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Abstract

A constructive version of Hausdorff dimension is developed using constructive supergales,
which are betting strategies that generalize the constructive supermartingales used in the theory
of individual random sequences. This constructive dimension is used to assign every individual
(infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0, 1].
Sequences that are random (in the sense of Martin-Lo6f) have dimension 1, while sequences that
are decidable, ¥?, or II! have dimension 0. It is shown that for every AJ-computable real
number « in [0,1] there is a A sequence S such that dim(S) = a.

A discrete version of constructive dimension is also developed using termgales, which are
supergale-like functions that bet on the terminations of (finite, binary) strings as well as on their
successive bits. This discrete dimension is used to assign each individual string w a dimension,
which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the
limit inferior of the dimensions of its prefixes.

The Kolmogorov complexity of a string is proven to be the product of its length and its
dimension. This gives a new characterization of algorithmic information and a new proof of
Mayordomo’s recent theorem stating that the dimension of a sequence is the limit inferior of
the average Kolmogorov complexity of its first n bits.

Every sequence that is random relative to any computable sequence of coin-toss biases that
converge to a real number /3 in (0,1) is shown to have dimension #(f), the binary entropy of £.

Keywords: algorithmic information, computability, constructive dimension, dimension, entropy,
gales, Hausdorff dimension, Kolmogorov complexity, Kullback-Leibler divergence, martingales, ran-
domness, supergales, termgales.

1 Introduction

One of the most dramatic achievements of the theory of computing was Martin-Lof’s 1966 use of
constructive measure theory to give the first satisfactory definition of the randomness of individual
infinite binary sequences [29]. The search for such a definition had been a major object of early
twentieth-century research on the foundations of probability, but a rigorous mathematical formu-
lation had proven so elusive that the search had been all but abandoned more than two decades
earlier. Martin-Lof’s definition says precisely which infinite binary sequences are random and which
are not. The definition is probabilistically convincing in that it requires each random sequence to
pass every algorithmically implementable statistical test of randomness. The definition is also ro-
bust in that subsequent definitions by Schnorr [39, 40, 41], Levin [22], Chaitin [6], Solovay [47],

“This work was supported in part by National Science Foundation Grants 9610461 and 9988483.



and Shen’ [43, 44], using a variety of different approaches, all define exactly the same sequences to
be random. It is noteworthy that all these approaches, like Martin-Lof’s, make essential use of the
theory of computing.

A useful characterization of random sequences is that they are those sequences that have max-
imal algorithmic information content. Specifically, if K (S[0..n — 1]) denotes the Kolmogorov com-
plexity (algorithmic information content) of the first n bits of an infinite binary sequence S, then
Levin [22] and Chaitin [6] have shown that S is random if and only if there is a constant ¢ such
that for all n, K(S[0..n — 1]) > n — ¢. Indeed Kolmogorov [19] developed what is now called
C(z), the “plain Kolmogorov complexity,” in order to formulate such a definition of randomness,
and Martin-Lof, who was then visiting Kolmogorov, was motivated by this idea when he defined
randomness. (The quantity C'(z) was also developed independently by Solomonoff [46] and Chaitin
[4, 5].) Martin-Lof [30] subsequently proved that C(z) cannot be used to characterize random-
ness, and Levin [22] and Chaitin [6] introduced a technical modification of C(x), now called K (z),
the “Kolmogorov complexity,” in order to prove the above characterization of random sequences.
Schnorr [41] proved a similar characterization in terms of another variant, called the “monotone
Kolmogorov complexity.”

One conclusion to be drawn from these characterizations is that the definition of random se-
quences distinguishes those sequences that have maximal algorithmic information content from
those that do not. It offers no quantitative classification of the sequences that have less than
maximal algorithmic information content. From a technical point of view, this aspect of the defini-
tion arises from its use of constructive measure, which is an algorithmic effectivization of classical
Lebesgue measure. Specifically, an infinite binary sequence S is random if the singleton set {S}
does not have constructive measure 0, and is nonrandom if {S} does have constructive measure 0.
Neither Lebesgue measure nor constructive measure offers quantitative distinctions among measure
0 sets.

In 1919, Hausdorff [14] augmented classical Lebesgue measure theory with a theory of dimension.
This theory assigns to every subset X of a given metric space a real number dimy(X), which is
now called the Hausdorff dimension of X. In this paper we are interested in the case where the
metric space is the Cantor space C, consisting of all infinite binary sequences. In this case, the
Hausdorff dimension of a set X C C (which is defined precisely in section 3 below) is a real number
dimy (X) € [0,1]. The Hausdorff dimension is monotone, with dimy () = 0 and dimyx(C) = 1.
Moreover, if dimg(X) < dimy(C), then X is a measure 0 subset of C. Hausdorff dimension thus
offers a quantitative classification of measure 0 sets. Moreover, Ryabko [36, 37, 38| Staiger [48, 49],
and Cai and Hartmanis [3] have all proven results establishing quantitative relationships between
Hausdorff dimension and Kolmogorov complexity.

Just as Hausdorff [14] augmented Lebesgue measure with a theory of dimension, this paper
augments the theory of individual random sequences with a theory of the dimensions of individual
sequences. Specifically, we develop a constructive version of Hausdorff dimension and use this
to assign every sequence S € C a dimension dim(S) € [0,1]. Sequences that are random have
dimension 1, while sequences that are decidable, %9, or II{. have dimension 0. For every real
number « € [0, 1] there is a sequence S such that dim(S) = a. Moreover, if o is AY-computable,
then there is a A sequence S such that dim(S) = a. (This generalizes the well-known existence
of AY sequences that are random.)

Our development of constructive dimension is based on supergales, which are natural generaliza-
tions of the constructive supermartingales used by Schnorr [39, 40, 41] to characterize randomness.
In a recent paper [27] we have shown that supergales can be used to characterize the classical
Hausdorff dimension, and that resource-bounded supergales can be used to define dimension in
complexity classes. In the present paper we use constructive (lower semicomputable) supergales



to develop constructive dimension. The dimension of a sequence S € C is then the constructive
dimension of the singleton set {S}. Constructive dimension differs markedly from both classical
Hausdorff dimension and the resource-bounded dimension developed in [27], primarily due to the
existence of supergales that are optimal. These optimal supergales are analogous to universal tests
of randomness in the theory of random sequences.

Supergales, like supermartingales, are strategies for betting on the successive bits of infinite
binary sequences. In order to define the dimensions of individual strings w € {0,1}*, we introduce
termgales, which are supergale-like functions that bet on the terminations of strings as well as on
their successive bits. Using termgales, we assign each binary string w a dimension dim(w), which
is a nonnegative real number. We show that for every sequence S € C,

dim(S) = lim inf dim(S[0..n — 1]). (1.1)
n—oo

We use dimension to prove a new characterization of Kolmogorov complexity. Specifically, we

show that there is a constant ¢ such that for all w € {0,1}*,

K(w) — |w|dim(w)| < c. (1.2)

That is, the Kolmogorov complexity of a string is (to within a constant additive term) the product
of the string’s length and its dimension. This characterization of Kolmogorov complexity in terms
of a constructivized, discretized version of Hausdorff’s 1919 theory of dimension is reminiscent of
(and technically related to) the well-known characterization by Levin [22, 23] and Chaitin [6] of
Kolmogorov complexity in terms of constructivized discrete probability, i.e., the fact that there is
a constant ¢’ € N such that for all w € {0, 1}*,

K(w) — log mzw) <d, (1.3)
where m is an optimal constructive subprobability measure on {0, 1}*.

Taken together, (1.1) and (1.2) provide a new proof of Mayordomo’s recent theorem [31] stating

that for every sequence S € C,
dim(8) = lim inf Z0-n = 1)), (1.4)
n—00 n
Facts (1.2) and (1.4) justify the intuition that the dimension of a string or sequence is a measure
of its algorithmic information density.

We also investigate the dimensions of sequences that are random relative to computable se-
quences of convergent coin-toss biases. Specifically, let B = (o, 1,2, -.) be any computable
sequence of real numbers f; € [0, 1] that converge to a real number 3 € (0, 1) (which must therefore
be AY-computable). We show that if R is any sequence in C that is random with respect to ﬁ (i.e.,
a random outcome of a random experiment in which for each i, independently of all other j, the 7*!
bit of R is decided by tossing a 0/1-valued coin whose probability of 1 is §;), then the dimension
of R is H(S), the binary Shannon entropy of 3.

We defer discussion of some significant related work until late in the paper, where more context
is available. Specifically, results by Schnorr [40, 42], Ryabko [35, 36, 37, 38], Staiger [48, 49, 50], and
Cai and Hartmanis [3] that relate martingales, supermartingales, and Kolmogorov complexity to
Hausdorff dimension are discussed at the end of section 6. Classical work by Besicovitch [1], Good
[13], and Eggleston [9] relating limiting frequencies and Shannon entropy to Hausdorff dimension
is described briefly in section 7.



2 Preliminaries

We use the set Z of integers, the set ZT of (strictly) positive integers, the set N of natural numbers
(i.e., nonnegative integers), the set Q of rational numbers, the set R of real numbers, and the set
[0,00) of nonnegative reals.

A string is a finite, binary string w € {0,1}*. We write |w| for the length of a string w and
A for the empty string. For 4,5 € {0, ..., |w| — 1}, we write w[i..j] for the string consisting of the
i*" through the j*® bits of w and w[i] for w[i..i], the i'" bit of w. Note that the 0™ bit w[0] is the
leftmost bit of w and that w[i..j] = A if i > j. A sequence is an infinite, binary sequence. If S is
a sequence and 4,j € N, then the notations S[i..j] and S[i] are defined exactly as for strings. We
work in the Cantor space C consisting of all sequences. A string w € {0,1}* is a prefiz of a sequence
S € C, and we write w C S, if S[0..|lw| — 1] = w. The cylinder generated by a string w € {0,1}* is
Cy ={S € Clw C S}. Note that C) = C.

We also make passing references to 117, A, and 9 sets of sequences. These refer to the arith-
metical (i.e., effective Borel) hierarchy of sets of sequences and are not central to our development.
The interested reader is referred to [34] or [32] for discussion of this hierarchy.

The support of a sequence S € C is

supp(S) = {n € N|S[n] = 1}.

The arithmetical hierarchy of sequences is defined from the arithmetical hierarchy of subsets of N
using the support function. Thus, for example, a sequence S € C is computably enumerable, and
we write S € X, if supp(9) is a X (i.e., computably enumerable) subset of N. Similarly, S € I1? if
N — supp(S) is computably enumerable, and S € A if supp(9) is decidable relative to the halting
oracle.

If S, T € C, then S is 1-truth-table reducible to T, and we write S <y_4 T, if there exist
computable functions f : N — N and ¢ : N x {0,1} — {0,1} such that for all n € N, S[n] =
g(n,T[f(n)]). The sequences S and T are 1-truth-table-equivalent, and we write S =1 4 T, if
S<iwTandT <y S.

Definition. A subprobability measure on {0,1}* is a function p : {0,1}* — [0, 1] such that

> pw) < 1. (2.1)

we{0,1}*

A probability measure on {0,1}* is a subprobability measure on {0,1}* that satisfies (2.1) with
equality. A subprobability supermeasure on the Cantor space C is a function v : {0,1}* — [0, 1]
such that

v(A) <1 (2.2)

and for all w € {0, 1}*,
v(w) > v(w0) + v(wl). (2:3)

A subprobability measure on C is a subprobability supermeasure on C that satisfies (2.3) with
equality for all w € {0,1}*, and a probability measure on C is a subprobability measure on C that
satisfies (2.2) with equality. Intuitively, if v is a probability measure on C and w € {0,1}*, then
v(w) is the probability that w C S when the sequence S € C is “chosen according to the probability
measure v.”



A bias is a real number 5 € [0, 1]. Intuitively, if we toss a 0/1-valued coin with bias 3, then
is the probability of the outcome 1. A bias sequence is a sequence 3 = (fy, 1, B2, - ..) of biases. If

ﬁ is a bias sequence, then the ,g— coin-toss probability measure is the probability 1% on C defined by

jw|-1

Ww) =[] Bilw), (2.4)
=0

where £;(w) = (26; — 1)wli] + (1 — i), i.e., Bi(w) = if w[i] then B; else 1 — ;. That is, i is the
probability that § € C,, when S € C is chosen according to a random experiment in which for
each 4, independently of all other 7, the i*" bit of S is decided by tossing a 0/1-valued coin whose
probability of 1 is §;. In the case where the biases (3; are all the same, i.e., B = (8,8,0,...) for

some f3 € [0,1], we write p? for ,ug, and (2.4) simplifies to
1 (w) = (1 p)#Ow) g, (2.5)

where # (b, w) is the number of times the bit b appears in the string w. The uniform probability
measure on C is the probability measure p = /ﬁ, for which (2.5) simplifies to

plw) =2 (2.6)

for all w € {0, 1}*.
We use several conditions involving the computability of real numbers and real-valued functions
in this paper.

Definition. Let f: D — R, where D is some discrete domain such as N, {0, 1}*,N x {0, 1}*, etc.

1. fAis computable if there is a computable function f : D xN — Q such that for all (z,7) € D x N,
|flz,r) = flz)] <277

2. f is lower semicomputable if there is a computable function f : D x N — Q such that
(a) for all (x,¢) € D x N, f(x,t) < f(z,t+1) < f(z), and
(b) for all z € D, limy_s00 f(z,t) = f(x).

3. f is AY-computable if f is computable relative to the halting oracle.
The following facts are well known and easy to verify.

i) Computability implies lower semicomputability, lower semicomputability implies Aj-computability,
i) C tability implies 1 i tability, 1 i tability impli Ag tabilit
and the converses of these statements do not hold.

(ii) A function f : D — R is computable if and only if the functions f and —f are both lower
semicomputable.

(iii) A function f : D — R is lower semicomputable if and only if its lower graph
Graph™ (f) = {(z,5) € Dx Q| s < f(z)}
is computably enumerable.

A sequence @ = (ag, a1, ao,...) of real numbers is computable if the associated function fg :
N — R, defined by f5(i) = «; for all i € N, is computable. A real number « is computable if the
sequence @ = (a, a, v, ...) is computable. Note that if ﬁ is a computable bias sequence, then p? is
a computable probability measure on C.



Definition. A subprobability measure on {0, 1}* or a subprobability supermeasure on C is con-
structive if it is lower semicomputable.

Definition. If F is a class of functions from {0, 1}* into [0, 00), then an optimal element of F is a
function g € F such that for every f € F there is a real constant « > 0 such that for all w € {0,1}*,

9(w) > af(w).

The following theorem is one of the cornerstones of algorithmic information theory.
Theorem 2.1. (Levin [55])

1. There is an optimal constructive subprobability measure m on {0,1}*.

2. There is an optimal constructive subprobability supermeasure M on C.

Throughout this paper we fix m and M as in Theorem 2.1. The results of this paper are not
affected by the particular choice of m and M.

The reader is referred to the text by Li and Vitanyi [24] for the definition and basic proper-
ties of the Kolmogorov complexity K (w), defined for strings w € {0,1}*. The main property of
Kolmogorov complexity that we use here is the following theorem, which is another cornerstone of
algorithmic information theory.

Theorem 2.2. (Levin [22, 23|, Chaitin [6]) There is a constant ¢ € N such that for all w € {0,1}*,

1
m(w)

K(w) — log <ec.

Given a set A C {0,1}* and n € N, we use the abbreviations A—, = AN {0,1}" and A<, =
AN{0,1}5". A prefiz set is a set A C {0,1}* such that no element of A is a prefix of another
element of A.

Let X be a k-fold product of intervals, each of which is (0,1) or [0,1]. If g : X — R and
a= (ay,...,0r) € X, then we sometimes use “g(&@)” as an abbreviation for the random variable
¢€:{0,1} — R defined by &(1) = g(a1,...,ax) and £(0) = g(1 — a1,...,1 —ag). If B €[0,1], then
we also use 5 as an abbreviation for the probability measure p on {0,1} in which p(1) = 8. Thus,
for example,

Egg(a@) = Bg(ar,...,a) + (1 = B)g(l —au,...,1 — ay)

is the expected value of “the random variable g(&)” with respect to “the probability measure 3.”
In particular, Shannon’s binary entropy function # : [0, 1] — [0, 1] is defined by

1
H(B) = Eglog =,
g
with the proviso that Olog% = 0 so that A is continuous on [0, 1]. Similarly, the binary Kullback-
Leibler divergence function D : [0,1] x (0,1) — R is defined by

D(5 | @) =B log 2,

with the proviso that Olog% = 0 so that D is continuous on [0, 1] x (0,1). It is well-known that
D(B || @) > 0, with equality if and only if 8 = a.. See the text by Cover and Thomas [8] for further
discussion of H(f) and D(f || «).

Falconer [10] provides a good overview of Hausdorff dimension.



3 Gales and Constructive Dimension

In this section we define gales and supergales and use these to define classical and constructive
Hausdorff dimensions in the Cantor space C. Our definitions are slightly more general than those
in [27] because here we need to define gales and supergales relative to an arbitrary probability
measure on C that need not be the uniform probability measure p defined in section 2.

Definition. Let v be a probability measure on C, and let s € [0, 00).
1. A v-s-supergale is a function d : {0,1}* — [0, 00) that satisfies the condition
d(w)v(w)® > d(w0)v(w0)® + d(wl)v(wl)® (3.1)
for all w € {0,1}*.
2. A v-s-gale is a v-s-supergale that satisfies (3.1) with equality for all w € {0, 1}*.

A v-supermartingale is a v-1-supergale.

- W

A v-martingale is a v-1-gale.
5. An s-supergale is a p-s-supergale.
6. An s-gale is a p-s-gale.
7. A supermartingale is a 1-supergale.
8. A martingale is a 1-gale.
Observations 3.1. 1. A subprobability supermeasure on C is a 0-supergale d with d(\) < 1.
2. A subprobability measure on C is a 0-gale d with d(\) < 1.
3. A probability measure on C is a 0-gale d with d(\) = 1.

The following obvious but useful observation shows how gales and supergales are affected by
variation of the parameter s.

Observation 3.2. Let v be a probability measure on C, let s, s' € [0,00), and let d,d" : {0,1}* —
[0,00). Assume that

!

d(w)v(w)® = d'(w)v(w)®
for all w € {0,1}*.
1. d is a v-s-supergale if and only if d' is a v-s'-supergale.
2. d is a v-s-gale if and only if d' is a v-s'-gale.

For example, Observation 3.2 implies that a function d : {0,1}* — [0,00) is an s-gale if and
only if the function d’ : {0,1}* — [0,00) defined by d'(w) = 20 -9)I*|d(w) is a martingale.
Our next lemma is a generalization of Kraft’s inequality [8].

Lemma 3.3. Let d be a v-s-supergale, where v is a probability measure on C and s € [0,00). Then
for all w € {0,1}* and all prefiz sets B C {0,1}*,

Z d(wu)v(wu)® < d(w)v(w)?.

ueB



Proof. We first use induction on n to show that the lemma holds for all prefix sets B C {0, 1}=".
For n = 0 this is trivial. Assume that it holds for n, and let A C {0,1}<"*! be a prefix set. Define
the set

A'={u e {0,1}"u0 € A or ul € A},

and note that A<, is disjoint from A’. Note also that the set
B=A,UA

is a prefix set. For all w € {0,1}*, we have

Z d(wu)v(wu)® < Z[d(qu)u(qu)s—i—d(wul)l/(wul)s]
UEA—p 41 ucA’

< Z d(wu)v(wu)®.

ucA’

It follows by the induction hypothesis that for all w € {0,1}*,

Zd(wu)l/(wu)s = Z d(wu)v(wu)® + Z d(wu)v(wu)®

ucA uEASn uEA:n+1
< Z d(wu)v(wu)® + Z d(wu)v(wu)®
u€A<y, ucA’
= Z d(wu)v(wu)®
ueB

< d(w)v(w)®.

This completes the proof that for all n» € N the lemma holds for all prefix sets B C {0, 1}=<".
To complete the proof of the lemma, let B be an arbitrary prefix set. Then for all w € {0,1}*,

Z d(wu)v(wu)® = sup Z d(wu)v(wu)® < d(w)v(w)?®.

ueEB neN UEBSn

Definition. Let d be a v-s-supergale, where v is a probability measure on C and s € [0, 00).

1. We say that d succeeds on a sequence S € C if limsup,,_,,, d(S[0..n — 1]) = co.

2. The success set of d is S®[d] = {S € C | d succeeds on S}.

We now show how to use the success sets of gales and supergales to define Hausdorff dimension.
Notation. Let X C C.

1. G(X) is the set of all s € [0, 00) such that there is an s-gale d for which X C S*°[d].

2. G(X) is the set of all 5 € [0,00) such that there is an s-supergale d for which X C S*°[d].

Note that s’ > s € G(X) implies that s’ € G(X).
It was shown in [27] that the following definition is equivalent to the classical definition of
Hausdorft dimension in C.

Definition. The Hausdorff dimension of a set X C C is dimg(X) = inf G(X).



The following trivial fact shows that we could equivalently use G (X) in place of G(X) in the
above definition.

Observation 3.4. For all X C C, G(X) = G(X).

Martin-Lof’s definition of randomness [29] was reformulated in terms of martingales by Schnorr
[39] as follows.

Terminology. A v-s-supergale is constructive if it is lower semicomputable.
Definition. Let v be a probability measure on C, and let X C C.

1. X has constructive v-measure 0, and we write Veonstr(X) = 0, if there is a constructive v-
martingale d such that X C S*°[d].

2. X has constructive v-measure 1, and we write Veonstr(X) = 1, if veonstr (C — X) = 0.

Definition. If v is a probability measure on C, then a sequence R € C is v-random, and we write
R € RAND,, if the singleton set {R} does not have constructive v-measure 0 (i.e., there is no
constructive v-martingale that succeeds on R).

It is well-known (and easy to see) that veopstr(RAND,) = 1. The following known result shows
that constructive supermartingales can equivalently be used in place of constructive martingales in
defining randomness.

Theorem 3.5. (Schnorr [39, 40], van Lambalgen [52]) For every computable probability measure v
on C and every constructive v-supermartingale d there is a constructive v-martingale d' such that
S>®[d] C S*®[d'].

If v is p, the uniform probability measure on C, then we generally omit it from the above
terminology. A sequence R is thus random, and we write R € RAND, if {R} does not have
constructive measure 0.

Optimal constructive supergales are as crucial to constructive dimension as optimal constructive
supermartingales are to the theory of randomness. Recall the subprobability supermeasure M of
Theorem 2.1.

Notation. For each s € [0,00) and w € {0,1}*,

d® (w) = 2°"IM (w).
Theorem 3.6. For every computable real number s € [0,00), the function d®) is an optimal
constructive s-supergale.

Proof. Let s € [0,00) be computable. It is clear from its definition that d®) is a constructive
s-supergale. To see that d®®) has the desired optimality property, let d be an arbitrary constructive
s-supergale. Fix 0 < a € Q such that ad()\) <1, and define v : {0,1}* — [0, 1] by

v(w) = 27°"lad(w)

for all w € {0,1}*. By Observation 3.2, v is a 0-supergale. Since v(\) = ad()\) < 1, it follows by
Observation 3.1 that v is a subprobability supermeasure on C. Since v is clearly constructive, it
follows by the optimality of M that there exists & > 0 such that for all w € {0,1}*, M(w) > av(w),
whence

d® (w) = 2°2*/M(w) > 2°"low(w) = cad(w).

Since aa > 0 this shows that d®) is an optimal constructive s-supergale. ]



We now constructivize the above definition of Hausdorff dimension and develop some funda-
mental properties of the resulting constructive dimension.

Notation. Let X C C.

1. Geonstr(X) is the set of all s € [0,00) such that there is a constructive s-gale d for which
X C 5%[d].

2. gAconstr(X ) is the set of all s € [0,00) such that there is constructive s-supergale d for which
X C S5%[d].

Note that if s,s’ are computable real numbers with s’ > s, then s € Geonstr(X) implies s' €
Geonstr (X), and s € Geonstr (X) implies s" € Geonstr (X)

We have seen that gales and supergales can be used interchangeably in defining classical Haus-
dorff dimension (Observation 3.4) and that constructive martingales and constructive supermartin-
gales can be used interchangeably in defining randomness (Theorem 3.5). In contrast, at the time
of this writing, we do not know whether constructive gales and constructive supergales can be used
interchangeably in defining constructive dimension. (NOTE ADDED IN PROOF: This question has
recently been answered affirmatively by Hitchcock [15] and, independently, by Fenner [12].) We
also do not know whether an analog of Theorem 3.6 holds for constructive s-gales when s < 1. We
thus define constructive dimension in terms of constructive supergales.

Definition. The constructive dimension of a set X C C is cdim(X) = inf Geonstr (X)-
The following observations are clear.

Observations 3.7. 1. For all X CY C C, cdim(X) < cdim(Y).
2. For all X C C, cdim(X) > dimp(X).
3. cdim(C) = 1.

4. For all X C C, if cdim(X) < 1, then piconstr(X) = 0.

4 Dimensions of Individual Sequences

The dimension of an individual sequence S € C is simply the constructive dimension of the singleton

set {S}.
Definition. The dimension of a sequence S € C is
dim(S) = cdim({S}).

The following theorem, which has no analog either in classical Hausdorff dimension or in the
resource-bounded dimension developed in [27], says that the constructive dimension of a set of
sequences is completely determined by the dimensions of the individual sequences in the set.

Theorem 4.1. For all X C C,

cdim(X) = sup dim(S).
SeX
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Proof. Let X C C, and let s* = supgcy dim(S). It is clear by part 1 of Observation 3.7 that
cdim(X) > s*. To see that cdim(X) < s*, let s be a rational number such that s > s*. It suffices
to show that cdim(X) < s.

Since s > s*, for each S € X there is a constructive s-supergale dg that succeeds on S. By
Theorem 3.6, then, we have S € S®[ds] C S®[d®)] for all § € X, whence X C S*°[d(®)]. Since
d(®) is a constructive s-supergale, this shows that cdim(X) < s. O

Hitchcock [16] has recently proven a correspondence principle for constructive dimension. This
principle says that for any set X C C that is a union of TIY sets (a condition that is certainly
satisfied if X is 9), the constructive dimension of X is precisely its classical Hausdorff dimension.
He also noted that this principle, together with Theorem 4.1, implies that the classical Hausdorff
dimension of every set X C C that is a union of II? sets has the pointwise characterization

dimg(X) = sup dim(S).
SeX

Theorem 4.1 immediately implies that constructive dimension has the following countable sta-
bility property, which is also a property of classical Hausdorff dimension.

Corollary 4.2. For all Xy, X1, Xo,... C C,

cdim (U Xk> = sup cdim(Xy).

P keN

Our next objective is to prove a dimension reduction theorem that enables us to exhibit se-
quences of arbitrary AY-computable dimensions in [0,1].

Define an approzimator of a real number « € [0,1] to be an ordered pair (a,b) of computable
functions a,b : N — Z* with the following properties.

(i) For alln € N, a(n) < b(n).

(ii) Timy o0 ) = .

It is well known and easy to see that a real number « € [0, 1] has an approximator if and only if it
is AJ-computable. Moreover, every AJ-computable real number has an approximator (a,b) that is
nice in the sense that if we let b(k) = Zﬁ;é b(n), then b(k) = o(b(k)) as k — oco.
Given an approximator (a,b) of a AJ-computable real number « € [0,1], we define the (a, b)-
dilution function
9(ab) C—->C

as follows. Given S € C, if we write
S:wowlwg...,

where |w,| = a(n) for each n € N, then
9(a b)(S) = wOOb(U)fa(O)’UJlob(l)fa(l) R
Note that g(,)(S) =1-4 S for all S € C.

Theorem 4.3. Let a € [0,1) be AY-computable, and let (a,b) be a nice approzimator of a. Then
forall S € C,
dim(g(ayb)(S)) =a- dlm(S)

11



Proof. We first introduce some notation that will simplify the proof. Let (a,b) be a nice approxi-
mator of a. For each k € N, let

and note that _
a(k)

1m
k—o0 b(k-)

In addition to the dilution function g(4 ) : C — C, we use the function g : {0,1}* — {0,1}* defined
recursively as follows. First, g(A) = A. Next, if w = w'u, where |w'| = a(k) and 0 < |u| < a(k), then
g(w) = g(w')u. Finally, if w = w'u, where |w'| = @(k) and |u| = a(k), then g(w) = g(w’)u0bk)—ak),
Note that for all S € C, g(,)(S) is the unique 7' € C such that g(w) C T for all w E S. Note also
that the function g is one-to-one, so that the string g~!(y) is well defined for each y € range(g).

Now fix S € C and let 8 = dim(S). Our objective is to show that dim(g(, ;) (S)) = aB.

To see that dim(g,)(S)) < af, let s > f and t € (a, 1) be such that 2° and 2 are rational. It
suffices to show that dim(g, ) (5)) < st.

Since s > [, there is a constructive s-supergale dg that succeeds on S. Define a function
d:{0,1}* — [0,00) as follows. Let y € {0,1}*. If there does not exist T" € C such that y C g, (T),
then d(y) = 0. Otherwise, let w be the shortest string such that y C g(w). Then

d(y) = 25tW=slvlg g (w).

It is routine to check that d is an st-supergale, and it is clear that d is constructive. Also, for each
w € {0,1}*,

d(g(w)) = 2195wl g (w), (4.1)
Let e = “TO‘ and fix ky € N such that for all £ > k,
k ~
% <t —2¢e and b(k) < eb(k).

a(k)

(Such kg exists because o)
if we choose k and r such that |w| = a(k) +r and 0 <7 < a(k), and if k > ko, then we have

converges to « and the approximator (a, b) is nice.) For all w € {0,1}*,

stlg(w) = slwl = st(B(k) + 1) — s(@(k) +7)
= sth(k) — sa(k) — s(1 —t)r
> (k) s(t — 2€)b(k) — sr
= 2seb(k) — sr
> 2seb(k) — sb(k)
> seb(k).

Since € > 0 and S € S*°[ds], it follows by (4.1) that g, ;)(S) € S°[d]. Since d is a constructive st-
supergale, this establishes that dim(g(,)(S)) < st, concluding the proof that dim(g, (5)) < afB.
To see that dim (g, 4)(S)) > af, let s < aff be such that 2° is rational, and let d be a constructive
s-supergale. It suffices to show that g, ) (S) & S*[d].
Define a function d’ : {0,1}* — [0, 00) by

@ (w) = 2101 d g )

12



Using Lemma 3.3, it is easy to check that d’ is a constructive s-supergale. Since s < af3, we can
choose ¢t < (3 such that s < at and 2! is rational. The function d” : {0,1}* — [0, 00) defined by

d"(w) — 2(t—s)|w\dl(w)

is then a constructive t-supergale by Observation 3.2. Since t < 8 = dim(S), it follows that there
is a constant ¢ € N such that for all w C S, d"(w) < 2¢.

Let € = L(a — £), noting that this is positive because s < at. Fix kg € N such that for all
k > kUa

Sk B
k) o 5H€ 0 b(k) < B(k).
b(k) t

(Such kg exists because % converges to a, *f¢ < a, and the approximator (a,b) is nice.) Every

Y C g(ap)(S) can be written in the form y = g(w)u, where w C S, |w| = a(k), |g(w)| = b(k), and
|u| < b(k). For such y we have

d(y) 21 d(g(w)) < 2"Wd(g(w))

gb(k)=slul-+slaw)l g (1)

IA

2b(lc)+s|g(w)\—t\w|d//( )

2b(k)+sb( )—ta(k )dll( )

< 2b(lc)+sb(lc)— a(k)-i—c‘

If |y| > Z(ko), so that k& > kg, then we have
b(k) + sb(k) — ta(k) < eb(k) + sb(k) — (s + €)b(k) = 0,

whence

d(y) <2°

Since this holds for all sufficiently long prefixes y T g(q,)(S5), it follows that g, (S) ¢ S*[d],
concluding the proof that dim(g(,(S)) > apB. O

Notation. For each « € [0,1], let

DIM, = {S € C|dim(S) =
DIM<, = {S € C|dim(S)
DIM., = {S € C|dim(S)

af,
<a},
< aj.
Observation 4.4. RAND C DIM;.
Proof. This follows immediately from part 4 of Observation 3.7. O

An important result in the theory of random sequences is the existence of random sequences
in AY. We now use this fact and Theorem 4.3 to show that there are AJ sequences of every
AY-computable dimension in [0,1].

Theorem 4.5. For every AY-computable real number a € [0,1], DIM, N AY # 0, i.e., there is a
AY sequence S such that dim(S) = a.

13



Proof. Let a € [0, 1] be AY-computable. It is well known and easy to see that o has an approximator
(indeed, this characterizes AY-computability), and it is routine to transform an approximator of «
into a nice approximator (a,b) of a. It is well known (see [52, 53] or [24]) that there is a sequence
R € RANDNAY. Let S = 9(a,b)(R). Then Theorem 4.3 and Observation 4.4 tell us that

dim(S) = adim(R) = a.
U

Three remarks on the proof of Theorem 4.5 should be made here. First, the proof that RANDN
AY # () using Kreisel’s Basis Lemma [21, 52, 53, 33] and the fact that RAND is a X9 set cannot
directly be adapted to proving that DIM, N A # ) because Terwijn [51] has shown that DIM,
is not a X9 set. Second, Mayordomo [31] has recently generalized Chaitin’s Q construction [6] to
give an alternative construction of sequences in DIM,, N AY. Third, our proof of Theorem 4.5 via
Theorem 4.3 yields even more, namely, that if a, 8 € [0,1] are AS-computable with a > 3, then
every sequence in DIM,, is 1-truth-table-equivalent to some sequence in DIMg.

The following theorem shows that Theorem 4.5 cannot be improved to %9 or TIY sequences.

Theorem 4.6. 39 UTIY C DIM,.

Proof. Let S € X{. By symmetry, it suffices to show that dim(S) = 0. For this, let 0 < s € Q. It
suffices to show that dim(S) < s.

By standard techniques [34, 45], let Sy, S1,... be a sequence of elements of C with the following
properties.

(i) For each t, S; contains only finitely many 1’s.
(ii) For each t and n, Si[n] < Sip1(n].
(iii) For each n, S[n| = limy;_,o Si[n].
(iv) The set {(¢,n)|S¢[n] = 1} is computably enumerable.

That is, S; is the “¢'! finite approximation of S.”
Define a function d : {0,1}* — [0,00) as follows. First, d(A\) = 1. Next, assume that d(w) has
been defined, where |w| = (}) for some integer n > 1. For each u € {0,1}", define

25" d(w . n n
dy = { T EDSIE)-(3) ~ 1 =
0 otherwise,

noting that |wu| = (3) +n = ("3'). For each u such that 0 < |u| < n define

d(wu) = 275~ v) Z d(wuv).

[v]=n—lul

Since there are at most n + 1 strings u € {0,1}" for which d(wu) > 0, it is clear that d is an s-
supergale. It is also clear that d is constructive and that d succeeds on S, whence dim(S) <s. O

The rest of this section concerns the constructive dimensions of the dimension classes DIM <,
and DIM.,. We first note that for every o € [0,1], DIM<, is the largest set of constructive
dimension «.

14



Theorem 4.7. For every o € [0,1], the set DIM<, has the following two properties.
1. cdim(DIM<,) = a.
2. For all X C C, if cdim(X) < «, then X C DIMc,.

Proof. Part 1 follows immediately from Theorem 4.1, Theorem 4.5, and the fact that the AY-
computable reals are dense in R. Part 2 follows immediately from part 1 of Observation 3.7. [

Part 1 of Theorem 4.7 has the following immediate consequence.
Corollary 4.8. For every a € [0,1],
cdim(DIM,) = a.
We show in section 6 below that
cdim(DIM,) = «

for all reals « € [0, 1].

5 Dimensions of Individual Strings

In the preceding two sections we have constructivized classical Hausdorff dimension and thereby
defined the dimensions of individual infinite binary sequences. We now push this one step further
by constructivizing and discretizing classical Hausdorff dimension in order to define the dimensions
of individual finite binary strings.

Recall that the dimension of a sequence S is the infimum of all s > 0 for which there exists
a constructive s-supergale d such that the values of d(S[0..n — 1]) are unbounded as n — co. To
define the dimensions of finite strings, we modify this definition in three ways.

1. We replace supergales by termgales, which are supergale-like constructs with special require-
ments for handling the terminations of strings.

II. We replace “unbounded as n — co” by a finite threshold.
ITI. We make the definition universal by using an optimal constructive termgale.

We now carry out this development.

Supergales are well suited to defining the dimensions of infinite sequences, but an adequate
definition of the dimensions of finite strings must also involve betting on the point at which a given
string terminates. We use the termination symbol [ to mark the end of a binary string. We work
in the set

T = {0,1}* U{0,1}"0,

consisting of all terminated binary strings (elements of {0,1}*J) and prefixes thereof. The following
definition is the main idea of this section.

Definition. For s € [0,00), an s-termgale is a function
d:T —[0,00)
such that d()\) < 1 and for all w € {0,1}*,
d(w) > 2" *[d(w0) + d(wl) + d(wO)]. (5.1)
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An s-termgale d is a strategy for betting on the successive bits of a binary string and also on
the point at which the string terminates. We require the initial capital d(\) to be at most 1. When
d is used to bet on a string w, the final capital is d(w().

The payoff condition (5.1) may at first glance seem suspicious. In the case s = 1, this says that

d d(wl) + d(wO
d(w) > (w0) + (u2f ) + d(wd) (5.2)
for all w € {0,1}*. If each of 0, 1, and O is equally likely to occur, independently of all prior
bits, then (5.2) implies that the conditional expected capital after a bet, given that w has occurred

before the bet, is

d(w0) + d(wl) + d(wD) _ gd(w),
3 3
whence the payoffs are much less than fair, even if equality holds in (5.2). However, the assumption
that 0, 1, and [ are equally likely to occur is not reasonable because it forces strings to be very short
with overwhelming probability. (In fact, this assumption implies that the average string is only
two bits long. In contrast, the average length of a string with respect to the optimal constructive
subprobability measure m is infinite.) Since we want our theory to apply to long strings, the
termination symbol [ should be regarded as having a vanishingly small probability.

The 1-termgale payoff condition (5.2) is exactly the supermartingale (i.e., 1-supergale) payoff
condition with the additional requirement that the 1-termgale must without compensation divert
some of its capital to bet on [, i.e., the possibility that there is no next bit. Since O can only occur
once, the overall impact of this requirement is modest. However, the impact is real, and we shall
see that it is exactly what is needed.

Example 5.1. Define d : T — [0,00) by the recursion

It is clear that d is a 1-termgale. If w is a binary string of length n with ny 0’s and n; 1’s, then

s = @yt
9no(1+log3)—2(n+1)
In particular, if ng is significantly larger than ﬁ(n +1) = 0.7737(n + 1), then d(wO) is signifi-

cantly greater than d()\) even though d loses three-fourths of its capital when the O appears.
The following analog of Observation 3.2 is obvious but useful.
Observation 5.2. Let d,d : T — [0,00) and s,s" € [0,00). If
27512l (z) = 2712l d' (z)
for all x € T, then d is an s-termgale if and only if d' is an s'-termgale.
In particular, if d is a O-termgale and s € [0, 00), then the function d’ defined by
d'(z) = 2°1*ld(z)

for all z € T is an s-termgale, and every s-termgale can be obtained from a O-termgale in this way.
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Lemma 5.3. If s € [0,00) and d is an s-termgale, then for all u € {0,1}*,

> 27 ld(uwD) < 2°d(u). (5.3)
we{0,1}

Proof. For the first part of the proof, assume that d is a 0-termgale, and let v € {0,1}*. We begin
by using induction on m to show that

Z d(uvw) Z d(uw) < d(u) (5.4)

we{0,1}<m we{0,1}™

for all m € N. For m = 0, this is trivial. Assume that it holds for m. Then

Z d(vwd) + Z d(uw)

we{0,1}<m+1 we{o 1}m+l

= Z d(uwlT) Z d(uwld) Z [d(uw0) + d(uwl)]
we{0,1}<m we{o 1}m we{0,1}m

< Z d(uwld) Z d(uw)
we{0,1}<m we{0,1}™

< d(u)

by the induction hypothesis. This confirms that (5.4) holds for all m € N. It follows immediately
that

> duwD) < d(u)
we{0,1}<m
for all m € N, whence
> duwD) < d(u).
we{0,1}*
This is the case s = 0 of (5.3).

Now assume that d is an s-termgale, where s € [0,00) is arbitrary. Define d' : T — [0, 00) by

d'(z) = 27°1*ld(z) for all z € T. Then d' is a O-termgale by Observation 5.2, so the first part of
this proof tells us that for all u € {0, 1}*,

Z 250l g(uw) = 2°M0 Z d' (uw)

we{0,1}* we{0,1}
QS‘UD‘dl (U)
= 2%d(u).

IA

To define optimal termgales we need uniformity in the parameter s.

Definition. 1. A termgale is a family d = {d®)|s € [0, 00)} such that each d®) is an s-termgale
and for all s,s" € [0,00) and z € T,

275121 q(9) () = 2751210 ().

2. A termgale d is constructive if d(°) is constructive.
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Definition. A constructive termgale d is optimal if for every constructive termgale d there is a
constant o > 0 such that for all s € [0,00) and w € {0,1}*, d®)(wO) > ad® (wO).

Definition. The termgale induced by a subprobability measure p on {0,1}* is the family d[p] =
{d[p]®)|s € [0,00)}, where each d[p](*) : T — [0, 00) is defined by

dlp]®)(z) =271 N~ p(w)
we{0,1}*
xCwO

forallz e T.

Theorem 5.4. If p is an optimal constructive subprobability measure on {0,1}*, then d[p] is an
optimal constructive termgale.

Proof. Assume the hypothesis. It is clear that d[p] is a constructive termgale. To see that d[p] is
optimal, let d = {d(®)|s € [0,00)} be an arbitrary constructive termgale. Define p : {0,1}* — [0, 00)
by p(w) = d© (w) for all w € {0,1}*. By Lemma 5.3 (with u = )), p is a subprobability measure
on {0,1}*, and p is constructive because d is constructive. It follows by the optimality of p that
there exists @ > 0 such that p(w) > ap(w) for all w € {0,1}*. Then for all s € [0,00) and
w € {0,1}*,

dp]® (wD) = 2°*"Ip(w)
2s|wD| (w)
2s|wD|ad(0)( )
ad® (wO),

v

so d[p] is optimal. O

Corollary 5.5. There exists an optimal constructive termgale.

Proof. This follows immediately from Theorems 5.4 and 2.1. U
We can now implement the ideas I, I, and III described at the beginning of this section.

Definition. If d is a termgale, | € Z*, and w € {0,1}*, then the dimension of w relative to d at
significance level | is

dim),(w) = inf{s € [0,00) | d®) (wO) > I}.
We write dimg(w) for dim)(w).

Theorem 5.6. Ifcz s an optimal constructive termgale, then for every constructive termgale d and
every | € Z™, there is a constant y € [0,00) such that for all w € {0,1}*,

Y
1+ |w|

dimfi(w) < dimg(w) +

(5.5)
Proof. Let d be an optimal constructive termgale, let d be an arbitrary constructive termgale, and
let I € Z". By the optimality of d, there is a constant o € (0, 1] such that for all s € [0,00) and
w € {0,1}*, d®)(w0) > ad® (wd). Let v = log! — log o, and note that v € [0,00). Let w € {0,1}*

be arbitrary. To see that (5.5) holds, let s > dimg(w) + 1+‘w| It suffices to show that d(®) (w() > I.
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Let s; = s — —1—. Then s; > dimg(w), so

T+|w|*
d®(wh) > ad®(wD)
— a2(5*51)|w5|d(51)(wm)
= a27d")(wD)
> a2’
= 1l

O

Corollary 5.7. If d~1 and ciz are optimal constructive termgales and ly,ly € Z™, then there is a
constant « € [0,00) such that for all w € {0,1}*,

. TR (07
dlmd~1 (w) dlmjz(w) < Tl

Corollary 5.7 says that if we base our definition of dimension on an optimal constructive termgale
d, then both the particular choice of d and the choice of a significance level | have negligible
impact on the dimension dimfi(w). We thus fix an optimal constructive termgale dg and define the
dimensions of finite strings as follows.

Definition. The dimension of a string w € {0,1}* is
dim(w) = dimg (w).

We have seen that the dimension of a sequence is at most 1. In contrast, we will see in section
6 that the dimension of a string may exceed 1. However, regardless of our choice of d, there is an
upper bound on the dimension of strings.

Lemma 5.8. There is a constant ¢ € N such that for all w € {0,1}*, dim(w) < c.
Proof. For each s € [0, 00), define d®) : T — [0, 00) by

2(-2lel+1if 4 € {0,1}*0,

and let d = {d®)|s € [0,00)}. Tt is easy to see that d is a constructive termgale and d? (wO) = 2
for all w € {0, 1}*, whence dimg(w) < 2 for all w € {0,1}*. It follows by Theorem 5.6 that there is
a constant v € [0, 00) such that for all w € {0,1}*,

vy
< 2+ 7.
T+ =77

dim(w) <2+
Thus the present lemma holds with ¢ = 2 + [v]. O

We conclude this section by characterizing the dimension of a sequence in terms of the dimen-
sions of its finite prefixes.

Theorem 5.9. For all S € C,

dim(S) = liminf dim(S[0..n — 1]).

n—oo
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Proof. Let S € C. To see that dim(S) < liminf, o dim(S[0..n — 1]), let s and s’ be rational
numbers such that s > s > liminf,, o, dim(S[0..n — 1]). It suffices to show that dim(S) < s’. By
our choice of s, there is an infinite set J C N such that for all n € J, dim(S[0..n — 1]) < s, whence

d%)(S[0..n — 1]0) > 1. Define d' : {0,1}* — [0,00) by d'(w) = d%" (w) for all w € {0,1}*. Then d’
is a constructive s’-supergale and for all n € .J,
d(S[0.n—1]) = d¥(S[0.n— 1))
= 26=9mq (g0 — 1))

2(s'=5)n9=5d(*) (5[0..n, — 1)00)
2(5’—s)n—s‘

VALY

Since J is infinite, this implies that S € S*°[d’], whence dim(S) < s'.

To see that dim(S) > liminf, . dim(S[0..n — 1]), let s’ and s” be rational numbers such
that s’ > s” > dim(S). It suffices to show that there exist infinitely many n € N for which
dim(S[0..n—1]) < §'. Since s” > dim(S), there is a constructive s”-supergale d such that S € S*[d].
Define d' : T — [0, 00) by

() = d(z) if z € {0,1}*
= (25" —28")d(w) if z = wO € {0,1}*0.

Then d' is a constructive s'-termgale, so if for each s € [0,00) we define d®) : T — [0,00) by
d®(z) = 26=51#ld' (z), then the family d = {d®)|s € [0,00)} is a constructive termgale. Tt
follows by the optimality of d that there is a constant « > 0 such that for all s € [0,00) and
w € {0,1}*, d(Ds)(wD) > ad® (wd). Since S € S°[d], there are infinitely many n € N such that
a(2°" —25")d(S[0..n. — 1]) > 1. For all such n we have

d®)(s[0.n - 1)) > ad®(S[0..n — 1]0)
= ad'(S[0..n —1]0)
= a2 —2°)d(5[0.n — 1))
> 1,

whence dim(S[0..n — 1]) < & O

6 Dimension and Kolmogorov Complexity

In this section we show that the Kolmogorov complexity of a string is (up to an additive con-
stant) the product of its length and its dimension. We use this to derive a new proof of a recent
characterization of the dimension of a sequence in terms of the Kolmogorov complexities of its
prefixes. This latter result is used to establish the existence of sequences of all dimensions in [0,1].
We also review some previous work on martingales, supermartingales, Kolmogorov complexity, and
Hausdorff dimension.

Theorem 6.1. There is a constant ¢ € N such that for all w € {0,1}*,

K(w) — |w|dim(w)| < c.
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Proof. Let m be the optimal subprobability measure on {0, 1}* from Theorem 2.1. The key fact is
that for all w € {0,1}* and s € [0, 0),

dm]®(wd) >1 < 22Um(w) > 1
1 1

= s> lo ,
1+ |w] gm(w)

SO
1 1

dim gy (w) = T+ o] log m(w)’

This implies that

log m(lw) = (1 + |w|)dim gppy) (w). (6.1)

To complete the proof, fix constants cg, c1,c2 € N such that for all w € {0,1}*,

K(w) — log ! < ¢, (6.2)
m(w)
. C1
|dim ) (w) — dim(w)| < T[]’ (6.3)
and
dim(w) < co. (6.4)

(The constants ¢y and cg exist by Theorem 2.2 and Lemma 5.8, respectively. The constant ¢; exists
by Theorem 5.4 and Corollary 5.7.) Let ¢ = ¢y + ¢1 + ¢2. Then for all w € {0,1}*, (6.1) and (6.3)
tell us that

log ﬁ — (1 + w|)dim(w)| < e, (6.5)
and (6.4) tells us that
|(1+ |w|)dim(w) — |w|dim(w)| < co. (6.6)

By (6.2), (6.5), (6.6), and the triangle inequality, we have
|K (w) — |w|dim(w)| < ¢
for all w € {0,1}*. O

While Theorem 6.1 establishes a very close connection between K (w) and dim(w), it should be
noted that the “self-delimiting” features of the definitions of K (w) and dim(w) are very different.
A Turing machine used to define K(w) is self-delimiting in that it is required to detect (halt at)
the end of a program 7 for w, while a termgale used to define dim(w) is required to detect (bet on)
the end of the string w itself.

In addition to giving a new characterization of Kolmogorov complexity, Theorem 6.1 enables us
to derive bounds on dimension from known bounds on Kolmogorov complexity. For example, we
have the following. (Note: dim(|w]|) is dim(z), where z is the |w|"" string in a standard enumeration
of {0,1}*.)

Corollary 6.2. There exist constants c1,ca € N with the following properties.

1. For all w € {0,1}F, dim(w) < 1+ B gim(jw|) + <

|
|w] [w]*
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2. For allm € Z" and r € N, if we choose w € {0,1}" according to the uniform probability
measure on {0,1}", then

|
Pr | dim(w) > 1+ 2212 gim(u) - L] > 120,
|w] |w]
Proof. This follows immediately from Theorem 6.1 and Theorem 3.3.1 of [24]. O

Thus typical strings w of length n satisfy
1 1
dim(w) =1+ %dim(n) +0 (E) .

It follows readily that dim(w) often exceeds 1.
Theorem 6.1 characterizes Kolmogorov complexity in terms of dimension. We use this to give
a new proof of a recent characterization of the dimensions of sequences.

Theorem 6.3. (Mayordomo [31]) For all S € C,

K .n—1
dim(8) = lim inf Z0-n = 1)),
n—00 n
Proof. By Theorem 6.1,
tim inf G0 =1 g dim(S[0.n — 1),
n— 00 n n—00
so the theorem follows by Theorem 5.9. O

It should be noted here that Mayordomo proved Theorem 6.3 to improve the weaker result

lim inf K(S[0.n = 1)) < dim(S) < limsup K(S[0.n = 1)) 1]),
n—00 n n—oo n
which appeared in an early version [28] of the present paper that lacked (among other things)
section 5 and the foregoing part of section 6. As noted in the discussion at the end of this section,
Mayordomo’s theorem can, in turn, be used in conjunction with older results to give alternative
proofs of other results in the present paper.
We can now give an easy proof that there exist sequences of all dimensions in [0,1].

Theorem 6.4. For every a € [0,1], DIM,, # 0.

Proof. Let a € [0,1]. If « = 0 or @ = 1, then DIM,, # 0 by Theorem 4.6 or Observation 4.4,
respectively, so assume that o € (0,1). Let R € RAND, and let S be the sequence constructed by
the following nonterminating, noncomputable procedure.

for n:=0 to oo do
Sin] :=if K(S[0..n —1]) < an then R[n] else 0

Every sequence of the form R’ = wR[|w|..c0) is random and thus satisfies 1 K (R'[0..n — 1]) — 1 as
n — 00 [24]. On the other hand, every sequence of the form 7" = w0 satisfies K (T'[0..n—1]) = o(n)
as n — oo [24]. Finally, it is well-known that there is a constant ¢ € N such that for all w € {0, 1}*
and b € {0,1}, |K(wb) — K(w)| < c. These three things together imply that the sequence S satisfies
K(S[0.n —1
lim —( [0-n — 1]) = q,

n—00 n

whence S € DIM, by Theorem 6.3. O
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Corollary 6.5. For every a € [0,1],
cdim(DIM,) = a.
Proof. This follows immediately from Theorems 4.1 and 6.4. U

We conclude this section by discussing some earlier work relating martingales, supermartingales,
and Kolmogorov complexity to Hausdorff dimension. Schnorr [40, 42] defined a martingale d to
have exponential order on a sequence S if

lim sup log d(S]0..n — 1])

n— 00 n

>0 (6.7)

and proved that no computable martingale can have exponential order on a Church-stochastic
sequence. Terwijn [51] has noted that (6.7) is equivalent to the existence of an s < 1 for which the
s-gale d®) (w) = 265-DIvld(w) succeeds on S. Thus, in the terminology of [27], Schnorr’s result says
that the set {S} has computable dimension 1 for every Church-stochastic sequence S.

Ryabko [35] proved that

dimy ({S

and Cai and Hartmanis [3] proved that
dimy ({S lim inf 2300 = 1) a}> =« (6.9)

n—00 n
for all « € [0,1]. In light of Theorem 6.3, (6.8) and (6.9) say that dimy(DIM<,) = o and
dimg (DIM,) = «, so (6.8) and (6.9) can be regarded as classical analogs of Theorem 4.7(1) and
Corollary 6.5, respectively. Note also that Theorem 6.4 follows immediately from (6.9) and Theorem
6.3.

Ryabko [36] proved that

lim inf 2500 = 1) a}> = a, (6.8)

n—00 n

dimy (X) < sup { lim infw‘ S e X} (6.10)

n—+00 n

for all X C C, and Staiger [48] established the existence of sets X C C for which

dimp(X) < Sup{limsupw‘ Se X} . (6.11)

n—00 n

By Theorems 4.1 and 6.3, (6.10) can now be seen as a statement of Observation 3.7(2).
Ryabko [38] and Staiger [49] defined the ezponent of increase of a martingale d on a sequence

S to be the number loz d( 50 )
Aq(S) = limsup og d(S[0..n = ]), (6.12)

n—00 n

which is the left-hand side of (6.7). (We are using Staiger’s notation here.) Both papers paid
particular attention to the quantity

A(S) = sup{Aq(5)|d is a computable martingale}. (6.13)
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By Terwijn’s above-mentioned observation, 1 — A(S) is precisely the computable dimension of {S}
in the terminology of [27]. Ryabko [38] proved that

A(S) <1 ~lim ing K807 —1])

n—00 n

(6.14)

for every sequence S. By Theorem 6.3, we can now regard (6.14) as stating that dim(S) is no
greater than the computable dimension of {S}. Ryabko [38] also proved that

dimpg({S|A(S) > a}) =1—-a (6.15)

for all @ € [0,1]. This is yet another analog of Theorem 4.7(1), saying that for all « € [0, 1] the set
DIMZP, consisting of all sequences S such that the computable dimension of {S} is at most «, has
Hausdorff dimension . (Note: The earlier paper [37] proved results similar to (6.14) and (6.15),
but with A(S) replaced by a different quantity, which we may call X\’'(S), in which the algorithm
for the martingale is only required to halt on inputs of the form w, w0, or w1l for prefixes w of S.
It is easy to see that A’'(S) is bounded below by A(S) and above by 1 — dim(S).)

Staiger [49] provided even more insights. If d = d® is the optimal constructive supermartingale
of Theorem 3.6 above, then Staiger’s Aq(S) is exactly 1 — dim(S). He proved that

n—00 n

dimy (X) = sup { lim infw‘ S e X} (6.16)

for every 39 set X C C. In light of Theorems 4.1 and 6.3, this is equivalent to the result by
Hitchcock [16], mentioned in section 4 above, that cdim(X) = dimy(X) for every 9 set X C C.
(It should be noted however, that the Staiger and Hitchcock results both preceded the Mayordomo
[31] proof of Theorem 6.3 and that Hitchcock’s result holds for arbitrary unions of 1Y sets.) Staiger
[49] also proved that

sup { Sug‘( Ad(S)‘ d is a computable martingale} =1 —dimg(X) (6.17)

for every $.9 set X C C. It is now easy to see that this is equivalent to the result by Hitchcock [16]
that the computable dimension of a XY set X C C is precisely its Hausdorff dimension. Finally,
Staiger [49] characterized Hausdorff dimension in terms of entropy rates, and Staiger [50] gave an
enjoyable exposition of his and Ryabko’s results in terms of an infinite game.

This brief review does not exhaust the results of the cited papers, but it does indicate the
emergence of a rich network of relationships among martingales, supermartingales, Kolmogorov
complexity, Hausdorff dimension, constructive dimension, and computable dimension.

7 Dimension and Biased Randomness

We now investigate the dimensions of sequences that are random relative to computable sequences
of convergent biases. We first recall two known theorems concerning such sequences.
Given a bias sequence 5 = (fo,f1,P2,...), we write RANDE for the set RANDME (defined

in section 3) of all sequences that are random relative to the g—coin—toss probability measure ,ug
(defined in section 2). For each nonempty string w € {0,1}*, let

#(1, w)

|w]

freq(w) =

)
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where #(b, w) is the number of times the bit b occurs in w. For each § € [0, 1], we define the set

FREQ; = {S € C

lim freq(S[0..n —1]) = ﬁ} .
n—oo
The following well-known theorem is a constructive version of the strong law of large numbers.

Theorem 7.1. (folklore) Ifg is a computable sequence of biases that converge to B € [0,1], then
RANDE C FREQg.

Definition. Two sequences of biases ﬁ and ,B” are square-summably equivalent, and we write ﬁ a2
B 35720 (Bi — B7)? < oo
The next theorem is a constructive version of a classical theorem of Kakutani [17].

Theorem 7.2. (van Lambalgen [52, 53], Vovk [54]) Let B and ' be computable sequences of biases
that converge to 5 € (0,1).

1. If B~2 ', then RAND 5=RAND;,.
2. If B#2 ', then RAND; NRAND;, = 0.

It is well-known (and easy to see) that a real number is AY-computable if and only if it is
the limit of a computable sequence of reals. Thus Theorems 7.1 and 7.2 tell us that for each
AY-computable bias 3 € (0,1), the set FREQg contains infinitely many disjoint sets of the form

RAND z, where B is a computable sequences of biases converging to 5. This section is concerned
with the dimensions of the sequences in these sets RAND 5 Our main result uses three lemmas.
Our first lemma follows immediately from a result in [27], but it is central to our development
and a direct proof is brief, so we give it here. Recall the notation Egg(c), the binary entropy
function # (), and the binary Kullback-Leibler divergence D(/3 || «) discussed in section 2.

Lemma 7.3. For all § € [0,1], cdim(FREQg) < H(B).

Proof. Let 5 € [0,1], and let s be a rational number with s > #H(3). It suffices to show that
cdim(FREQg) < s.
Let € = i,fﬁ). Fix a rational number r € (0,1) such that

DB r) <e. (7.1)

Define d : {0,1}* — [0,00) by the recursion

d(w0) = 2%(1 — r)d(w),
d(wl) = 2°rd(w).

It is clear that d is a constructive s-gale.
To see that FREQg C S®[d], let S € FREQg. For all n € Z%, let w, = S[0..n — 1] and
pn = freq(wy). Since S € FREQg, there exists ng € 7+ such that for all n > nyg,

H(pn) <H(P) +€ (7.2)
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and
D(pn || 7) <D(B ) +e (7.3)

For all n € Z1 we have
d(wy,) = 25n7«#(1,wn)(1 _ T)#(O,wn),

S0
logd(w,) = n[s+ pylogr+ (1 - py)log(l —r)]
= n [3 - E,, log E]
= n[s Epnlog( >]
— n[s— H(pw) = Dipn | 1)]-
It follows by (7.1), (7.2), and (7.3) that for all n > ny,
log d(wy,) > n[s — H(B) — 3¢] = en.
Thus S € S*°[d]. This shows that FREQz C S*°[d], whence cdim(FREQg) < s. O

Besicovitch [1] proved that dimp(FREQ< ) = #H(B) for all 8 € [0, 3], where

n—o0

FREQ. 4 = {S €C

lim sup freq(S[0..n — 1]) < ﬁ} .

Good [13] conjectured that the limit superior could be replaced by a limit here, thus obtaining
dimy(FREQg) = H(B) for all § € [0,1]. Eggleston [9] (see also [2, 11]) proved Good’s conjecture.
The following corollary is a constructive version of Eggleston’s theorem.

Corollary 7.4. For all § € [0,1], cdim(FREQg) = H ().

Proof. This follows immediately from Lemma 7.3, Eggleston’s above-mentioned result, and Obser-
vation 3.7(2). O

Our second lemma, gives an asymptotic estimate of log ,ug (S[0..n — 1]) when B converges to
B € (0,1) and S has limiting frequency S.

Lemma 7.5. If,g is a bias sequence that converges to (8 € (0,1), then for all S € FREQg,
log 112 (S[0..n — 1]) = —H(B)n + o(n)
as m — 00.

Proof. Using the abbreviations

{log(l —B;) ifS[i]=0

T log s it STl = 1
S log(l —p) if S[i]=0
C | log(B) if S[i] =1,

ap, = freq(S[0..n — 1)),
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the hypothesis tells us that

n—1
log 1 (S[0.n —1]) = Z Ti
1=0

n—1
= ) (ri+o(1)
i=0
n—1
= (Z ﬂ) + o(n)
i=0
= n[(l - ay,)log(l — ) + a,log B] + o(n)
— (1 - B~ o(1)) log(1 — B) + (8 + o(1)) log 8] + o(n)
= —H(B)n+ o(n)
as m — oo. U

Our third lemma is the crucial one. Its brief proof uses a natural transformation of an s-
supergale to a S-supermartingale.

Lemma 7.6. If,g is a computable sequence of biases that converge to f € (0,1), then for every
computable s € [0,H(B)) and every constructive s-supergale d, the set S°°[d] has constructive [3-
measure 0.

Proof. Let E, B, s, and d be as given. By Theorem 7.1, the set FREQg has constructive g—measure
1, so it suffices to show that the set S°°[d] N FREQ4 has constructive B-measure 0. Let
o(w) = 275ld(w)

for all w € {0,1}*. By Observation 3.2, o is a 0-supergale. Since d is constructive and s and E are
computable it follows that the function
d =

EL| Q

1

is a constructive g—supermartingale.
Now let S € FREQg, and for each n € N, let w,, = S[0..n — 1]. Since s < H(f), Lemma 7.5
tells us that for sufficiently large n € N,

sn + log ,ug(wn) <0,

whence
) = — 20 ).
257 1P (wy,)
This shows that S*°[d]NFREQg C S*°[d']. Thus d' testifies that S*°[d] "FREQp has constructive
B-measure 0. O

By Lemma 7.3 every sequence in FREQg has dimension at most #(f). This upper bound is
not in general tight. For example, if 8 is AY-computable, it is easy to see that there are sequences
of dimension 0 in FREQg. Nevertheless, the following theorem says that the upper bound H(8) is

achieved by every sequence in each of the sets RAND Fi for which 5 is computable and converges to

8.
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Theorem 7.7. Ifg is a computable sequence of biases that converge to 5 € (0,1) and R € RANDE,
then dim(R) = H(B).

Proof. Assume the hypothesis. By Theorem 7.1 and Lemma 7.3, dim(R) < H(B). To see that
dim(R) > H(p), let s € [0,H(5)) be computable, and let d be a constructive s-supergale. By
Lemma 7.6, S°°[d| has constructive B-measure 0. Since R € RAND 7 this implies that R ¢ S*°[d].
Since this holds for all computable s € [0, H(/3)) and all constructive s-supergales d, it follows that
dim(R) > H(B). 0

Note that Observation 4.4 is exactly the case B = (%, %, %, ...) of Theorem 7.7. Note also that
Theorem 7.7 can be used to give a second (albeit less informative) proof of Theorem 4.5.

1

Computable bias sequences that converge slowly to 5 have played an important role in the

investigation of stochasticity versus randomness. First, Theorem 7.2 implies that if F is a bias
sequence such that » (8 — %)2 = 00, then RANDF N RAND = (. Also, van Lambalgen

[52, 53] proved that if F is any computable bias sequence that converges to %, then every element
of RAND? is Church-stochastic. Taking F to converge to %, but to do so slowly enough that
>2o(Bi — %)2 =00 (e.g., B = % + ﬁ), this gave a new proof that not every Church-stochastic
sequence is random. More significantly, Shen’ [44] strengthened van Lambalgen’s latter result by
showing that if F is any computable bias sequence that converges to %, then every element of
RAND? is Kolmogorov-Loveland stochastic. Again taking F to converge to % slowly enough that
S 0(Bi—3)? = 00, this allowed Shen’ to conclude that not every Kolmogorov-Loveland stochastic

sequence is random, thereby solving a twenty-year-old problem of Kolmogorov [18, 20] and Loveland
[25, 26]. Theorems 7.7 and 7.2 have the following immediate consequence concerning such sequences

Corollary 7.8. If ﬁ 15 a computable sequence of biases that converge to % slowly enough that
>i2o(Bi — 3)% = oo, then
RANDE} C DIM; — RAND.

That is, every sequence that is random with respect to such a bias sequence F is an example
of a sequence that has dimension 1 but is not random.
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