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Abstract

This paper investigates the distribution and nonuniform complexity of problems that are com-
plete or weakly complete for ESPACE under nonuniform reductions that are computed by
polynomial-size circuits (P/Poly-Turing reductions and P/Poly-many-one reductions). A tight,
exponential lower bound on the space-bounded Kolmogorov complexities of weakly P/Poly-
Turing-complete problems is established. A Small Span Theorem for P/Poly-Turing reductions
in ESPACE is proven and used to show that every P/Poly-Turing degree — including the com-
plete degree — has measure 0 in ESPACE. (In contrast, it is known that almost every element
of ESPACE is weakly P-many-one complete.) Every weakly P/Poly-many-one-complete prob-
lem is shown to have a dense, exponential, nonuniform complexity core. More importantly, the
P/Poly-many-one-complete problems are shown to be unusually simple elements of ESPACE;, in
the sense that they obey nontrivial upper bounds on nonuniform complexity (size of nonuniform
complexity cores and space-bounded Kolmogorov complexity) that are violated by almost every

element of ESPACE.

1 Introduction

The most prominent structural aspect of a complexity class is the presence or absence of complete
problems under efficient reductions. A complete problem, when it is present, contains complete
information about all problems in the class, and this information is organized in such a way as to
be accessible by efficient reductions.

A measure-theoretic generalization of completeness, called weak completeness, was proposed by
Lutz [36] and has recently been a subject of several investigations [26, 42, 41, 39, 25, 6, 27, 24, 45].
Briefly, if < is an efficient reducibility and C is a complexity class, then a weakly < -complete prob-
lem for C is a decision problem (i.e., language) C' C {0,1}* such that C' € C and all the problems in
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a non-measure 0 subset of C (in the sense of resource-bounded measure [38, 40]) are <r-reducible to
C. That is, a problem C € C is weakly <gr-complete for C if ' contains complete information about
all the problems in a non-negligible subset of C, and this information is organized in such a way as to
be accessible by <g-reductions. For classes such as E = DTIME(2!"¢8"), E, = DTIME(2polynomial)
and ESPACE = DSPACE(2!"®a") | that have well-understood measure structure, Lutz [39] has
shown that weak <P -completeness is a proper generalization of < -completeness. (See sections 2
and 3 for precise definitions of notation and terminology used in this introduction.)

Juedes and Lutz [26] began the systematic investigation of the complexity and distribution of
problems that are <! -complete or weakly <F -complete for the exponential time complexity classes
E and Eg. Main results of [26] (in the case of E) include

(i) a proof that every weakly <P _complete problem for E has a dense exponential complexity
core;

(ii) a proof that almost every problem in E has {0, 1}* as an exponential complexity core;

(iii) a proof that (essentially) every exponential complexity core of every <P _complete problem
for ¥ has a dense complement, whence by (ii) the set CL(E), consisting of all problems that
are <P _complete for E, has measure 0 in E; and

(iv) aSmall Span Theorem, which implies (among other things) that every <F -degree has measure
0in E.

In the present paper, we conduct a similar investigation, but we now focus on nonuniform
reductions that are computed by polynomial-size circuits. Such reductions are “combinatorially
efficient,” even though they need not be algorithmically computable. As noted by Skyum and
Valiant [54], the investigation of such reductions sheds light on the “purely combinatorial” aspects
of the completeness phenomenon.

We work in the complexity class ESPACE. There are two related reasons for this choice. First,
ESPACE has a rich, well-behaved structure that is well enough understood that we can prove
absolute results, unblemished by oracles or unproven hypotheses. In particular, much is known
about the Kolmogorov complexities and circuit-size complexities of languages in ESPACE[28, 38],
while little is known at lower complexity levels. For example, ESPACE is not contained in P/Poly
[28], but the relationships among NP, E, and P/Poly are not known. Our second reason for this
choice is that the structure of ESPACE is closely related to the structure of important polynomial
complexity classes. For example, Hartmanis and Yesha [21] have shown that

E G ESPACE <= P G P/Poly N PSPACE. (1.1)

This, together with the first reason, suggests that the separation of P from PSPACE might best
be achieved by separating E from ESPACE. We thus seek a detailed, quantitative account of the
nonuniform structure of ESPACE.



We work with two types of nonuniform reductions. These are the P/Poly-Turing reductions
(gE/POIY—reductions) and the P/Poly-many-one reductions (gfn/POIY—reductions). These are natural
nonuniform extensions of the polynomial-time Turing reductions (g%reductions, introduced by
Cook [14]) and the polynomial-time many-one reductions (<F -reductions, introduced by Karp
[29] and Levin [32]), respectively. The §§/P01y—reductions (respectively, §fn/P01y—reductions), are
precisely those nonuniform Turing (respectively, many-one) reductions that can be computed by
polynomial-size circuits. The four reduction types that we have mentioned have distinct strengths,

even when attention is restricted to languages in ESPACE. Specifically, the implications

A Sfﬂ/Poly B — A SE‘/Poly B

T T
A<b B = A<LB

are the only implications that hold among these four conditions for all A, B € ESPACE.

We are interested in the nonuniform complexities of languages that are complete or weakly
complete for ESPACE under §§/P01y—reductions or §fn/P01y—reductions. We use two quantities to
measure the nonuniform complexities of such languages. These are the density of nonuniform
complexity cores and space-bounded Kolmogorov complexity. For the first measure, we use the
density of a language’s “largest” nonuniform complexity core. Intuitively, a complexity core is a set
of uniformly hard instances. This concept was introduced by Lynch[43] and has been investigated
by many others [15, 17, 47, 48, 11, 23, 52, 12, 16, 56, etc.]. Roughly speaking, a complexity core
for a language A is a fixed set K of inputs such that every machine whose decisions are consistent
with A fails to decide efficiently on almost all elements of K. The meanings of “efficiently” and
“almost all” are parameters of this definition that may be varied according to the context.

Space-bounded Kolmogorov complexity is our second measure of nonuniform complexity. Kol-
mogorov complexity was introduced by Solomonoft[55], Kolmogorov[31], and Chaitin[13]. Resource-
bounded Kolmogorov complexity has been investigated extensively [31, 20, 53, 33, 35, 7, 22, 30, 2,
3, 4, 36, 38, etc.]. We work with the space-bounded Kolmogorov complexity of languages. Roughly
speaking, for A C {0,1}*, n € N, and a space bound ¢, the space-bounded Kolmogorov com-
plexity K S%(A—,) is the length of the shortest program that prints the 2"-bit characteristic string
of A, = AN {0,1}", using at most ¢ units of workspace. Similarly, K5'(A<,) is the length of
the shortest program that prints the (2"*! — 1)-bit characteristic string of A<, = AN {0,1}57,
using at most ¢ units of workspace. The quantities K S(A=,) and K 5(A<,) are frequently inter-
preted as the “amount of information” that is contained in A—, and A, , respectively, and that is
“accessible” by computation using < ¢ space.

Let us now be more precise about our main results. In section 3 we prove two new almost
everywhere lower bounds on the nonuniform complexity of languages in ESPACE. First, we show



that, for all ¢ € N and € > 0, almost every language A in ESPACE satisfies
KS*(AZ,) > 2" — nf ace. (1.2)

This improves the 2" — 2 lower bound of [38]. Second, we show that, for all ¢ € N, almost
every language in ESPACE has {0, 1}* as a DSPACE(2°")/Poly-complexity core. (A language is
P-bi-immune if and only if it has {0, 1}* as a P-complexity core [8], so this can be regarded as a
very strong bi-immunity property.)

In section 4, we investigate the complexity and distribution of languages that are complete
or weakly complete for ESPACE under §§/P01y—reductions. We establish a tight, exponential
lower bound on the space-bounded Kolmogorov complexities of languages that are weakly §§/ Poly_
complete for ESPACE. Specifically, we prove that for every such language H, there exists € > 0
such that .

KS* (Hen) > 2" ae. (1.3)

This extends Huynh’s proof [22] that (1.3) holds for every language H that is <k-complete for
ESPACE.

In section 4, we also prove a Small Span Theorem for §$/P01y—reductions in ESPACE. This
result requires some explanation.

A recurring tool and unifying theme of much work on the measure structure of complexity
classes is the development of Small Span Theorems for various reducibilities and classes. Briefly,
given a reducibility <z and a language A C {0,1}*, the lower <g-span of A is the set R(A),
consisting of all languages that are <g-reducible to A; and the upper <g-span of A is the set
R~L(A), consisting of all languages to which A is <g-reducible. If C is a complexity class that has
measure structure, then the Small Span Theorem for <g-reductions in C is the assertion that, for
all A € C, at least one of the spans R(A), R™(A) is negligibly small in C. (Specifically, R(A) has
measure 0 in C, or R™}(A) has A-measure 0, hence measure 0 in C, where A is the resource bound
that induces measure structure in C.)

The first Small Span Theorem, proven by Juedes and Lutz [26], was for <P -reductions in the
exponential time complexity class E = DTIME(thear). This result says that, for every A € E,
Pim(A) has measure 0 in E, or P}(A) has p-measure 0, hence measure 0 in E. An immediate
consequence of this fact is that every <F _degree — including the complete <P -degrees for E, NP,
PSPACE, etc. — has measure 0 in E. Juedes and Lutz [26] also proved the Small Span Theorem
for <P -reductions in the exponential time complexity class Ey = DTIME(QPOlynomjal). Part of the
interest in these results lies in the fact that Es is the smallest deterministic time complexity class
known to contain NP, BPP, PP, PH, PSPACE, and other important complexity classes.

The task now confronting us is to determine the extent to which Small Span Theorems hold for
stronger types of efficient reductions. This task is important and nontrivial because it is closely
related to some of the most fundamental questions of complexity theory. For example, Juedes and
Lutz [26] have pointed out that a Small Span Theorem for §$—reductions in E or E; would imply



that BPPGE;. More recent work of Regan, Sivakumar, and Cai [51] — building on the “natural
proof” work of Razborov and Rudich [50] — indicates that a Small Span Theorem for §$/P01y—
reductions (nonuniform Turing reductions computed by polynomial-size circuits) in Eg would imply
the nonexistence of pseudorandom generators and one-way functions with exponential nonuniform
security. It is thus to be hoped that a systematic investigation of Small Span Theorems will shed
useful light on such fundamental questions.

Some initial steps in this investigation have already been taken. Lindner [34] adapted the
method of [26] to prove Small Span Theorems for <{_ -reductions in E and E;. Ambos-Spies,
Neis, and Terwijn [5] used resource-bounded genericity to generalize the method of [26], thereby

obtaining Small Span Theorems for §£_tt—reductions in F and E; for all positive integers k.

In section 4, we prove the Small Span Theorem for §§/P01y—reductions in ESPACE. As noted

. P/Pol . . . . . .
earlier, ST/ “Y_reductions are nonuniform reductions that are “combinatorially efficient,” even

though they need not be algorithmically computable. More importantly, §$/ Poly_reductions are
adaptive. In fact, the present result is the first instance of a Small Span Theorem for adaptive
reductions. Its proof is a significant departure from the methods used in earlier proofs of Small
Span Theorems for weaker, nonadaptive types of reductions. We are hopeful that this proof is a
significant step toward a better understanding of the conditions under which Small Span Theorems

hold for §$—reductions and §§/P01y—reductions in E and E,.

Our Small Span Theorem immediately implies that every §§/P01y—degree has measure 0 in
ESPACE. It also implies (in combination with a result of Juedes [25] and Ambos-Spies, Terwijn,

and Zheng [6]) that there are languages that are weakly <P _complete, but not §$/P01y—complete,
for ESPACE.

In section 5, we investigate the nonuniform complexities of languages that are complete or weakly
complete for ESPACE under §fn/P01y—reductions. Lower bounds on the densities of complexity cores
for complete languages have already been proven by Orponen and Schéning [48] and Huynh [23].
In particular, Huynh [23] proved that every language that is < -complete for ESPACE has a dense
P/Poly-complexity core. In section 5, we strengthen Huynh’s result by proving that, for every

weakly §fn/P01y—complete language H for ESPACE, there exists ¢ > 0 such that H has a dense
DSPACE(2"")/Poly-complexity core. Furthermore, we prove that this lower bound is tight, even
when attention is restricted to languages that are <P -complete for ESPACE.

More importantly, in section 5, we establish tight upper bounds on the nonuniform complexities
of complete languages for ESPACE. We prove that for every §fn/P01y
ESPACE, there exists € > 0 such that

-complete language H for

KS¥"(Hzp) < 2" = 2% fo. (1.4)

We also prove that every DSPACE(2%")/Poly-complexity core of every §fn/ POly—complete language
for ESPACE has a dense complement. Moreover, we show that these upper bounds are tight, even



when attention is restricted to languages that are <F -complete for ESPACE.

By combining the upper bound results of section 5 with the almost everywhere lower bound
results of section 3 (e.g., comparing (1.2) with (1.4) above), we conclude that the <B/PolY_complete
languages for ESPACE obey upper bounds on nonuniform complexity that are violated by almost
every element of ESPACE. Thus the §fn/P01y—complete languages are unusually simple for languages
in ESPACE.

Although several of our results are similar in form to those of [26], the nonuniform nature of the
reductions and complexity measures force us to use quite different methods in the present paper.

2 Preliminaries

We write {0,1}* for the set of all (finite, binary) strings and {0,1}° for the set of all (infinite,
binary) sequences. Every language is a set A C {0,1}*, so P({0,1}*) is the set of all languages.

We write |z| for the length of a string # and || for the cardinality of a set 5. (Notation and
context clearly distinguish strings from sets.) The empty string, A, is the unique string of length
0. We write {0, 1}" for the set of all strings of length n, {0, 1}<" for the set of all strings of length
at most n, and {0,1}<" for the set of all strings of length less than n. The standard enumeration
of {0,1}" is the sequence sop = A, s = 0, 85 = 1, s3 = 00, ..., ordered first by length and then
lexicographically.

The Boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0. For z € {0,1}* and n € N,
the n* bit of » is z[n], and the n-bit prefiz of z is 2[0..n — 1]. We identify each language A C {0, 1}*
with its characteristic sequence x4 € {0,1}* defined by xa[n] = [s, € A] for all n € N.

We say that a condition ©(n) holds almost everywhere (a.e.) if it holds for all but finitely many
n € N. We say that ©(n) holds infinitely often (i.0.) if it holds for infinitely many n € N.

For A C {0,1}* and n € N, we use the notations A_, = AN {0,1}" and A<, = AN {0,1}=".
A language A is dense if there is a real number € > 0 such that [A<,| > 25 ae. A language A is
sparse if there exists k € N such that [A<,| < nF a.e. (Equivalently, there is a polynomial p such
that, for all » € N, |A<,| < p(n). ) -

The cylinder generated by a string w € {0,1}* is the set C,, ={A C{0,1}* | w = x4[0..]w|—1]},
i.e., the set of all languages A such that w is a prefix of y 4. The complement of a set X of languages
is X¢=P({0,1}) - X.

Our proof of the Small Span Theorem uses the following theorem of probability theory.
Lemma 2.1 (Large Deviation Lemma — Ajtai and Fagin [1]). Let ¢ = Slﬁ, let bg,...,b,—1 be 0/1 -
valued random variables, and let N(n) = [{i]0 < i < n and b; = 1}|. Assume that, forall 0 <i<n
and all u € {0,1}", Pr[b; = 1|bo,...,bi—y = u] > . (If + = 0, this says that Pr[by = 1] > £.) Then
Pr[N(n) < L] < e7em,

Note that Lemma 2.1 does not require the random variables bg, ..., b,_1 to be independent.



Following standard usage, we let Poly denote the set of all polynomially bounded advice func-
tions h : N — {0,1}*. If A and B are languages, then A is <F/Pely
A §fn/P01y B, if there exist f € PI and h € Poly such that

-reducible to B, and we write

A={z €{0,1}" | f({z, h(]z])}) € B}, (2.1)
where (,) : {0,1}* x {0,1}* — {0,1}* is a standard pairing function. If s : N — N, then A
8 §ESPACE(S(H))/POIY—reducz'ble to B, and we write A §ESPACE(S(H))/POIY B, if there exists f €

DSPACEF(s(n)) and h € Poly such that (2.1) holds.

Fix a standard enumeration My, My, M5, ... of polynomial time-bounded oracle Turing ma-
chines. For k € N, B C {0, 1}*, and h an advice function, the language accepted by My, with oracle
B and advice h is the language

LMP ) = {o € {0,1}" | M accepts (z, h(Jz]))}-
. P/Poly . . P/Poly .
If A and B are languages, then A is <; -reducible to B, and we write A <, B, if there

exist k € N and h € Poly such that A = L(MP/h). Using standard techniques [49], it is easy
to see that the §$/P01y—reductions (respectively, the §fn/P01y—reductions) are precisely those Turing
reductions (respectively, many-one reductions) that are computed by polynomial-size circuits.

We very briefly review the fragment of resource-bounded measure that is used in this paper.
The reader is referred to [38, 39] for motivation and details.

A martingale is a function d : {0,1}* — [0, 00) such that, for all w € {0,1}*,

d(w) = d(w0) —g d(wl)‘

A martingale d succeeds on a language A C {0, 1}* if

lim sup d(x4[0..n — 1]) = oo.

n—oo

The success set of a martingale d is
S<ldl ={A C{0,1}" | d succeeds on A}.
The unitary success set of a martingale d is

S'dl= |J Cu.
d(w)>1

A martingale d is pspace-computable if there is a function d: Nx {0,1}* — Q such that J(r, w)is

o~

computable in space polynomial in 74 |w| and, for all » € N and w € {0, 1}*, |d(r,w)—d(w)| < 27".

Definition. Let X be a set of languages, and let X ¢ denote the complement of X.



1. X has pspace-measure 0, and we write fpspace(X) = 0, if there is a pspace-computable
martingale d such that X C S°[d].

2. X has pspace-measure 1, and we write ppspace(X) = 1, if pipspace(X ) = 0.
3. X has measure 0 in ESPACE, and we write (X | ESPACE) = 0, if fipspace(XNESPACE) = 0.

4. X has measure 1 in ESPACE, and we write u(X | ESPACE) = 1, if u(X° | ESPACE) = 0.
In this case, we say that X contains almost every element of ESPACE.

o0 o0
For each k € N, let > a ; be a series of nonnegative real numbers. Then the series > ay ;,

J=0 J=0
for k € N, are uniformly p-convergent if there is a polynomial ¢ such that, for all £, € N,
O
Z ak <277,
i=alkr)

Our proof of the Small Span Theorem uses the following uniform, polynomial-space version of
the classical first Borel-Cantelli lemma.

Theorem 2.2 (Lutz [38]). Assume that d : N x N x{0,1}* — QnN0,00) is a function with the
following properties.

(i) For each k,j € N, the function dj ;, defined by dy, ;(w) = d(k, j,w), is a martingale.

(ii) There is an algorithm that, for all k£,j € N and w € {0,1}*, computes dj ;(w) in space
polynomial in &+ j + |w].

(iii) The series ‘Zo di ;(N), for k € N, are uniformly p-convergent.
]:

Then

oo 00 00

pspacel | () U $di]) = 0.

k=0 ;5=0:=3

Given a reducibility <z and a language A, the lower <g-span R(A) and the upper <g-span
R~1(A) are defined as in the introduction. The <g-degree of A is then degp(A) = R(A)NR™I(A).

Definition. A language is weakly <g-hard for ESPACE if p(R(A)|ESPACE) # 0. (This is the
negation of the condition pu(R(A) | ESPACE) = 0. It does not imply that “u(R(A) | ESPACE)”
has some nonzero value.) A language A is weakly <g-complete for ESPACE if A € ESPACE and
A is weakly <gr-hard for ESPACE.

The existence of languages that are weakly <P -complete, but not <F -complete for E was first
proven by Lutz [39]. It was subsequently proven by Juedes [25] that the set of such languages



does not have measure 0 in E, and by Ambos-Spies, Terwijn, and Zheng [6] that the set of such
languages has measure 1 in E. All these proofs are easily modified to apply to such larger classes

as Iy and ESPACE. We thus have the following.

Theorem 2.3 (Ambos-Spies, Terwijn, and Zheng [6]). Almost every language in ESPACE is weakly
<P _complete for ESPACE.

3 The Distribution of Nonuniform Complexity in ESPACE

In this section we investigate the distribution of languages that have high nonuniform complexity.
We use space-bounded Kolmogorov complexity, nonuniform complexity cores and incompressibility
by nonuniform reductions as measures of nonuniform complexity. The main results of this section
show that almost every language in ESPACE is very complex with respect to each of these measures.

This section has three parts. In part 3.1 we investigate the distribution of languages with high
space-bounded Kolmogorov complexity. Specifically, we prove that almost every language A in
ESPACE has space-bounded Kolmogorov complexity K S2™"(A—,) > 2" — y/n for almost every n.
In part 3.2 we investigate the distribution of languages with large nonuniform complexity cores.
We prove that almost every language in ESPACE has {0,1}* as a DSPACE(2°")/Poly-complexity
core. Finally, in part 3.3, we investigate the distribution of languages that are incompressible
by nonuniform many-one reductions. There we prove that almost every language in ESPACE is

log DSPACE(2°")/Poly

-incompressible by <, -reductions.

3.1 Space-Bounded Kolmogorov Complexity

The distribution of languages in ESPACE with high space-bounded Kolmogorov complexity was
first investigated in [38]. Here we strengthen the results of [38] in two important directions. First,
we show that the almost-everywhere lower bound of 27t! — 2" on the space-bounded Kolmogorov
complexity I(SQM(ASH) is tight and cannot be improved (Theorem 3.3). Next, we improve the
almost everywhere lower bound on the space-bounded Kolmogorov complexity K527 (A_,) from
2" — 29 to 2" — n° (Corollary 3.5).

Some terminology and notation will be useful. For a fixed machine M and “program” 7 € {0, 1}*
for M, we say that “M(7,n) = win < s space” if M, on input (7, n), outputs the string w € {0,1}*
and halts without using more than s cells of workspace. We are especially interested in situations
where the output is of the form x4_, or of the form x4, i.e., the 2"-bit characteristic string of
A=, or the (2"*t1 — 1)-bit characteristic string of A<, for some language A.

Given a machine M, a space bound s : N — N, a language A C {0, 1}*, and a natural number
n, the s(n)-space-bounded Kolmogorov complexity of A=, relative to M is

KS]S\/([n)(Azn) = mm{|7r|‘M(7r,n) = XA, in < s(n)space }.



Similarly, the s(n)-space-bounded Kolmogorov complexity of A<, relative to M is
KS]S\/(IH)(ASH) = mm{|7r|‘M(7r,n) = X4, in < s(n) space }.

Well-known simulation techniques show that there is a machine U that is optimal in the sense
that for each machine M there is a constant ¢ such that for all s, A and n, we have

K85 (AL) < K3 (Azy) + ¢
and
KSGMTAL) < K (Ag) + e

As is standard in this subject, we fix an optimal machine U and omit it from the notation.
We now recall the following almost-everywhere lower bound result.

Theorem 3.1 (Lutz [38]). Let ¢ € N and ¢ > 0.

(a) If
X ={AC{0,1}"| KS* (A_,) > 2" - 2" ae.},
then fipspace(X ) = u(X | ESPACE) = 1.
(b) If
Y = {AC{0,1}*| KS?"(Ag,) > 2T — 27" ael],
then fipspace(Y) = p(Y | ESPACE) = 1.

Though the lower bounds of Theorem 3.1 have been useful in a variety of applications (see
[37, 38|, for example), they are not strong enough for our purposes. For this reason, we ask the
natural question: Can the almost-everywhere lower bounds of Theorem 3.1 be improved?

We first consider Theorem 3.1(b). Martin-L6f [44] has shown that, for every ¢ € N and every
real a > 1, almost every language A C {0, 1}* has space-bounded Kolmogorov complexity

KS* (Acy) > 2" —an ae. (3.1)

(In fact, Martin-L6f showed that this holds even in the absence of a space bound.) The following
known bounds show that the lower bound (3.1) is relatively tight.

Theorem 3.2. There exist constants ¢1,co € N such that every language A satisfies the following
two conditions.

(i) K5?"(A<,) < 2! 4 ¢ for all n.

10



(i) KS**"(Ac,) < 2" —logn + ¢ i.o.
(Part (i) of Theorem 3.2 is well known and obvious. Part (ii) extends a result of Martin-Lof [44].)

Since the bound of Theorem 3.1(b) is considerably lower than that of (3.1), one might expect to
improve Theorem 3.1(b). However, the following upper bound shows that Theorem 3.1(b) is also
tight. (In comparing Theorems 3.1(b) and 3.3 it is critical to note the order in which A and ¢ are
quantified.)

Theorem 3.3. For every language A € ESPACE, there exists a real ¢ > 0 such that

KSZM(ASTL) < 2L 92 ae.

Proof. Fix A € ESPACE and a € N such that A € DSPACE(2*"). For each n € N, let n’ = | 35,

and let y, be the string of length 27+ — 27'+1 guch that XA<n, = XA, Yn- Let M be a machine
that, on input (y,n), computes XA, using < 297" gpace and then outputs XA, Y- Let ¢ be the
optimality constant for the machine M (given by the definition of the optimal machine U at the
beginning of this section). Then M(y,,n) outputs ya_, in < 297" space, so for all sufficiently large
n, we have -

!

KS¥"(Ac,) < KS¥ (Acy)+c
< ya| + ¢
— 2n+1 _ 2n'+1 _I_ ¢
< 2n+1 _ 25717
where ¢ = -1 O

a+2°

Thus we cannot hope to improve Theorem 3.1(b).

An elementary counting argument shows that, for every ¢ € N, there exists a language A €
ESPACE with KS*"(A—,) > 2" for all n € N. This suggests that the prospect for improving
Theorem 3.1(a) may be more hopeful. In fact, we have the following almost-everywhere lower
bound result.

Theorem 3.4. Let ¢ € N and let f : N — N be such that f € pspace and ) 2=f(1) is p-

n=0

convergent. If

X ={AC{0,1} | KS* (A=) > 2" — f(n) a.e.},
then pipspace(X ) = u(X | ESPACE) = 1.
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Proof. Assume the hypothesis. By Theorem 2.2, it suffices to exhibit a pspace-computable function
d such that each d, is a martingale,

Z d,(\) is p-convergent, (3.2)
n=0
and o o
xXec U 9" dnl- (3.3)
t=0n=t

Some notation will be helpful. For n € N, let

B, = {r € {0,1}=¥" =5 | U(x,n) € {0,1}*" in < 2°" space }. (3.4)

Forn € N and m € B, let
ZTL,?T = U CzU(?T,n)'
|z|=27—1
(Thus Z,, » is the set of all languages A such that U(xr,n)is the 2"-bit characteristic string of A—,,.)
For n € N and w € {0,1}*, let

o(n,w)= > Pr(Zy | Cu), (3.5)
TEBy

where the conditional probabilities Pr(Z, , | C,) = Pry[A € Z,. | A € C,] are computed
according to the random experiment in which a language A C {0,1}" is chosen probabilistically,
using an independent toss of a fair coin to decide membership of each string in A. Finally, define
the function d : N x {0,1}* — [0,00) as follows. (In all three clauses, n € N, w € {0,1}*, and
be{0,1}.)

(i) If 0 < Jw| < 2% — 1, then d,(w) = 2'=F(7),

(i) 2" — 1< |w| < 21 — 1, then d,(wb) = d,,(w) 222,

o(n,w)
(iii) If Jw] > 2" — 1, then d,(wb) = d,(w).

(The condition o(n,w) = 0 can only occur if d,,(w) = 0, in which case we understand clause (ii) to
mean that d,(wb) = 0.)
It is clear from (3.5) that
o(n,w0)+ o(n, wl)
2

o(n,w)=

12



for all n € N and w € {0,1}*. It follows by a routine induction on the definition of d that each d,
is a martingale. It is also routine to check that d is pspace-computable. (The crucial point here is
that we are only required to perform computations of the type (3.5) when |w| > 2" — 1, so the 2"

space bound of (3.4) is polynomial in |w|.) Since Z 2=5(") is p-convergent, it is immediate from
clause (i) that (3.2) holds. All that remains, then, is to verify (3.3).
For each language A C {0, 1}*, let
In={neN|KS* (A=) <2" - f(n)}.

Fix a language A for a moment and let n € I4. Then there exists mg € B,, such that A € Z, ;.
Fix such a program my and let 2,y € {0,1}* be the characteristic strings of Ao, A<,, respectively.
(Thus |z = 2" — 1, |y| = 2" — 1, and y = 2U(7g,n).) The definition of d tells us that d,(y) is
d,(x) times a telescoping product, i.e.,

b = dio) T Sty
= dy )220 (3.6)
= 20T
Since Cy, C Z,, r,, we have
o(n,y) = Z]; Pr(Zpr | Cy) > Pr(Zyr | Cy) = 1. (3.7)
TEDn

For each 7w € B,,, the events C, and Z,, . are independent, so

o(n,z) = GZJ:B Pr(Z, | Cy)

= Pr(Z, -
25, ) (35)

= |Bn|2_2

< 21—f(n)‘
By (3.6), (3.7), and (3.8), we have d,(y) > 1. It follows that A € C, C S1[d,]. Since n € I4 is
arbitrary here, we have shown that A € S[d,] for all A C {0,1}* and n € I4. Tt follows that, for
all A C {0,1}~,

A€ X = |l =
= A€ SYd,)io.

= Aeﬁ[jsl[d

t=0n=t
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i.e., (3.3) holds. This completes the proof. O

Corollary 3.5. Let ¢ € N and ¢ > 0. If

X ={AC{0,1} | KS¥*(A_,) > 2" — n® a.e.},

then pipspace(X ) = u(X | ESPACE) = 1.

o0
Proof. Routine calculus shows that the series > 27" is p-convergent. O
n=0

Corollary 3.5 is a substantial improvement of Theorem 3.1(a). We exploit this improvement
throughout the paper.

3.2 Complexity Cores

The distribution of languages with large uniform complexity cores in F was investigated in [26]. In
this subsection we investigate the distribution of languages with large nonuniform complexity cores
in ESPACE. We first present the necessary notation and definitions.

Given a machine M, an advice function h, and an input = € {0,1}*, we write M/h(z) = 1
if M accepts (z,h(]z|)), M/h(z) = 0 if M rejects (x,h(|z|)), and M(z) = L in any other case
(i.e., if M fails to halt or M halts without deciding (ax,h(|z|))). If M(z) € {0,1}, we write
spaceyr/p (@) for the number of steps used in the computation of M({z,h(|z]))). If M(z) = L,
we define spaceps/p(z) = oo. We partially order the set {0,1, 1} by L < 0 and L < 1, with 0
and 1 incomparable. A machine/advice pair M/h is consistent with a language A C {0,1}* if
M/h(z) <[z € A] for all z € {0,1}*.

Nonuniform complexity cores were first defined and investigated by Huynh [23] with respect to
the complexity class P/Poly.

Definition (Huynh [23]). Let s : N — N be a space bound and let A, K C {0,1}*. Then K
is a DSPACE(s(n))/Poly-complezity core of A if, for every ¢ € N the following holds. For every
machine M and polynomially bounded advice function h, if M/h is consistent with A, then the
fast set

F = {x| spaceypn(e) < c-s(lz]) + ¢}
has the property that |F'N K| is sparse.
(Note: Huynh’s original definition is only meaningful for A € REC/Poly because it only quanti-

fies over those M /h that decide A. The above definition coincides with Huynh’s for A € REC/Poly,
but is meaningful for all languages A.)

14



Intuitively, very complex languages must have large nonuniform complexity cores. This intuition
is supported by the following technical lemma.

Lemma 3.6. If s : N — N is space constructible and p is a polynomial, then every language A
with
KS"*(A=,) > 2" — p(n) ae.

has {0,1}* as a DSPACE(s)/Poly-complexity core.

Proof. We show the contrapositive. Assume that A does not have {0,1}* as a DSPACE(s)/Poly-
complexity core. Under this assumption, there exist a machine M, polynomially bounded advice
function h, and constant ¢ such that M given h is consistent with A and the set

F = { | spaceryu() < ¢ - s(lal) + ¢}

is non-sparse. Using M, ¢, and a machine for s, we construct a machine M’ to output y4_, asin
Figure 1.

M'({(h,y),n):
begin
for i = 2" to 2"*! — 1 do
begin
simulate M (s;, h);
(1) if M decides s; in < ¢-s(n) + ¢ space then
output [M(s;, W]:
(2) Otherwise output head(y); y = tail(y);
end for
end.

Figure 1: An algorithm that computes x4_, in the proof of Lemma 3.6.

Now consider the action of M’ on input ({(h(n),y),n), where y is the string A—,, with the bits
corresponding to the elements of F_, removed. On this input, the machine M’ correctly outputs
the bits of A—,, either (1) by deciding [s; € A] directly, or (2) by using the bits of y. Thus we have
the following.

KSGHM(AZ) < [(h(n), 3

VANVAN
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< 2/h(n)|+ 242" — |F=,|

By universal simulation, there exists a constant ¢; € N such that

I(Scl(os(n)-l-c)-l-q (A:n) ](S]C\f/(n)-l—c(A:n) +a

<
< 2" —|Fou] 4 2|h(n)| 4+ 2 4 €.

The above inequality, combined with the fact that £ is not sparse, proves that for every polynomial
P,
I(Sn's(n)(A:n) < ](SCl(c~s(n)+C)+C1 (A:n) < 9on p(n) io.

a

Since almost every language in ESPACE has high space-bounded Kolmogorov complexity almost
everywhere, Lemma 3.6 implies that almost every language in ESPACE has maximal nonuniform
complexity cores.

Corollary 3.7. Fix ¢ € N. Then, almost every language in ESPACE has {0,1}* as a
DSPACE(2¢")/Poly-complexity core.

Proof. By Corollary 3.5, the set
X = {AC{0,1}" | KS¥™(AL,) > 2" — Vi ae}

has pspace-measure 1. By Lemma 3.6, each element of X has {0,1}* as a DSPACE(2")/Poly-
complexity core. It follows that almost every language in ESPACE has {0,1}* as a
DSPACE(2¢")/Poly-complexity core. O

3.3 Incompressibility

In [26] it is shown that almost every language in E is incompressible by <F -reductions. Here we

logn_incompressible by §fn/P01y—reductions. First

” an idea originally exploited by Meyer [46].

show that almost every language in ESPACE is n
we explain “incompressibility by many-one reductions,’

Definition. The collision set of a function f:{0,1}* — {0,1}* is
Cp=Aee{0, 37| By <2)fly) = f(2)}

Here, we are using the standard ordering sp < s1 < 89 < -+ of {0,1}*.
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Definition. A function f: {0,1}* — {0, 1}* is one-to-one almost everywhere (or, briefly, one-to-one
a.e.) if its collision set C'y is finite.

Definition. A language A C {0,1}* is incompressible by <F -reductions if every <P -reduction of
A is one-to-one a.e.

P/Poly
m

Definition. Let g : N — N. A language A C {0, 1}* is g(n)-incompressible by < -reductions

if every <H/TY_reduction [ of A satisfies satisfies |(C)<,| < g(n) a.e.

Definition. Let s,g : N — N. A language A C {0,1}* is ¢g(n)-incompressible by §ESPACE(S)/POIY—

reductions if every <DSPACE()/POY poduction [ of A satisfies |(C'f)<n| < g(n) ae.

Intuitively, if f is a many-one reduction of A to B and (' is large, then f compresses many
questions “x € A?” to fewer questions “f(z) € B?” If A is incompressible by a class of many-one
reductions, then very little such compression can occur.

Note that there are certain classes of many-one reductions for which no language is incompress-
P/Poly DSPACE(s)/Poly
m or <m

ible. Specifically, no language is incompressible by < -reductions, because
an infinite set of inputs can be encoded into an advice function. Similarly, if p(n) is a polynomial
then no language is p(n)-incompressible by §fn/P01y—reductions. However, we now show that, if ¢ is
superpolynomial (i.e., for every polynomial p, g(n) > p(n) a.e.), nondecreasing, and computable in

exponential space, then almost every language in ESPACE is g(n)-incompressible.

Theorem 3.8. Fix ¢ € Z*. Let ¢ : N — N be superpolynomial and nondecreasing, and assume
that g(n) is computable in 2" space. If

X ={AC{0,1}" | Ais g(n)-incompressible by §BLSPACE(2W)/POIY—reductions},

then pipspace(X ) = u(X | ESPACE) = 1.

Proof. We follow the format of the proof of Theorem 3.4. Assume the hypothesis. By Theorem
2.2, it suffices to exhibit a pspace-computable function d such that each d,, is a martingale,

Z d,(X) is p-convergent, (3.9)
n=0
and o .
xec M U 9'dal (3.10)
t=0n=t
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Some notation will be helpful for the remainder of the proof. For n € N and g : N — N, let

there exist ng < n and hg, ..., h, € {0,1}59(7)
F[Adv(g)(n)= < f:{0,1}* — {0,1}*| such that, for all z € {0,1}=",
My, (2, b)) = f(2) in < 29 space.

Informally, the class F/Adv(g)(n)is the set of functions that are computed correctly over {0, 1}<"
by one of the first n machines with advice bounded in length by ¢(n).

For n € N, let
G, = (f € Ao = 300 | 1€l = G, (3.11)
and let
G, = {f1{0, 135" | f € G}, (3.12)

where f1{0,1}<" denotes the restriction of f to {0,1}<". For n € N and f € G/, let
ntl_ S om . .
Buy = {w € {0,171 | Vi j <ot 1, f(s)) = f(sj) = ali] = a[j]}

and

Zns= |J C..
l’EBnJ

(Thus Z,, ¢ is the set of all languages A such that no counterexample to the statement “f is a
many-one reduction of A” exists among the strings in {0,1}<".) For n € N and w € {0, 1}*, let

o(n,w)= Z Pr(Z, ¢ | Cyu), (3.13)
fegn

where the conditional probabilities Pr(Z, ; | C,) = Pra[d € Z,5 | A € C,] are computed
according to the random experiment in which a language A C {0,1}" is chosen probabilistically,
using an independent toss of a fair coin to decide membership of each string in A. Finally, define
a function d : N x {0,1}* — [0,00) as follows. (In all three clauses, n € N, w € {0,1}*, and
be{0,1}.)

(i) If0 < |w| < 2" — 1, then d,,(w) = 27".

(i) 2" = 1 < |w| < 2+ = 1, then d,(wb) = d,(w) L2,

(iii) If |w| > 2"+ — 1, then d,(wb) = d,(w).
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(Note that the condition o(n,w) = 0 can only occur if d,,(w) = 0, in which case we understand
clause (ii) to mean that d,(wb) = 0.)
It is clear from (3.13) that

o(n,w0)+ o(n, wl)
2

for all n € N and w € {0,1}*. It follows by a routine induction on the definition of d that each
d,, is a martingale. It is also routine to check that d is pspace-computable. Furthermore, since the

o(n,w)=

sum Y. 27" is p-convergent, it is immediate from clause (i) that (3.9) holds. All that remains is

n=0
to verify (3.10).
Let A € X¢ and fix f € DSPACEF(2°")/Poly such that f is a many-one reduction of A with
|(C'f)<n| > g(n) i.0. Define the set

Iyy={neN| feg,}.

Since g is superpolynomial and f has [(Cy)<,| > g(n)i.0., it follows that I, s is infinite. Let
n € Iy 5 andlet 2,y € {0,1}* be the characteristic strings of Ao, A<,,, respectively. The definition
of d tells us that d,(y) is the product of d,(«) and a telescoping product, i.e.,

[}

n_lan, 0..2"—144
do(y) = du(x) 11 gEn,z%O..Z"—Z-I—Z%;
_ dn(x)cr(n,y) (314)

Since C, C Z,, r, we have

o(n,y) = Z Pr(Z, ;| Cy) > Pr(Z,s| Cy) =1 (3.15)
fegr

. . gln) . .
Now a simple counting argument shows that there are at most 2422 ~" functions in G/ that have

L Cp=nl
distinct behaviors on {0,1}<". Furthermore, for each f € G,, there are at most 22~ 5
o Cp=nl
possible 2" bit extensions of = satisfying f. (That is, there are at most 2* "2 strings » such
Cp=nl  gn)
that 2z € Y}, s.) Thus we have Pr(Z, s | C,;) <27 = — 270 , SO
o(n,z) = Y Pr(Z,5|Cy)
fea;,
r
in
A (3.16)
_9n)
= g
< 27
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By (3.14), (3.15), and (3.16), we have d,(y) > 1. It follows that A € C, C S1[d,]. Since n € I4
is arbitrary here, we have shown that A € S'[d,] for all A € X° and n € I4 . It follows that, for
all A C{0,1}*,

Ae X = df such that [I4¢] =
= Ac S'd,]io.

= Ac ﬁ Ej S'd,),

t=0n=t

i.e., (3.10) holds. This completes the proof. O

logn P/Poly
m

Corollary 3.9. Almost every language in ESPACE is n'°8"-incompressible by < -reductions.

a

Corollary 3.9 implies the existence of an n'°8™-incompressible language A in ESPACE, but does
not specify a constant ¢ such that A € DSPACE(2°"). However, a straightforward diagonalization
shows that there is such an A in DSPACE(2°"), provided that ¢ is larger than 1. Thus we have the
following useful fact.

Lemma 3.10. There is a language A € DSPACE(22") that is n'°8"-incompressible by §fn/P01y—
reductions.

4 Completeness and Weak Completeness under P/Poly-Turing
Reductions

In this section, we investigate the complexity and distribution of languages that are hard or weakly
hard for ESPACE under §§/P01y—reductions — nonuniform Turing reductions that are computed
by polynomial-size circuits. We establish a tight, exponential lower bound on the space-bounded
Kolmogorov complexities of languages that are weakly §§/P01y—hard for ESPACE. We also prove

the Small Span Theorem for §§/P01y—reducibility in ESPACE. This latter result implies that the
set of all §$/P01y—hard languages for ESPACE has pspace-measure 0, and that every §$/P01y—degree
has measure 0 in ESPACE.

The following theorem extends a result of Huynh [22].

Theorem 4.1. For every weakly §$/P01y—hard language H for ESPACE, there exists ¢ > 0 such
that

KSQne(Hgn) > 2" ae.
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Proof. Let H be weakly §$/P01y—hard for ESPACE, and let
X ={AC{0,1}*| K5¥" (A=) > 2" — Vn acel).

Since (P/Poly)r(H) does not have measure 0 in ESPACE and X has measure 1 in ESPACE (by
Corollary 3.5), the set (P/Poly)r(H )N X N ESPACE is not empty. Fix A € (P/Poly)r(H)N X,
and let M/h be an oracle machine/polynomial advice pair that decides A in polynomial time using
H as an oracle. Moreover, fix & € N such that, independently of the oracle, the computation
Mz, h(|z])) queries the oracle on strings of length at most |z|* for all sufficiently large =, and let
€= i We will essentially show that

7746 n2€ €
[(52 (an) > [(522L J(ASLn2€J) > 2" a.e.

Let M be a machine that efficiently implements the algorithm in Figure 2, let n € N, and let 7
be a minimal 2" -space-bounded program for XH,- If m = |[n?], then the machine ]T/[\, on input
((h(0), h(1), ..., h(m))w,m), outputs ya_, using less than co- 2" space. Thus there is a constant
¢1 such that, for all sufficiently large n,

ES*"(Acw) < KSE¥ (Agn) + 1
[(R(0), A1), ., A +

< KSY (Hep)+ [(h(0), ... h(m))| + ci.

IN A

Since KSQM(ASm) > 2" — \/m a.e., and the length of (h(0),...,h(m)) is bounded by ¢(m) for

some polynomial ¢, it follows that

KS¥ (He,) > KS¥"(Agy) - g(m)— e
> 2l /2]~ g([n*)) —
> 2" ae.
This completes the proof. O

Corollary 4.2 (Huynh[22]). For every <F-hard language H for ESPACE, there exists € > 0 such
that .
KS% (Hey) > 2™ ae.
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M({hoy ooy by )T, m):
begin
for each s; € {0,1}=™ do
begin
(1) Simulate M(s;, h,,|) as usual, but
when M queries the oracle on s; perform (1.1).
Simulate U(w, [m®*/?]) and dispose of the output
until the j¥ bit is written.
if the j* bit is a ‘0’ then continue (1) as if
the oracle said “No”.
if the j bit is a ‘1’ then continue (1) as if
the oracle said “Yes”.
(2)  When M(s;, hy,,) halts and accepts or rejects,
write a ‘17 or ‘0°, respectively, on the output tape.
end for
end.

(1.1)

Figure 2: The algorithm for M in the proof of Theorem 4.1.

Note that Theorem 4.1 extends Corollary 4.2 in two directions. First, Theorem 4.1 uses a more
general reducibility. Second, and more importantly, Theorem 4.1 uses a more general notion of
hardness.

The following result shows that Theorem 4.1 cannot be significantly improved, even if we restrict
our attention to languages that are <P -complete for ESPACE.

Fact 4.3. For every ¢ > 0, there exist a constant ¢ € N and a <! -complete language C for ESPACE
such that .
KS* (C-,) < cae.

and .
KS* (Ccp) < cace.

Proof. By aroutine padding argument, there is a language C' € DSPACE(Q”g) that is <P -complete
for ESPACE. Then there are fixed programs mg, 71 such that

(1) U(mg,m) = xc_, in less than 2™ space, and
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(2) U(r1,n) = Xcoo, in less than 27° space.

a

The rest of this section is devoted to proving and exploiting the Small Span Theorem for
§§/P01y—reductions in ESPACE. We first show that the Small Span Theorem has two equivalent

formulations.
We call a reducibility <g an extension of <P if, forall A, B C {0,1}*, A <I' B implies A < B.

Lemma 4.4. If <z is a transitive extension of §fn, then the following two conditions are equivalent.

(1) For every A € ESPACE,
#(R(A) | ESPACE) =0

or

fipspace(R™1(4)) = 4(R~1(4) | ESPACE) = 0,
(2) For almost every A € ESPACE,
Hpspace(R ™1 (4)) = 0.
(Note that (1) is the Small Span Theorem for <g-reductions in ESPACE.)

Proof. Let
X={AC{0,1}" | ,upspace(R_l(A)) =0}.

Assume that (1) holds. Then X contains every weakly <g-complete language for ESPACE.
Since <z is an extension of §fn, it follows by Theorem 2.3 that X has measure 1 in ESPACE. Thus
(2) holds.

Conversely, assume that (2) holds, and let A € ESPACE. We have two cases.

Case I. If R(A)N X NESPACE = {), then (2) tells us that u(R(A)ESPACE) = 0.
Case II. If R(A)NXNESPACE # ), then fix a language B € R(A)NX. Then ppspace(R™H(B)) = 0
and R71(A) C R7Y(B) (because <g is transitive), so

fipspace(R™1(4)) = 4(R~1(4) | ESPACE) = 0,
In either case, condition (1) is affirmed. O

Our proof of the Small Span Theorem for §$/P01y—reductions in ESPACE uses a probability mea-
sure on a specialized class ADV of advice functions. We now describe this class and its probability

measure.
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Let ADV be the class of all advice functions h : N — {0, 1}* satisfying |h(n)| = a(n) for all
n € N, where the function ¢ : N — N is defined by

a(n) = bnt 1)~ bn),
b(n) = pltlog(i+n)

Also, for every polynomial ¢(n), g(n) = o(a(n)). In fact, it is easy to see that, for all A, B C {0,1}*
satisfying A §§/P01y B, there exist k£ € N and h € ADV such that

A= LM ),

where M;, is the k** polynomial time-bounded oracle Turing machine.
We now specify a probability measure on the set ADV. Define a partial a(n)-advice function to
be a finite function

B o{0,1,.. k—1} — {0,1}*

such that £ € N and, for all 0 < n < k, |F/(n)| = a(n). For each partial a(n)-advice function A’,
define the cylinder generated by h' to be

CYL(R')={h € ADV | h{0,1,....k— 1} = '},
where A1{0,1,...k — 1} denotes the restriction of h to the set {0,1,...k — 1}. The probability of
this cylinder in the sample space ADV is defined to be

k-1
Pr(CYL(K')) = J] 27
n=0

This probability measure is then extended to a complete probability measure on ADV in the usual
way [19, 10].
In the proof of the following theorem, we work in the sample space

Q = ADV x P({0,1}%)

with the product probability measure, where probability on ADV is defined as above and we use the
uniform distribution on P({0,1}*). Intuitively, an element (h, B) € § is chosen probabilistically
by performing the following two random experiments independently of one another.
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(i) For each n € N (independently), choose h(n) € {0,1}*") according to the uniform distribu-
tion.

(ii) For each z € {0,1}* (independently), toss a fair coin to decide whether z € B.

We now prove the Small Span Theorem for §§/P01y—reductions in ESPACE. Our proof is a

nonuniform, space-bounded extension of a technique used by Fenner, Lutz, and Mayordomo [18] in
the investigation of computational depth.

Theorem 4.5 (Small Span Theorem). For every A € ESPACE,
p#((P/Poly)r(A) | ESPACE) =0

or

fpspace((P/Poly)T'(A)) = u((P/Poly)7'(A) | ESPACE) = 0.

Proof. Let
Y = {A C {0, 1} |tpspace( (P /Poly) 7' (4)) = 0}.

By Lemma 4.4, it suffices to prove that
w(Y | ESPACE) = 1. (4.1)
For each k,j € N and A C {0, 1}*, define the event E;ﬁj C Q by
iy = {(h. B) | (Y0 < i < j)[si € A] = [si € L(MP/R)]}.
For each k.7 € N and A C {0, 1}, let
Nak,j) = i < 5 | Pr(edin) < 5 Pr(eA Y.
Note that, for all k,j € N and A C {0,1}%,

Pr(&f) < 27 Nalki), (4.2)

For each A C {0,1}*, define a function d* : {0,1}* — [0, 00) by

d4(w) = i f: 27 A (w),

k=0 35=0
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where, for all k,j € N and w € {0, 1}*,

0t ()= 2P Pr(ADV x C,, | £F,) if Pr(Ef) >0
,] 1 if Pr(&f;) = 0.

It is routine to check that each d* is a martingale that is (by depth-first-search on answers to oracle
queries) pspace-computable if A € ESPACE.
We now show that, for all k,j € N, all A, B C {0,1}*, and all h € ADV, if A = L(MP/h),
then 4 4
lim inf df,; (x5[0..1 = 1]) > 9N a (k) =b(n(5) (4.3)

where n(j) = [log(j + 1)]. To see this, assume the hypothesis. Since A = L(MP/h), we
have (h,B) € Eéj, 80 Pr((‘,’;ﬁj) > 0. Let [ € N be large enough that, for all 0 < ¢ < 7, all
queries of (MP /h)(s;) are among sq, sy, -, s_y. That is, [ is large enough that (M2 /h)(sg), -+,
(MPB/h)(s;_1) are determined by the [-bit prefix w; = xp[0..l — 1] of B.

Let h; = h1{0,1,...,n(j)—1}. Note that n(j) is the least n such that {sg,...,s;_1} C {0,1}<",
so h; is the smallest partial a(n)-advice function that is a restriction of k and provides advice for all
the inputs sg,...,s;_;. In particular, since A = L(MP/h), it follows that CYL(h;) x C,, C E;ﬁj,
whence

Pr(&f|ADV x Cy,)

v

Pr(CYL(h;) X Cy |ADV X Cy,)

It follows by (4.2) that

ditj(w) = 2" Pr(ADV x Cy,|E¢)
Pr(ADV x Cy,) Pr(E{|ADV x C,,)

= 2 Pr(El)
Pr(&1;|ADV x Cy,)

B Pr((‘,’;ﬁj)

N 9-b(n(s))

- Pr((‘,’;ﬁj)
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> 9Na(k,g)=b(n(5))
This confirms (4.3).
Now let
X ={A4C{0,1}"| for all k£ € N, for all but finitely many 7 € N, N4(k,j) > %},

assume that A € X, and let B € (P/Poly)7'(A). Fix k € N and h € ADV such that A = L(MP/h).
Then, writing w; = yg[0..0 — 1], (4.3) tells us that

lim sup dA(wl) > limsup Z 9- 5 dk] wy)

[—o0 l—o0

> 22 = hmmfdk](wl)

7=0
> ZQNA )=l =5
Since A € X, we have Nu(k,j) — b(n(j)) > % for all but finitely many 5 € N. Thus there is a

constant ¢ € N such that
hmsupd —c—I—ZQ__

[—co

Thus B € §°°[d4]. This proves that, for all A € X,

(P/Poly);'(A) C §>[d4]. (4.4)

We next show that
Hpspace( X) = L. (4.5)
To see this, for each k,j € N, let

Z; = {A C{0,1}|Na(k,j) < % .

Define
d:NxNx{0,1}* = [0,00)
di,j(w) = Pr(Z, ;|Cu)
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forall k,j € N and w € {0, 1}*. It is easy to check that d satisfies conditions (i) and (ii) of Theorem
2.2.
By the Large Deviation Lemma (Lemma 2.1) for each k,j € N,
115 4
A j(N) = Pr(Zy,;) < Pr{Na(k,j) < 5] < e,

where ¢ = Slﬁ. Thus the series ~72 dy (), for k € N, are uniformly p-convergent.

For all k,j € N and A € Z; ;, it is clear that, for all sufficiently large I, dy, ;(x4[0..l —1]) = 1.
Thus, for all k,j € N, Zy; C S'{dy ]

The preceding two paragraphs, together with the uniform, pspace first Borel-Cantelli lemma
(Theorem 2.2), tell us that

oo 00 00

,upspace(Xc) = ,upspace( U m U Zk,z) = 07

k=0 5=01i=7

whence (4.5) holds.

We now conclude the proof. By (4.4) and the fact that d4 is pspace-computable when A €
ESPACE, we have X N ESPACE C Y. It follows that Y°N ESPACE C X¢, whence (4.5) tells us
that

0 < (Y| ESPACE) = pipspace(Y N ESPACE) < pipspace(X€) = 0,

i.e., that (4.1) holds. O

We conclude this section with some consequences of the Small Span Theorem. Recall that
Hr(ESPACE) and Cr(ESPACE) denote the sets of languages that are <g-hard and <g-complete,

respectively, for ESPACE. We first show that the set of §§/P01y—hard languages for ESPACE is very
small.

Theorem 4.6. ,upspace(HE/POly(ESPACE)) = 0.

Proof. Fix a language C' that is <! -complete for ESPACE. Then ESPACE C P,(C) C
(P/Poly)T(C), so u((P/Poly)r(C)ESPACE) # 0. Hence, the Small Span Theorem tells us that

Hpspace( (P/Poly) T (C)) = 0. Since Hy/"(ESPACE) C (P/Poly);'(C), it follows that
Hpspace(Hy! TV (ESPACE)) = 0. .

Corollary 4.7. ,upspace(Ci/POly(ESPACE)) = 0. 0O

Let WHR(ESPACE) and WCR(ESPACE) denote the sets of languages that are weakly <z-
hard and weakly <g-complete, respectively, for ESPACE. Theorem 2.3 tells us that, in contrast
with Theorem 4.6 and Corollary 4.7,

fpspace WHE (ESPACE)) = p(WCE (ESPACE) | ESPACE) = 1.
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Thus, almost every language in ESPACE is weakly <P -complete, hence certainly weakly §$/P01y—

complete, for ESPACE.
We next show that every §§/P01y—degree has measure 0 in ESPACE.

Theorem 4.8. lor all A C {0, 1}*,

p(degh/Po¥ (A) | ESPACE) = 0.

Proof. Let A C {0,1}*. If degE/POIY(A) NESPACE = 0, the theorem is clearly affirmed, so assume

not, and fix B € degi/de(A) N ESPACE. Then, by the Small Span Theorem, we have

pw((P/Poly)r(B) | ESPACE) =0

or
1((P/Poly)7'(B) | ESPACE) = 0.

Fither of these alternatives implies that ,u(degi/POly(B) | ESPACE) = 0. Since degE/POIY(A) =

degi/de(B), this completes the proof. O

Finally, we note that Theorem 4.8 generalizes the following known result.

Corollary 4.9 (Lutz [38]). pu(P/Poly | ESPACE) = 0.

5 Completeness and Weak Completeness Under P /Poly-Many-
One Reductions

We now investigate the nonuniform complexities of languages that are hard or weakly hard for
ESPACE under §fn/P01y—reductions — nonuniform many-one reductions that are computed by
polynomial-size circuits. We establish an exponential lower bound on the sizes of complexity
cores of weakly §fn/P01y—hard languages for ESPACE. More importantly, we establish nontrivial
upper bounds on the sizes of nonuniform complexity cores, and on the space-bounded Kolmogorov
complexities, of §fn/P01y—hard languages for ESPACE. Our upper bounds are violated by almost
every element of ESPACE, so the fact that they hold for the §fn/P01y—hard languages provides a

concrete sense in which the §fn/P01y—complete languages for ESPACE are unusually simple elements

of ESPACE. All the above bounds are shown to be tight.
The following theorem extends work of Huynh [23], who showed that every <P _hard language
for ESPACE has a dense P/Poly-complexity core. Our proof uses the following special notation.
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The nonreduced image of a language S C {0,1}* under a function f:{0,1}* — {0,1}*is

2(8) = {f(2) | 2 € § and | f(2)] > [a]}.
Note that
FA(F7H8)) = 50 f2({0,1}7)
for all f and 5.

Theorem 5.1. For every weakly §fn/P01y—hard language H for ESPACE, there is a real € > 0 such
that H has a dense DSPACE(2"")/Poly-complexity core.

Proof. Let H be weakly §fn/P01y—hard for ESPACE, let
X ={AC{0,1}* | Ais n'°8"incompressible by §BLSPACE(2n)/POIY—reductions},
and let
Y ={AC{0,1}" | A has {0,1}* as a DSPACE(2")/Poly-complexity core}.
By Corollary 3.7 and Theorem 3.8 the set X N'Y has measure 1 in ESPACE. Moreover, since
(P/Poly)m(H ) does not have measure 0 in ESPACE, X N Y N (P/Poly)m(H ) is not empty. Fix
AeXnYN(P/Poly)m(H),let f be a §fn/P01y—reduction of A to H,let ¢ be a strictly increasing
polynomial bound on the length of strings produced by f (i.e., g(n) > max{|f(z)] ‘ z € {0,1}="}),
and let € = m. We show that
K = f2({0,1}7)

is a dense DSPACE(2")/Poly-complexity core of H.

By our choice of €, ¢(|n*¢|) < n for all sufficiently large n. Let W = {x‘|f(x)| < |z|}. Then,

for all sufficiently large n € N, writing m = |n?¢], we have

FHO ™) = {0, 13" € f({0,1357) = f(Wgn)
c f2{o,13=m)
C Keym)
C K<,
whence
[K<nl > |£({0,1357)] = [{0,13<™|

> {0, 157 = [(Cp)em] — {0,137

= 2" = |(Cf)<ml

> ol — [(Cp)cal.
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Since |(C'f)<n| < n'°8™ a.e., it follows that |K<,| > 2 for all sufficiently large n. Thus K is dense.
To see that K is a DSPACE(2")/Poly-complexity core of H, let ¢ € N, let M be a machine
and h be a polynomial advice function such that M/h is consistent with H, and define the fast set

F = {z | spacepp(z) < c- 211 4 ¢},
Let ]\7/?@ be a machine/polynomial advice pair (constructed in the obvious way) such that
M/h(x) = M/h(f(x))

for all z € {0,1}*. Since f reduces A to H and M/h is consistent with H, M /h is consistent with
A. Since A has {0,1}" as a DSPACE(2")/Poly-complexity core, the fast set

F={z| space]@/ﬁ(x) <c- 2"+ ¢}

is sparse. By our choice of ¢, y € F'n f({0,1}*) implies y € f(ﬁ) for all but finitely many y. Since
F is sparse, there is a polynomial p such that, for all » € N,

(PN )<l = [(F0f2({0,135") <]
< PEFEN{0,1357)<nl +
< [Fn{0, 135 4 ¢
< p(n) + e
Hence F'N K is sparse. Thus K is a DSPACE(2"")/Poly-complexity core of H. O

Corollary 5.2 (Huynh [23]). Every <P -hard language for ESPACE has a dense P/Poly-complexity
core. 0

The following result shows that Theorem 5.1 cannot be significantly improved, even if we restrict
attention to languages that are < -complete for ESPACE.

Fact 5.3. For every ¢ > 0, there is a <F _complete language C' for ESPACE such that each
DSPACE(2"")/Poly-complexity core of C' is sparse.

Proof. Let C' € DSPACE(2™) be <P -complete for ESPACE. Since C can be decided in 2" space,
every DSPACE(2"™)/Poly-complexity core of C' must be sparse. O

The rest of this section is devoted to upper bounds on the nonuniform complexities of §fn/P01y—

hard languages for ESPACE.
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Lemma 5.4. Let A, H C {0,1}*. If A € DSPACE(2°), A is n'°8"-incompressible by §fn/P01y—

reductions, and A §fn/P01y H, then there exist B, D € DSPACE(2°")/Poly such that D is dense
and B=HnND.

Proof. Assume the hypothesis and let f be a §fn/P01y—reduction of Ato H. Let B = fZ(A) and
D = f2({0,1}*). (Recall that f2(9) = {f(x) ‘ € S and |f(z)| > |z|}.) Since A € DSPACE(2°")
and f € PF/Poly, it is clear that B, D € DSPACE(2°")/Poly. Furthermore, it is clear that

D is dense (using the argument given for K in the proof of Theorem 5.1), and B = fZ(A) =
f2(FNH) = Hn f2({0,1}*) = Hn D. O

By Lemma 5.4 and Lemma 3.10, we now have the following result, which says that every §fn/P01y—

hard language for ESPACE is DSPACE(22")/Poly-decidable on a dense, DSPACE(2%")/Poly-
decidable set of inputs.

Theorem 5.5. For every §fn/P01y—hard language H for ESPACE, there exist B,D in
DSPACE(22?")/Poly such that D is dense and B = H N D. O

We now derive our upper bound on the sizes of complexity cores of §fn/P01y—hard languages for

ESPACE.

Theorem 5.6. Every DSPACE(2%")/Poly-complexity core of every §fn/P01y—hard language for ES-
PACE has a dense complement.

Proof. Let H be §fn/P01y—hard for ESPACE, and let K be a DSPACE(22")/Poly-complexity core of
H. Choose B, D for H as in Theorem 5.5, and fix machine/advice pairs Mpg/hp, Mp/hp that decide
B, D and testify that B, D € DSPACE(2%")/Poly. (To be more precise, let Mp, Mp be machines
and hp, hp be polynomially bounded advice functions such that [Mp({z,hg(|z|)})] = [« € B].
[Mp({z,hp(|zD)] = [& € DI, spacey,((z, hp(|z]))) = O(22F), and spaceyy, ((z, hp(|2]))) =
0(22171).) Let M be a machine that implements the following algorithm.

M((z,(y,2)))
begin

if Mp({z,z)) accepts
then simulate Mp({(z,y))

else run forever.
end M.

Then 2 € D = M({x,{(hs(|z|),

) hp(lz))))) =[x € Bl=[r € HND] =[x € Hland 2 ¢ D =
M((z, (hp(lz), hp(lz])))) = L <

Dl
[« € H], so M/{hp,hp) is consistent with H. Furthermore,
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there is a constant ¢ € N such that for all € D,
spaceyy({z. (hp(J2]), hp(l))) < e - 22 4 c.

Since K is a DSPACE(2%")/Poly-complexity core of H, it follows that K N D is sparse. Since D is
dense, it follows that D — K C K¢ is dense. O

We now use Theorem 5.5 to show that every §fn/P01y—hard language for ESPACE has unusually
low space-bounded Kolmogorov complexity infinitely often.

Theorem 5.7. For every §fn/P01y—hard language H for ESPACE, there exists € > 0 such that

KS¥"(H=,) < 2" — 2" i.o.

Proof. Let H be §fn/P01y—hard for ESPACE and fix B, D as in Theorem 5.5. Let the machines
Mpg, Mp and the advice functions hp, hp testify that B, D € DSPACE(2%")/Poly, and fix ¢ > 0
such that |D_,| > 27" i.o.

M({u,v)y, n);
begin
z= J_zn;
for : = 0 to 2" — 1 do
begin
if Mp(w;,u) accepts then
simulate Mp(w;,v);
if this simulation accepts or rejects
then set z[i] = 1 or z[i] = 0, respectively
else

(2[d], y) = (head(y), tail(y));

end;
output z;
end.

Figure 3: The machine M in the proof of Theorem 5.7.

Let M be a machine that efficiently implements the algorithm in Figure 3, and let y, be
the string xp_., with the bits corresponding to D_,, removed. Then the machine M, on input

n?
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({(hp(n), hp(n))y,,n), outputs the string xp_, and uses O(22") space. It follows that, for all
sufficiently large n,
KS*"(H,) KSZ e (Hoy) + ¢
[(hp(n), hB(n))ynl| + ¢
2" = [D=n| + [(hp(n), hp(n))] + c.

IAN A IA

Because both hp and hp are bounded in length by a polynomial, there is a polynomial p such that
|(hp(n), hp(n))| < p(n). Thus, for infinitely many n,

€

KS?"(Hep) < 2% = |Dep| + p(n) + ¢ < 27 — 2.

a

By Corollaries 3.5 and 3.7, almost every element of ESPACE fails to obey the upper bounds on
nonuniform complexity given by Theorems 5.6 and 5.7. Thus, with respect to size of nonuniform
complexity cores and space-bounded Kolmogorov complexity, the §1F;/ Poly
unusually simple elements of ESPACE.

By Theorem 2.3, almost every element of ESPACE is weakly <P -complete. It follows by

-complete languages are

Corollaries 3.5 and 3.7 that the upper bounds on nonuniform complexity given by Theorems 5.6
and 5.7 do not hold for all weakly <P -complete languages.
Our next theorem shows that Theorem 5.6 cannot be significantly improved.

Theorem 5.8. For every ¢ > 0, there exists a < -complete language C' for ESPACE with a
DSPACE(2%")/Poly-complexity core K with density

|K<p| > 2" — 27 ace.

Proof. Fix ¢ > 0 and £ € N such that ¢ > % > 0, let A be <P _complete for ESPACE, and
fix D € ESPACE such that D has {0,1}* as a DSPACE(2%")/Poly-complexity core. Let B =
{01 12 | & € A}, let K = {0,1}*—{0/*"12 | 2 € {0,1}*}, and define C = (DN K)UB. Since B is
<P _complete for ESPACE, K is decidable in polynomial time, and K N B is empty, it is clear that
C'is <P -complete for ESPACE. Moreover, notice that

|[(§n| = [{o, 1}5” _ {0|x|k1x|x e {0, 1}*}5n|
2 = 1= {0 1w | a4+ 14 faf <}
2n+1 _ 271%{—1

€

a.e.

(AVARLY/

2n+1 _ 2n
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Thus it suffices to show that K is a DSPACE(22")/Poly-complexity core of C.
Let M/h be a machine/polynomial advice pair that is consistent with C, let ¢ be a constant,
and define the fast set

F={ze{0,1}" | spaceprjp(z) < c- 227l 4 1,
Let M be a machine (designed in the obvious way) such that

— 1 itz € K¢
M /h(z) = { M/h(z) otherwise,

and define the fast set
F={ze{0,1} spaceM/h( 2) < (c+1)- 2%l 4 ).

Since membership in K° is decidable in polynomial time, it is clear that the symmetric difference
F A F has finite intersection with K. Furthermore, since M is consistent with D, Fis sparse.
Since

FNK = (FNF°NEK)U(FNFNK)
(FAF)NK)U(FNFNK)

C
C (FAF)NK)UF,

it follows that F'N K is sparse. Thus K is a DSPACE(2%")/Poly-complexity core of C.

As the following theorem shows, the upper bound given by Theorem 5.7 is also tight.

Theorem 5.9. For every € > 0, there exists a <! -complete language C' for ESPACE such that

KS7"(Czp) > 2" =2 ae.

Proof. Fix ¢ > 0 and £ € N such that ¢ > % > 0. Let A be < -complete for ESPACE, let
B = {0F"12 | 2 € A}, and let K = {0l*I"12 | 2 € {0,1}*}. Note that B is < -complete for
ESPACE and K is decidable in polynomial time. Now construct €' in stages as in Figure 4. Since
C N K = B, it is clear that C'is <! -complete for ESPACE. It thus suffices to show that

KSQM(C:TL) > 27— 2™ ae.

35



Stage 0:
C = B:O?

Stage n:

for each subset C'™ of {0,1}" do
done = true;
if (C"n K=,) = B=, then
begin

1
for each program 7 € {0, 1}<2n_2nk do
done=false if U(7,n) = ycn in < 227 space
if done then
cC=Ccucm
exit stage n;
end
C=CUB_,;
END OF CONSTRUCTION

Figure 4: The construction of a <P -complete language with high KS a.e.

There are |P(KZ,)| subsets C™ of {0,1}" that satisfy (C" N K=, ) = B=,. For almost every n,
1
since |P(KZ,)| > 22"=2"" {here is some set C™ such that (C"N K=,) = B=, and no string 7 in
1
{0, 1}<2n_2nk produces yon in < 22" space. Hence, we have

1
KS¥"(Co,) = KST7(Cm) > 2m —ont
> 27— 2™ ae.

6 Conclusion

The most important problems arising from this work are to determine whether Small Span The-
orems hold for §$—reductions or §§/P01y—reductions in the exponential-time complexity classes E
and E,. As noted in the introduction, these problems are closely related to fundamental ques-

tions of complexity theory, so they may be very difficult. More modest, but nevertheless useful,
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objectives, would be to (i) investigate whether the work of Ambos-Spies, Neis, and Terwijn [5] can
be extended to obtain Small Span Theorems for unbounded query reductions in E and Es; and
(ii) find complexity-theoretic characterizations of the Small Span Theorems for §$—reductions and

gi/POIY—reductions in E and Es.

There is also an interesting question concerning the complexities of §$/P01y—complete prob-

lems for ESPACE. It was shown in section 5 that every §fn/P01y—complete language for ESPACE
obeys upper bounds on nonuniform complexity (space-bounded Kolmogorov complexity and size of
nonuniform complexity cores) that are violated by almost every language in ESPACE, i.e., that the
§fn/P01y—complete languages for ESPACE are unusually simple elements of ESPACE. Similar results
hold for <P -complete languages for E and E; [26]. However, it remains an open problem whether

there is a natural sense in which the §$/P01y—complete languages for ESPACE are unusually simple

elements of ESPACE.
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