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Abstract

If S is an infinite sequence over a finite alphabet Σ and β is a probability measure on Σ, then
the dimension of S with respect to β, written dimβ(S), is a constructive version of Billingsley
dimension that coincides with the (constructive Hausdorff) dimension dim(S) when β is the
uniform probability measure. This paper shows that dimβ(S) and its dual Dimβ(S), the strong
dimension of S with respect to β, can be used in conjunction with randomness to measure the
similarity of two probability measures α and β on Σ. Specifically, we prove that the divergence
formula

dimβ(R) = Dimβ(R) =
H(α)

H(α) +D(α||β)
holds whenever α and β are computable, positive probability measures on Σ and R ∈ Σ∞ is
random with respect to α. In this formula, H(α) is the Shannon entropy of α, and D(α||β) is the
Kullback-Leibler divergence between α and β. We also show that the above formula holds for all
sequences R that are α-normal (in the sense of Borel) when dimβ(R) and Dimβ(R) are replaced
by the more effective finite-state dimensions dimβ

FS(R) and DimFS
β(R). In the course of proving

this, we also prove finite-state compression characterizations of dimβ
FS(S) and DimFS

β(S).

1 Introduction

The constructive dimension dim(S) and the constructive strong dimension Dim(S) of an infinite
sequence S over a finite alphabet Σ are constructive versions of the two most important classical
fractal dimensions, namely, Hausdorff dimension [9] and packing dimension [22, 21], respectively.
These two constructive dimensions, which were introduced in [13, 1], have been shown to have the
useful characterizations

dim(S) = lim inf
w→S

K(w)
|w| log |Σ|

(1.1)

and
Dim(S) = lim sup

w→S

K(w)
|w| log |Σ|

, (1.2)

where the logarithm is base-2 [16, 1]. In these equations, K(w) is the Kolmogorov complexity of the
prefix w of S, i.e., the length in bits of the shortest program that prints the string w. (See section
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2.6 or [11] for details.) The numerators in these equations are thus the algorithmic information
content of w, while the denominators are the “naive” information content of w, also in bits. We thus
understand (1.1) and (1.2) to say that dim(S) and Dim(S) are the lower and upper information
densities of the sequence S. These constructive dimensions and their analogs at other levels of
effectivity have been investigated extensively in recent years [10].

The constructive dimensions dim(S) and Dim(S) have recently been generalized to incorporate
a probability measure ν on the sequence space Σ∞ as a parameter [14]. Specifically, for each
such ν and each sequence S ∈ Σ∞, we now have the constructive dimension dimν(S) and the
constructive strong dimension Dimν(S) of S with respect to ν. (The first of these is a constructive
version of Billingsley dimension [2].) When ν is the uniform probability measure on Σ∞, we have
dimν(S) = dim(S) and Dimν(S) = Dim(S). A more interesting example occurs when ν is the
product measure generated by a nonuniform probability measure β on the alphabet Σ. In this case,
dimν(S) and Dimν(S), which we write as dimβ(S) and Dimβ(S), are again the lower and upper
information densities of S, but these densities are now measured with respect to unequal letter
costs. Specifically, it was shown in [14] that

dimβ(S) = lim inf
w→S

K(w)
Iβ(w)

(1.3)

and
Dimβ(S) = lim sup

w→S

K(w)
Iβ(w)

, (1.4)

where

Iβ(w) =
|w|−1∑
i=0

log
1

β(w[i])

is the Shannon self-information of w with respect to β. These unequal letter costs log(1/β(a)) for
a ∈ Σ can in fact be useful. For example, the complete analysis of the dimensions of individual
points in self-similar fractals given by [14] requires these constructive dimensions with a particular
choice of the probability measure β on Σ.

In this paper we show how to use the constructive dimensions dimβ(S) and Dimβ(S) in conjunc-
tion with randomness to measure the degree to which two probability measures on Σ are similar.
To see why this might be possible, we note that the inequalities

0 ≤ dimβ(S) ≤ Dimβ(S) ≤ 1

hold for all β and S and that the maximum values

dimβ(R) = Dimβ(R) = 1 (1.5)

are achieved whenever the sequence R is random with respect to β. It is thus reasonable to hope
that, if R is random with respect to some other probability measure α on Σ, then dimβ(R) and
Dimβ(R) will take on values whose closeness to 1 reflects the degree to which α is similar to β.

This is indeed the case. Our first main theorem says that the divergence formula

dimβ(R) = Dimβ(R) =
H(α)

H(α) +D(α||β)
(1.6)
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holds whenever α and β are computable, positive probability measures on Σ and R ∈ Σ∞ is random
with respect to α. In this formula, H(α) is the Shannon entropy of α, and D(α||β) is the Kullback-
Leibler divergence between α and β. When α = β, the Kullback-Leibler divergence D(α||β) is 0, so
(1.6) coincides with (1.5). When α and β are dissimilar, the Kullback-Leibler divergence D(α||β)
is large, so the right-hand side of (1.6) is small. Hence the divergence formula tells us that, when
R is α-random, dimβ(R) = Dimβ(R) is a quantity in [0, 1] whose closeness to 1 is an indicator of
the similarity between α and β.

The proof of (1.6) serves as an outline of our other, more challenging task, which is to prove
that the divergence formula (1.6) also holds for the much more effective finite-state β-dimension
dimβ

FS(R) and finite-state strong β-dimension DimFS
β(R). (These dimensions, defined in section

2.5, are generalizations of finite-state dimension and finite-state strong dimension, which were
introduced in [6, 1], respectively.)

With this objective in mind, our second main theorem characterizes the finite-state β-dimensions
in terms of finite-state data compression. Specifically, this theorem says that, in analogy with (1.3)
and (1.4), the identities

dimβ
FS(S) = inf

C
lim inf
w→S

|C(w)|
Iβ(w)

(1.7)

and
dimβ

FS(S) = inf
C

lim sup
w→S

|C(w)|
Iβ(w)

(1.8)

hold for all infinite sequences S over Σ. The infima here are taken over all information-lossless finite-
state compressors (a model introduced by Shannon [20] and investigated extensively ever since) C
with output alphabet 0, 1, and |C(w)| denotes the number of bits that C outputs when processing
the prefix w of S. The special cases of (1.7) and (1.8) in which β is the uniform probability measure
on Σ, and hence Iβ(w) = |w| log |Σ|, were proven in [6, 1]. In fact, our proof uses these special
cases as “black boxes” from which we derive the more general (1.7) and (1.8).

With (1.7) and (1.8) in hand, we prove our third main theorem. This involves the finite-state
version of randomness, which was introduced by Borel [3] long before finite-state automata were
defined. If α is a probability measure on Σ, then a sequence S ∈ Σ∞ is α-normal in the sense of
Borel if every finite string w ∈ Σ∗ appears with asymptotic frequency α(w) ∈ S, where we write

α(w) =
|w|−1∏
i=0

α(w[i]).

(See section 2.6 for a precise definition of asymptotic frequency.) Our third main theorem says that
the divergence formula

dimβ
FS(R) = DimFS

β(R) =
H(α)

H(α) +D(α||β)
(1.9)

holds whenever α and β are positive probability measures on Σ and R ∈ Σ∞ is α-normal.
In section 2 we briefly review ideas from Shannon information theory, classical fractal dimen-

sions, algorithmic information theory, and effective fractal dimensions that are used in this paper.
Section 3 outlines the proofs of (1.6), section 4 outlines the proofs of (1.7) and (1.8), and section
5 outlines the proof of (1.9). Various proofs are consigned to a technical appendix.

3



2 Preliminaries

2.1 Notation and setting

Throughout this paper we work in a finite alphabet Σ = {0, 1, . . . , k − 1}, where k ≥ 2. We write
Σ∗ for the set of (finite) strings over Σ and Σ∞ for the set of (infinite) sequences over Σ. We write
|w| for the length of a string w and λ for the empty string. For w ∈ Σ∗ and 0 ≤ i < |w|, w[i] is
the ith symbol in w. Similarly, for S ∈ Σ∞ and i ∈ N (= {0, 1, 2, . . . }), S[i] is the ith symbol in S.
Note that the leftmost symbol in a string or sequence is the 0th symbol.

A prefix of a string or sequence x ∈ Σ∗ ∪ Σ∞ is a string w ∈ Σ∗ for which there exists a
string or sequence y ∈ Σ∗ ∪ Σ∞ such that x = wy. In this case we write w v x. The equation
limw→S f(w) = L means that, for all ε > 0, for all sufficiently long prefixes w v S, |f(w)− L| < ε.
We also use the limit inferior,

lim inf
w→S

f(w) = lim
w→S

inf {f(x) | w v x v S } ,

and the limit superior
lim sup
w→S

f(w) = lim
w→S

sup {f(x) | w v x v S } .

2.2 Probability measures, gales, and Shannon information

A probability measure on Σ is a function α : Σ → [0, 1] such that
∑

a∈Σ α(a) = 1. A probability
measure α on Σ is positive if α(a) > 0 for every α ∈ Σ. A probability measure α on Σ is rational if
α(a) ∈ Q (i.e., α(a) is a rational number) for every a ∈ Σ.

A probability measure on Σ∞ is a function ν : Σ∗ → [0, 1] such that ν(λ) = 1 and, for all w ∈ Σ∗,
ν(w) =

∑
a∈Σ ν(wa). (Intuitively, ν(w) is the probability that w v S when the sequence S ∈ Σ∞

is “chosen according to ν.”) Each probability measure α on Σ naturally induces the probability
measure α on Σ∞ defined by

α(w) =
|w|−1∏
i=0

α(w[i]) (2.1)

for all w ∈ Σ∗.
We reserve the symbol µ for the uniform probability measure on Σ, i.e.,

µ(a) =
1
k

for all a ∈ Σ,

and also for the uniform probability measure on Σ∞, i.e.,

µ(w) = k−|w| for all w ∈ Σ∗.

If α is a probability measure on Σ and s ∈ [0,∞), then an s-α-gale is a function d : Σ∗ → [0,∞)
satisfying

d(w) =
∑
a∈Σ

d(wa)α(a)s (2.2)

for all w ∈ Σ∗. A 1-α-gale is also called an α-martingale. When α = µ, we omit it from this
terminology, so an s-µ-gale is called an s-gale, and a µ-martingale is called a martingale.

We frequently use the following simple fact without explicit citation.
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Observation 2.1. Let α and β be positive probability measures on Σ, and let s, t ∈ [0,∞). If
d : Σ∗ → [0,∞) is an s-α-gale, then the function d̃ : Σ∗ → [0,∞) defined by

d̃(w) =
α(w)s

β(w)t
d(w)

is a t-β-gale.

Intuitively, an s-α-gale is a strategy for betting on the successive symbols in a sequence S ∈ Σ∞.
For each prefix w v S, d(w) denotes the amount of capital (money) that the gale d has after betting
on the symbols in w. If s = 1, then the right-hand side of (2.2) is the conditional expectation of
d(wa), given that w has occurred, so (2.2) says that the payoffs are fair. If s < 1, then (2.2) says
that the payoffs are unfair.

Let d be a gale, and let S ∈ Σ∞. Then d succeeds on S if lim supw→S d(w) =∞, and d succeeds
strongly on S if lim infw→S d(w) =∞. The success set of d is the set S∞[d] of all sequences on which
d succeeds, and the strong success set of d is the set S∞str[d] of all sequences on which d succeeds
strongly.

The Shannon entropy of a probability measure α on Σ is

H(α) =
∑
a∈Σ

α(a) log
1

α(a)
,

where 0 log 1
0 = 0. (unless otherwise indicated, all logarithms in this paper are base-2.) The

Kullback-Leibler divergence between two probability measures α and β on Σ is

D(α||β) =
∑
a∈Σ

α(a) log
α(a)
β(a)

.

The Kullback-Leibler divergence is used to quantify how “far apart” the two probability measures α
and β are. The Shannon self-information of a string w ∈ Σ∗ with respect to a probability measure
β on Σ is

Iβ(w) = log
1

β(w)
=
|w|−1∑
i=0

log
1

β(w[i])
.

Discussions of H(α), D(α||β), Iβ(w) and their properties may be found in any good text on infor-
mation theory, e.g., [5].

2.3 Hausdorff, packing, and Billingsley dimensions

Given a probability measure β on Σ, each set X ⊆ Σ∞ has a Hausdorff dimension dim(X), a
packing dimension Dim(X), a Billingsley dimension dimβ(X), and a strong Billingsley dimension
Dimβ(X), all of which are real numbers in the interval [0, 1]. In this paper we are not concerned
with the original definitions of these classical dimensions, but rather in their recent characterizations
(which may be taken as definitions) in terms of gales.

Notation. For each probability measure β on Σ and each set X ⊆ Σ∞, let Gβ(X) (respectively,
Gβ,str(X)) be the set of all s ∈ [0,∞) such that there is a β-s-gale d satisfying X ⊆ S∞[d] (respec-
tively, X ⊆ S∞str[d]).

Theorem 2.2 (gale characterizations of classical fractal dimensions). Let β be a probability measure
on Σ, and let X ⊆ Σ∞.
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1. [12] dim(X) = inf Gµ(X).

2. [1] Dim(X) = inf Gµ,str(X).

3. [14] dimβ(X) = inf Gβ(X).

4. [14] Dimβ(X) = inf Gβ,str(X).

2.4 Randomness and constructive dimensions

Randomness and constructive dimensions are defined by imposing computability constraints on
gales.

A real-valued function f : Σ∗ → R is computable if there is a computable, rational-valued
function f̂ : Σ∗ × N→ Q such that, for all w ∈ Σ∗ and r ∈ N,

|f̂(w, r)− f(w)| ≤ 2−r.

A real-valued function f : Σ∗ → R is constructive, or lower semicomputable, if there is a computable,
rational-valued function f̂ : Σ∗ × N→ Q such that

(i) for all w ∈ Σ∗ and t ∈ N, f̂(w, t) ≤ f̂(w, t+ 1) < f(w), and

(ii) for all w ∈ Σ∗, f(w) = limt→∞ f̂(w, t).

The first successful definition of the randomness of individual sequences S ∈ Σ∞ was formulated
by Martin-Löf [15]. Many characterizations (equivalent definitions) of randomness are now known,
of which the following is the most pertinent.

Theorem 2.3 (Schnorr [17, 18]). Let α be a probability measure on Σ. A sequence S ∈ Σ∞ is
random with respect to α (or, briefly, α-random) if there is no constructive α-martingale that
succeeds on S.

Motivated by Theorem 2.2, we now define the constructive dimensions.

Notation. We define the sets Gβconstr(X) and Gβ,strconstr(X) to be like the sets Gβ(X) and Gβ,constr(X)
of section 2.3, except that the β-s-gales are now required to be constructive.

Definition. Let β be a probability measure on Σ, let X ⊆ Σ∞, and let S ∈ Σ∞.

1. [13] The constructive dimension of X is cdim(X) = inf Gµconstr(X).

2. [1] The constructive strong dimension of X is cDim(X) = inf Gµ,strconstr(X).

3. [14] The constructive β-dimension of X is cdimβ(X) = inf Gβconstr(X).

4. [14] The constructive strong β-dimension of X is cDimβ(X) = inf Gβ,strconstr(X).

5. [13] The dimension of S is dim(S) = cdim({S}).

6. [1] The strong dimension of S is Dim(S) = cDim({S}).

7. [14] The β-dimension of S is dimβ(S) = cdimβ({S}).

8. [14] The strong β-dimension of S is Dimβ(S) = cDimβ({S}).
It is clear that definitions 1, 2, 5, and 6 above are the special case β = µ of definitions 3,

4, 7, and 8, respectively. It is known that cdimβ(X) = supS∈X dimβ(S) and that cDimβ(X) =
supS∈X Dimβ(S) [14]. Constructive dimensions are thus investigated in terms of the dimensions
of individual sequences. Since one does not discuss the classical dimension of an individual se-
quence (because the dimensions of section 2.3 are all zero for singleton, or even countable, sets),
no confusion results from the notation dim(S), Dim(S), dimβ(S), and Dimβ(S).
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2.5 Normality and finite-state dimensions

The preceding section developed the constructive dimensions as effective versions of the classical
dimensions of section 2.3. We now introduce the even more effective finite-state dimensions.

Notation. ∆Q(Σ) is the set of all rational-valued probability measure on Σ.

Definition ([19, 8, 6]). A finite-state gambler (FSG) is a 4-tuple

G = (Q, δ, q0, B),

where Q is a finite set of states, δ : Q×Σ→ Q is the transition function; q0 ∈ Q is the initial state,
and B : Q→ ∆Q(Σ) is the betting function.

The transition structure (Q, δ, q0) here works as in any deterministic finite-state automaton.
For w ∈ Σ∗, we write δ(w) for the state reached by starting at q0 and processing w according to δ.

Intuitively, if the above FSG is in state q ∈ Q, then, for each a ∈ Σ, it bets the fraction B(q)(a)
of its current capital that the next input symbol is an a. The payoffs are determined as follows.

Definition. Let G = (Q, δ, q0, B) be an FSG.

1. The martingale of G is the function dG : Σ∗ → [0,∞) defined by the recursion

dG(λ) = 1,

dG(wa) = kdG(w)B(δ(w))(a)

for all w ∈ Σ∗ and a ∈ Σ.

2. If β is a probability measure on Σ and s ∈ [0,∞), then the s-β-gale of G is the function
d

(s)
G,β : Σ∗ → [0,∞) defined by

d
(s)
G,β(w) =

µ(w)
β(w)s

dG(w)

for all w ∈ Σ∗.

It is easy to verify that dG = d
(1)
G,µ is a martingale. It follows by Observation 2.1 that d(1)

G,β is an
s-β-gale.

Definition. A finite-state s-β-gale is an s-β-gale of the form d
(s)
G,β for some FSG G.

Notation. We define the sets GβFS(X) and Gβ,strFS (X) to be like the sets Gβ(X) and Gβ,str(X) of
section 2.3, except that the s-β-gales are now required to be finite-state.

Definition. Let β be a probability measure on Σ, and let S ∈ Σ∞.

1. [6] The finite-state dimension of S is dimFS(S) = inf GµFS({S}).

2. [1] The finite-state strong dimension of S is DimFS(S) = inf Gµ,strFS ({S}).

3. The finite-state β-dimension of S is dimβ
FS(S) = inf GβFS({S}).

4. The finite-state strong β-dimension of S is DimFS
β(S) = inf Gβ,strFS ({S}).
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We now turn to some ideas based on asymptotic frequencies of strings in a given sequence. For
nonempty strings w, x ∈ Σ∗, we write

#�(w, x) =
∣∣∣∣{m ≤ |x||w| − 1

∣∣∣∣x[m|w|..(m+ 1)|w| − 1] = w

}∣∣∣∣
for the number of block occurrences of w in x. For each sequence S ∈ Σ∞, each positive integer n,
and each nonempty w ∈ Σ<n, the nth block frequency of w in S is

πS,n(w) =
#�(w, S[0..n|w| − 1])

n
.

Note that, for each n and l, the restriction π
(l)
S,n of πS,n to Σl is a probability measure on Σl.

Definition. Let α be a probability measure on Σ, let S ∈ Σ∞, and let 0 < l ∈ N.

1. S is α-l-normal in the sense of Borel if, for all w ∈ Σl, lim
n→∞

πS,n(w) = α(w).

2. S is α-normal in the sense of Borel if S is α-l-normal for all 0 < l ∈ N.

3. [3] S is normal in the sense of Borel if S is µ-normal.

4. S has asymptotic frequency α, and we write S ∈ FREQα, if S is α-1-normal.

Theorem 2.4 ([19, 4]). For each probability measure α on Σ and each S ∈ Σ∞, the following three
conditions are equivalent.

(1) S is α-normal.

(2) No finite-state α-martingale succeeds on S.

(3) dimα
FS(S) = 1.

The equivalence of (1) and (2) where α = µ was proven in [19]. The equivalence of (2) and (3)
when α = µ was noted in [4]. The extensions of these facts to arbitrary α is routine.

For each S ∈ Σ∞ and 0 < l ∈ N, the lth normalized lower and upper block entropy rates of S
are

H−l (S) =
1

l log k
lim inf
n→∞

H(π(l)
S,n)

and
H+
l (S) =

1
l log k

lim sup
n→∞

H(π(l)
S,n),

respectively.
We use the following result in section 5.

Theorem 2.5 ([4]). Let S ∈ Σ∞.

1. dimFS(S) = inf0<l∈N H−l (S).

2. DimFS(S) = inf0<l∈N H+
l (S).
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2.6 Kolmogorov complexity and finite-state compression

We now review known characterizations of constructive and finite-state dimensions that are based
on data compression ideas.

The Kolmogorov complexity K(w) of a string w ∈ Σ∗ is the minimum length of a program
π ∈ {0, 1}∗ for which U(π) = w, where U is a fixed universal self-delimiting Turing machine [11].

Theorem 2.6. Let β be a probability measure on Σ, and let S ∈ Σ∞.

1. [16] dim(S) = lim infw→S
K(w)
|w| log k .

2. [1] Dim(S) = lim supw→S
K(w)
|w| log k .

3. [14] dimβ(S) = lim infw→S
K(w)
Iβ(w) .

4. [14] Dimβ(S) = lim supw→S
K(w)
Iβ(w) .

Definition ([20]). 1. A finite-state compressor (FSC) is a 4-tuple

C = (Q, δ, q0, ν),

where Q, δ, and q0 are as in the FSG definition, and ν : Q × Σ → {0, 1}∗ is the output
function.

2. The output of an FSC C = (Q, δ, q0, ν) on an input w ∈ Σ∗ is the string C(w) ∈ {0, 1}∗
defined by the recursion

C(λ) = λ,

C(wa) = C(w)ν(δ(w), a)

for all w ∈ Σ∗ and a ∈ Σ.

3. An information-lossless finite-state compressor (ILFSC) is an FSC for which the function

Σ∗ → {0, 1}∗ ×Q

w 7→ (C(w), δ(w))

is one-to-one.

Theorem 2.7. Let S ∈ Σ∞.

1. [6] dimFS(S) = infC lim infw→S
|C(w)|
|w| log k .

2. [1] DimFS(S) = infC lim supw→S
|C(w)|
|w| log k .

3 Divergence formula for randomness and constructive dimen-
sions

This section proves the divergence formula for α-randomness, constructive β-dimension, and con-
structive strong β-dimension. The key point here is that the Kolmogorov complexity characteriza-
tions of these β-dimensions reviewed in section 2.6 immediately imply the following fact.
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Lemma 3.1. If α and β are computable, positive probability measure on Σ, then, for all S ∈ Σ∞,

lim inf
w→S

Iα(w)
Iβ(w)

≤ dimβ(S)
dimα(S)

≤ lim sup
w→S

Iα(w)
Iβ(w)

,

and

lim inf
w→S

Iα(w)
Iβ(w)

≤ Dimβ(S)
Dimα(S)

≤ lim sup
w→S

Iα(w)
Iβ(w)

.

The following lemma is crucial to our argument, both here and in section 5.

Lemma 3.2 (frequency divergence lemma). If α and β are positive probability measures on Σ,
then, for all S ∈ FREQα,

Iβ(w) = (H(α) +D(α||β))|w|+ o(|w|)

as w → S.

The next lemma gives a simple relationship between the constructive β-dimension and the
constructive dimension of any sequence that is α-1-normal.

Lemma 3.3. If α and β are computable, positive probability measures on Σ, then, for all S ∈
FREQα,

dimβ(S) =
dim(S)

Hk(α) +Dk(α||β)
,

and
Dimβ(S) =

Dim(S)
Hk(α) +Dk(α||β)

.

We now recall the following constructive strengthening of a 1949 theorem of Eggleston [7].

Theorem 3.4 ([13, 1]). If α is a computable probability measure on Σ, then, for every α-random
sequence R ∈ Σ∞,

dim(R) = Dim(R) = Hk(α).

The main result of this section is now clear.

Theorem 3.5 (divergence formula for randomness and constructive dimensions). If α and β are
computable, positive probability measures on Σ, then, for every α-random sequence R ∈ Σ∞,

dimβ(R) = Dimβ(R) =
H(α)

H(α) +D(α||β)
.

Proof. This follows immediately from Lemma 3.3 and Theorem 3.4.

We note that D(α||µ) = log k −H(α), so Theorem 3.4 is the case β = µ of Theorem 3.5.
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4 Finite-state dimensions and data compression

This section proves finite-state compression characterizations of finite-state β-dimension and finite-
state strong β-dimension that are analogous to the characterizations given by parts 3 and 4 of
Theorem 2.6. Our argument uses the following two technical lemmas, which are proven in the
technical appendix.

Lemma 4.1. Let β be a positive probability measure on Σ, and let C be an ILFSC. Assume that
I ⊆ Σ∗, s > 0, and ε > 0 have the property that, for all w ∈ I,

s ≥ |C(w)|
Iβ(w)

+ ε. (4.1)

Then there exist an FSG G and a real number δ > 0 such that, for all sufficiently long strings
w ∈ I,

d
(s)
G,β(w) ≥ 2δ|w|. (4.2)

Lemma 4.2. Let β be a positive probability measure on Σ, and let G be an FSG. Assume that
I ⊆ Σ∗, s > 0, and ε > 0 have the property that, for all w ∈ I,

d
(s−2ε)
G,β (w) ≥ 1. (4.3)

Then there is an ILFSC C such that, for all w ∈ I,

|C(w)| ≤ sIβ(w). (4.4)

We now prove the main result of this section.

Theorem 4.3 (compression characterizations of finite-state β-dimensions). If β is a positive prob-
ability measure on Σ, then, for each sequence S ∈ Σ∞,

dimβ
FS(S) = inf

C
lim inf
w→S

|C(w)|
Iβ(w)

, (4.5)

and
DimFS

β(S) = inf
C

lim sup
w→S

|C(w)|
Iβ(w)

, (4.6)

where the infima are taken over all ILFCSs C.

Proof. Let β and S be as given. We first prove that the left-hand sides of (4.5) and (4.6) do not
exceed the right-hand sides. For this, let C be an ILFSC. It suffices to show that

dimβ
FS(S) ≤ lim inf

w→S

|C(w)|
Iβ(w)

(4.7)

and
DimFS

β(S) ≤ lim sup
w→S

|C(w)|
Iβ(w)

. (4.8)

To see that (4.7) holds, let s exceed the right-hand side. Then there exist an infinite set I of
prefixes of S and an ε > 0 such that (4.1) holds for all w ∈ I. It follows by Lemma 4.1 that there

11



exist an FSG G and a δ > 0 such that, for all sufficiently long w ∈ I, d(s)
G,β(w) ≥ 2δ|w|. Since I is

infinite and δ > 0, this implies that S ∈ S∞[d(s)
G,β], whence dimβ

FS(S) ≤ s. This establishes (4.7).
The proof that (4.8) holds is identical to the preceding paragraph, except that I is now a cofinite

set of prefixes of S, so S ∈ S∞str[d
(s)
G,β].

It remains to be shown that the right-hand sides of (4.5) and (4.6) do not exceed the left-hand
sides. To see this for (4.5), let s > dimβ

FS(S). It suffices to show that there is an ILFSC C such
that

lim inf
w→S

|C(w)|
Iβ(w)

≤ s. (4.9)

By our choice of s there exists ε > 0 such that s − 2ε > dimβ
FS(S). This implies that there is an

infinite set I of prefixes of S such that (4.3) holds for all w ∈ I. Choose C for G, I, S, and ε as in
Lemma 4.2. Then

lim inf
w→S

|C(w)|
Iβ(w)

≤ inf
w∈I

|C(w)|
Iβ(w)

≤ s (4.10)

by (4.4), so (4.9) holds.
The proof that the right-hand side of (4.6) does not exceed the left-hand side is identical to the

preceding paragraph, except that the limits inferior in (4.9) and (4.10) are now limits superior, and
the set I is now a cofinite set of prefixes of S.

5 Divergence formula for normality and finite-state dimensions

This section proves the divergence formula for α-normality, finite-state β-dimension, and finite-
state strong β-dimension. As should now be clear, Theorem 4.3 enables us to proceed in analogy
with section 3.

Lemma 5.1. If α and β are positive probability measures on Σ, then, for all S ∈ Σ∞,

lim inf
w→S

Iα(w)
Iβ(w)

≤
dimβ

FS(S)
dimα

FS(S)
≤ lim sup

w→S

Iα(w)
Iβ(w)

, (5.1)

and

lim inf
w→S

Iα(w)
Iβ(w)

≤ DimFS
β(S)

DimFS
α(S)

≤ lim sup
w→S

Iα(w)
Iβ(w)

. (5.2)

Lemma 5.2. If α and β are positive probability measures on Σ, then, for all S ∈ FREQα,

dimβ
FS(S) =

dimFS(S)
Hk(α) +Dk(α||β)

,

and
DimFS

β(S) =
DimFS(S)

Hk(α) +Dk(α||β)
.

We next prove a finite-state analog of Theorem 3.4.

Theorem 5.3. If α is a probability measure on Σ, then, for every α-normal sequence R ∈ Σ∞,

dimFS(R) = DimFS(R) = Hk(α).

12



We now have our third main theorem.

Theorem 5.4 (divergence theorem for normality and finite-state dimensions). If α and β are
positive probability measures on Σ, then, for every α-normal sequence R ∈ Σ∞,

dimβ
FS(R) = DimFS

β(R) =
H(α)

H(α) +D(α||β)
.

Proof. This follows immediately from Lemma 5.2 and Theorem 5.3.

We again note that D(α||β) = log k−H(α), so Theorem 5.3 is the case β = µ of Theorem 5.4.

Acknowledgments. I thank Xiaoyang Gu and Elvira Mayordomo for useful discussions.
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A Appendix – Various Proofs

Proof of Lemma 3.2. Assume the hypothesis, and let S ∈ FREQα. Then, as w → S, we have

Iβ(w) =
|w|−1∑
i=0

log
1

β(w[i])

=
∑
a∈Σ

#(a,w) log
1

β(a)

= |w|
∑
a∈Σ

freqa(w) log
1

β(a)

= |w|
∑
a∈Σ

(α(a) + o(1)) log
1

β(a)

= |w|
∑
a∈Σ

α(a) log
1

β(a)
+ o(|w|)

= |w|
∑
a∈Σ

(
α(a) log

1
α(a)

+ α(a) log
α(a)
β(a)

)
+ o(|w|)

= (H(α) +D(α||β))|w|+ o(|w|).

Proof of Lemma 3.3. Let α, β, and S be as given. By the frequency divergence lemma, we have

Iµ(w)
Iβ(w)

=
|w| log k

(H(α) +D(α||β))|w|+ o(|w|)

=
log k

H(α) +D(α||β) + o(1)

=
log k

H(α) +D(α||β)
+ o(1)

=
1

Hk(α) +Dk(α||β)
+ o(1)

as w → S. The present lemma follows from this and Lemma 3.1.

The following lemma summarizes the first part of the proof of Theorem 2.7.

Lemma A.1 ([6]). For each ILFSC C there is an integer m ∈ Z+ such that, for each l ∈ Z+, there
is an FSG G such that, for all w ∈ Σ∗,

log d(1)
G (w) ≥ |w| log k − |C(w)| −m( |w|l + l). (A.1)

Proof of Lemma 4.1. Assume the hypothesis. Let

δβ = min
a∈Σ

log
1

β(a)
,

noting the following two things.
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(i) δβ > 0, because β is positive.

(ii) For all w ∈ Σ∗,
Iβ(w) ≥ δβ|w|. (A.2)

Choose m for C as in Lemma A.1, let

l =
⌈

3m
εδβ

⌉
, (A.3)

and choose G for C, m, and l as in Lemma 4.1. Let

δ = 2
3εδβ,

noting that δ > 0 and that

|w| ≥ l2 =⇒ εδβ|w| −m( |w|l + l)

= εδβ|w| − m
l (|w|+ l2)

≥ εδβ|w| − 2m
l |w|

= (εδβ − 2m
l )|w|

≥(A.3) 2
3εδβ|w|,

i.e., that
|w| ≥ l2 =⇒ εδβ|w| −m( |w|l + l) ≥ δ|w|. (A.4)

It follows that, for all w ∈ I with |w| ≥ l2, we have

log d(s)
G,β(w) = log( µ(w)

β(w)sd
(1)
G (w))

= −|w| log k + sIβ(w) + log d(1)
G (w)

≥(A.1) sIβ(w)− |C(w)| −m( |w|l + l)

≥(4.1) sIβ(w)−m( |w|l + l)

≥(A.2) εδβ|w| −m( |w|l + l)

≥(A.4) δ|w|.

Hence (4.2) holds.

An FSG G = (Q,Σ, δ, β, q0) is nonvanishing if all its bets are nonzero, i.e., if β(q)(a) > 0 holds
for all q ∈ Q and a ∈ Σ.

Lemma A.2 ([6]). For each FSG G and each δ > 0, there is a nonvanishing FSG G′ such that,
for all w ∈ Σ∗,

d
(1)
G′ (w) ≥ k−δ|w|d(1)

G (w). (A.5)

The following lemma summarizes the second part of the proof of Theorem 2.7.

Lemma A.3 ([6]). For each nonvanishing FSG G and each l ∈ Z+, there exists an ILFSC C such
that, for all w ∈ Σ∗,

|C(w)| ≤ (1 + 2
l )|w| log k − log d(1)

G (w). (A.6)
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Proof of Lemma 4.2. Assume the hypothesis. Let

γ = log
1

βmax
,

where
βmax = max

a∈Σ
β(a).

Note that γ > 0 (because β is positive) and that, for all w ∈ Σ∗,

Iβ(w) ≥ γ|w|. (A.7)

Let
δ =

γε

log k
(A.8)

and choose G′ for G and δ as in Lemma A.2. Let

l =
⌈

2 log k
γε

⌉
, (A.9)

and choose C for G′ and l as in Lemma A.3. Then, for all w ∈ I,

|C(w)| ≤(A.6) (1 + 2
l )|w| log k − log d(1)

G′ (w)

≤(A.9) |w|(γε+ log k)− log d(1)
G′ (w)

≤(A.5) |w|(γε+ log k)− log(k−δ|w|d(1)
G (w))

= |w|(γε+ log k + δ log k)− log d(1)
G (w)

= |w|(2γε+ log k)− log d(1)
G (w)

= |w|(2γε+ log k)− log
(
β(w)s−2ε

µ(w)
d

(s−2ε)
G,β (w)

)
≤(A.3) |w|(2γε+ log k)− log

(
β(w)s−2ε

µ(w)

)
= |w|(2γε+ log k)− log(k|w|β(w)s−2ε)

= 2γε|w| − log β(w)s−2ε

= 2γε|w|+ (s− 2ε)Iβ(w)

≤(A.7) sIβ(w).

Proof of Lemma 5.2. As in the proof of Lemma 3.3, the hypothesis implies that

Iµ(w)
Iβ(w)

=
1

Hk(α) +Dk(α||β)
+ o(1)

as w → S. The present lemma follows from this and Lemma 5.1.
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Proof of Theorem 5.3. Assume the hypothesis, and let l ∈ Z+. Let α(l) be the restriction of the
product probability measure µα to Σl, noting that H(α(l)) = lH(α). We first show that

lim
n→∞

H(π(l)
R,n) = H(α(l)), (A.10)

where π(l)
R,n is the empirical probability measure defined in section 2.5. To see this, let ε > 0. By

the continuity of the entropy function, there is a real number δ > 0 such that, for all probability
measures π on Σl,

max
w∈Σl

|π(w)− α(l)(w)| < δ =⇒ |H(π)−H(α(l))| < ε.

Since R is α-normal, there is, for each w ∈ Σl, a positive integer nw such that, for all n ≥ nw,

|π(l)
R,n(w)− α(l)(w)| = |π(l)

R,n(w)− µα(w)| < δ.

Let N = maxw∈Σl nw. Then, for all n ≥ N , we have |H(π(l)
R,n)−H(α(l))| < ε, confirming (A.10).

By Theorem 2.5, we now have

dimFS(R) = DimFS(R)

= inf
l∈Z+

1
l log k

lim
n→∞

H(π(l)
R,n)

= inf
l∈Z+

1
l log k

H(α(l))

=
H(α)
log k

= Hk(α).
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