩ B(x, 2−r).
Since

|q′ − q| ≤ |q′ − x|+ |q − x|
≤ 2−r

√
n+ 2−r

≤ 2l−r + 2−r,

we have q′ ∈ Aq,r. It follows that there exists 0 ≤ m < |Ar,q| such that M ′(π0|sm|1sm) =
S[0..nr − 1]. This implies that

K(S[0..nr − 1]) ≤ |π0|sm|1sm|+ cM ′

= Kr(r, x) + 2|sm|+ cM ′ + 1

≤ Kr(r, x) + 2|s|Ar,q |−1|+ cM ′ + 1 (B.8)

= Kr(r, x) + 2blog |Ar,q|c+ cM ′ + 1

≤ Kr(r, x) + 2bn log(2l+1 + 3)c+ cM ′ + 1

≤ Kr(r, x) + c2.

If we let c = max{c1, c2}, then (B.6) and (B.8) imply (B.5).
For the general case, notice that Kr(r, bxc) = K(bxc) +O(1). 2

We now have the following characterizations of the dimensions and strong dimen-
sions of points in Euclidean space.

Theorem B.5 For all x ∈ Rn,

dim(x) = lim inf
r→∞

Kr(x)

r
, (B.9)

and

Dim(x) = lim sup
r→∞

Kr(x)

r
. (B.10)

Proof. Let x ∈ Rn, and let S be an interleaved binary expansion of the fractional
parts of the coordinates of x. By (B.3) and Corollary B.2, we have

dim(x) = n dim(S)

= n lim inf
m→∞

K(S[0..m− 1])

m
.
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Since all values of K(S[0..m − 1]) with nr ≤ m < n(r + 1) are within a constant
(that depends on the constant n) of one another, it follows that

dim(x) = n lim inf
r→∞

K(S[0..nr − 1])

nr

= lim inf
r→∞

K(S[0..nr − 1])

r
.

Since K(r) = O(log r) [25], it follows by Observation B.3 and Lemma B.4 that (B.9)
holds. The proof that (B.10) holds is analogous. 2

C Additional Proofs

Proof of Observation 3.1. Assume the hypothesis, with S = (S0, . . . , Sk−1) and
dom(S) = D, and let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively.
Let c = min{c0, . . . , ck−1}, noting that c ∈ (0, 1), and fix z ∈ D. Let

r =
1

1− c
max
0≤i<k

|Si(z)− z|,

and let A = D∩Br(z). Then A is a closed subset of the compact set Br(z), and z ∈ A,
so A ∈ K(S). For all x ∈ A and 0 ≤ i < k, we have

|Si(x)− z| ≤ |Si(x)− Si(z)|+ |Si(z)− z|
= c|x− z|+ |Si(z)− z|
≤ cr + (1− c)r

= r,

so each Si(A) ⊆ A, so S(A) ⊆ A.
2

Our proof of Observation 3.2 uses the Hausdorff metric on K(Rn), which is the
function ρH : K(Rn)×K(Rn) → [0,∞) defined by

ρH(A,B) = max{sup
x∈A

inf
y∈B

|x− y|, sup
y∈B

inf
x∈A

|x− y|}

for all A,B ∈ K(Rn). It is easy to see that ρH is a metric on K(Rn). It follows that ρH

is a metric on K(S) for every IFS S.
Proof of Observation 3.2. Assume the hypothesis, with S = (S0, . . . , Sk−1), and
let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively. The definition of ρH

implies immediately that, for all E,F ∈ K(S) and 0 ≤ i < k, ρH(Si(E), Si(F )) =
ciρH(E,F ). It follows by an easy induction that, if we let c = max{c0, . . . , ck−1}, then,
for all w ∈ Σ∗k,

ρH(SA(w), SB(w)) ≤ c|w|ρH(A,B). (C.1)

To see that SA = SB, let T ∈ Σ∞k , and let ε > 0. For each w v T , (3.1), (3.2), and
(3.3) tell us that

ρH({SA(T )}, SA(w)) ≤ diam(SA(w))

≤ c|w|diam(A) (C.2)
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and

ρH({SA(T )}, SB(w)) ≤ diam(SB(w))

≤ c|w|diam(B). (C.3)

Since c ∈ (0, 1), (C.1), (C.2), and (C.3) tell us that there is a prefix w v T such that

ρH({SA(T )}, {SB(T )})

≤ ρH({SA(T )}, SA(w)) + ρH(SA(w), SB(w))

+ ρH({SB(T )}, SB(w))

< ε/3 + ε/3 + ε/3

= ε.

Since this holds for all ε > 0, it follows that ρH({SA(T )}, {SB(T )}) = 0, i.e., that
SA(T ) = SB(T ). 2

Proof of Corollary 4.2. Let S be a computable IFS. Then F (S) is compact, hence
closed, and is computable by Theorem 4.1, so F (S) is computably closed by Observation
2.2. It follows by the correspondence principle for constructive dimension (Theorem
A.8) that cdim(F (S)) = dimH(F (S)). 2

Proof of Lemma 4.3. Assume the hypothesis, and let B be a ball of radius r. Let

M =
{
G ∈ G

∣∣ B ∩G 6= ∅
}
,

and let m = |M|. Let B′ be a closed ball that is concentric with B and has radius
(1 + 2b)r. Then B′ contains G for every G ∈ M. Since each G ∈ M contains a ball
BG of radius ar, and since these balls are disjoint, it follows that

volume(B′) ≥
∑
G∈M

volume(BG).

This implies that
[(1 + 2b)r]n ≥ m(ar)n,

whence m ≤
(

1+2b
a

)n
. 2

Proof of Lemma 4.4. Assume the hypothesis. From oracle Turing machines com-
puting
S0, . . . , Sk−1, it is routine to construct an oracle Turing machine M computing the
function

S̃ : dom(S)× Σ∗k → dom(S)

defined by the recursion
S̃(x, λ) = x,

S̃(x, iw) = Si(S̃(x,w))

for all x ∈ dom(S), w ∈ Σ∗k, and i ∈ Σk. Fix a rational point q ∈ G ∩ Qn, and let Cq

be the oracle that returns the value q on all queries, noting that

|MCq(w, r)− S̃(q, w)| ≤ 2−r (C.4)

holds for all w ∈ Σ∗k and r ∈ N. Fix l ∈ Z+ large enough to satisfy the following
conditions.
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(i) G contains the closed ball of radius 2−l about q.

(ii) For each i ∈ Σk, 2−l ≤ ci, where ci is the contraction ratio of Si.

Then a routine induction shows that, for each w ∈ Σ∗k, SG(w) contains the closed ball
of radius 2−l(1+|w|) about S̃(q, w). It follows by (C.4) that the function h : Σ∗k → Qn

defined by
h(w) = MCq(w, l(1 + |w|))

is a hub function for S and G. It is clear that h is rational-valued and exactly com-
putable. 2

Proof of Lemma 4.5. Let S, cmin, and α be as given, and let c0, . . . , ck−1 be the
contraction ratios of S0, . . . , Sk−1, respectively. Let cmax = max{c0, . . . , ck−1}, and let
δ = 1

2
min{cmin, 1 − cmax}, noting that δ ∈ (0, 1

2k
]. Since S is computable, there is, for

each i ∈ Σk, an exactly computable function

ĉi : N → Q ∩ [δ, 1− δ]

such that, for all t ∈ N,
|ĉi(t)− ci| ≤ 2−t. (C.5)

For all T ∈ Σ∞k and l, t ∈ N, we have

l−1∏
i=0

ĉT [i](t+ i)−
l−1∏
i=0

cT [i]

=
l−1∑
i=0

[(
i−1∏
j=0

cT [j]

)(
l−1∏
j=i

ĉT [j](t+ j)

)

−

(
i∏

j=0

cT [j]

)(
l−1∏

j=i+1

ĉT [j](t+ j)

)]

=
l−1∑
i=0

(ĉT [i](t+ i)− cT [i])pi,

where

pi =

(
i∏

j=0

cT [j]

)(
l−1∏

j=i+1

ĉT [j](t+ j)

)
.

Since each |pi| ≤ 1, it follows by (C.5) that∣∣∣∣∣
l−1∏
i=0

ĉT [i](t+ i)−
l−1∏
i=0

cT [i]

∣∣∣∣∣ < 21−t (C.6)

holds for all T ∈ Σ∞k and l, t ∈ N.
By (4.1), we have 2−α/dim(S)/cmin < 1, so we can fix m ∈ Z+ such that

21−m < 1− 2−α/dim(S)/cmin. (C.7)
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For each T ∈ Σ∞k and r ∈ N, let

lr(T ) = min

{
l ∈ N

∣∣∣∣∣
l−1∏
i=0

ĉT [i](r +m+ i+ 1) ≤ 2−r − 2−(r+m)

}
,

and let
A = {(r, lr(T )) | T ∈ Σ∞k and r ∈ N} .

Since the functions ĉ0, . . . , ĉk−1 are rational-valued and exactly computable, the set A
is decidable. It is clear that each Ar has properties (i) and (ii).

Let r ∈ N. To see that Ar has property (iii), let w ∈ Ar. Let l = |w|, and fix
T ∈ Σ∞k such that l = lr(T ) and w = T [0..l − 1]. By the definition of lr(T ) and (C.6),
we have

l−1∏
i=0

cw[i] < 2−r,

which implies that
IS(w) > rdim(S). (C.8)

If l > 0, then the minimality of lr(T ) tells us that

l−2∏
i=0

ĉw[i](r +m+ i+ 1) > 2−r − 2−(r+m).

It follows by (C.6) and (C.7) that

l−2∏
i=0

cw[i] > 2−r − 21−(r+m)

= 2−r(1− 21−m)

> 2−(r+α/dim(S))/cmin,

whence

l−1∏
i=0

cw[i] >
cw[l−1]

cmin

2−(r+α/dim(S))

≥ 2−(r+α/dim(S)).

This implies that
πS(w) > 2−(rdim(S)+α). (C.9)

If l = 0, then πS(w) = 1, so (C.9) again holds. Hence, in any case, we have

IS(w) < rdim(S) + α. (C.10)

By (C.8) and (C.10), Ar has property (iii). 2
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Proof of Corollary 4.7. Let F ⊆ Rn be self-similar. Then there is an IFS S satisfying
F (S) = F and the open set condition. For any such S, there is an oracle A ⊆ {0, 1}∗
relative to which S is computable. We then have

dimH(F ) ≤ dimP(F )

= dimA
P(F )

≤ cDimA(F )

= sup
x∈F

DimA(x)

= (a) dim(F ) sup
T∈Σ∞k

DimA
πS

(T )

= dim(F )

= dim(F ) sup
T∈Σ∞k

dimA
πS

(T )

= (b) sup
x∈F

dimA(x)

= cdimA(F )

= (c) dimA
H(F )

= dimH(F )

which implies the corollary. Equalities (a) and (b) hold by Theorem 4.6, relativized to
A. Equality (c) holds by Corollary 4.2, relativized to A.

2
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