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Abstract

Under the hypothesis that NP does not have p-measure 0 (roughly,
that NP contains more than a negligible subset of exponential time),
it is show n that there is a language that is <}-complete (“Cook com-
plete”), but not <P -complete (“Karp-Levin complete”), for NP. This
conclusion, widely believed to be true, is not known to follow from
P # NP or other traditional complexity-theoretic hypotheses.

Evidence is presented that “NP does not have p-measure 0”7 is a
reasonable hypothesis with many credible consequences. Additional
such consequences proven here include the separation of many truth-
table reducibilities in NP (e.g., k queries versus k+1 queries), the class
separation £ # NE, and the existence of NP search problems that are
not reducible to the corresponding decision problems.
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1 Introduction

The NP-completeness of decision problems has two principal, well-known
formulations. These are the polynomial-time Turing completeness (g%-
completeness) introduced by Cook [5] and the polynomial-time many-one
completeness (<! -completeness) introduced by Karp [8] and Levin [11].
These two completeness notions, sometimes called “Cook completeness” and
“Karp-Levin completeness,” have been widely conjectured, but not proven,
to be distinct. The main purpose of this paper is to exhibit a reasonable
complexity-theoretic hypothesis that implies the distinctness of these two
completeness notions.

In general, given a polynomial-time reducibility <V (e.g., §$ or §fn), a
language (i.e., decision problem) C is <-complete for NP if C' € NP and,
forall A € NP, A §f C'. The difference between §$—completeness and §%—
completeness (if any) arises from the difference between the reducibilities
§$ and <P If A and B are languages, then A is polynomial-time Turing
reducible to B, and we write A §$ B, if Ais decided in polynomial time by
some oracle Turing machine that consults B as an oracle. On the other hand,
A is polynomial-time many-one reducible to B, and we write A <P B, if
every instance z of the decision problem A can be transformed in polynomial
time into an instance f(z) of the decision problem B with the same answer,
i.e., satisfying z € A iff f(z) € B.

It is clear that A <P B implies A §$ B, and hence that every <P-
complete language for NP is §$—complete for NP. Conversely, all known,
natural §$—complete languages for NP are also <P -complete. Nevertheless,
it is widely conjectured (e.g., [10, 29, 12, 6]) that Cook completeness is more
general than Karp-Levin completeness:

CvKL Conjecture. (“Cook versus Karp-Levin”). There exists a language
that is §$—complete, but not <P -complete, for NP.

The CvKL conjecture immediately implies that P # NP, so it may be
very difficult to prove. We mention five items of evidence that the conjecture
is reasonable.

1. Selman [24] proved that the widely-believed hypothesis E # NE
implies that the reducibilities §$ and §51 are distinct in NPUco—NP. That
is, if DTIME(2'mear) £ NTIME(2!"¢ar), then there exist A,B € NPUco—NP
such that A <% B but A £F B. Under the stronger hypothesis E #
NENco—NE, Selman proved that the reducibilities §$ and <P are distinct
in NP.



2. Ko and Moore [9] constructed a language that is <F-complete, but
not <P _complete, for E. Watanabe [26, 27] refined this by separating a
spectrum of completeness notions in E.

3. Watanabe and Tang [28] exhibited reasonable complexity-theoretic
hypotheses implying the existence of languages that are §$—complete, but
not <P -complete, for PSPACE.

4. Watanabe [27] and Buhrman, Homer, and Torenvliet [4] constructed
languages that are §$—complete, but not < -complete, for NE.

5. Longpré and Young [12] showed that, for every polynomial time bound
t, there exist languages A and B, both §$—complete for NP, such that A is
<H-reducible to B in linear time, but A is not <! -reducible to B in t(n)
time.

Item 1 above indicates that the reducibilities §$ and §51 are likely to
differ in NP. ITtem 3 indicates that the CvKL conjecture is likely to hold
with NP replaced by PSPACE. Items 2 and 4 indicate that the CvKL
Conjecture definitely holds with NP replaced by E or by NE. Ttem 5 would
imply the CvKIL Conjecture, were it not for the dependence of A and B
upon the polynomial {. Taken together, these five items suggest that the
CvKL Conjecture is reasonable.

The CvKL Conjecture is very ambitious, since it implies that P # NP.
The question has thus been raised [10, 24, 6, 4] whether the CvKL Conjecture
can be derived from some reasonable complexity-theoretic hypothesis, such
as P # NP or the separation of the polynomial-time hierarchy into infinitely
many levels. To date, even this more modest objective has not been achieved.

The Main Theorem of this paper, Theorem 4.1 below, says that the
CvKL Conjecture follows from the hypothesis that “NP does not have p-
measure 0”7. This hypothesis, whose formulation involves resource-bounded
measure [14, 13] (a complexity-theoretic generalization of Lebesgue mea-
sure), is explained in detail in section 3 below. Very roughly speaking, the
hypothesis says that “NP is not small,” in the sense that NP contains more
than a negligible subset of the languages decidable in exponential time.

In section 3 below it is argued that “NP does not have p-measure 07 is
a reasonable hypothesis for two reasons: First, its negation would imply the
existence of a surprisingly efficient algorithm for betting on all NP languages.
Second, the hypothesis has a rapidly growing body of credible consequences.
We summarize recently discovered such consequences [16, 7, 15] and prove
two new consequences, namely the class separation E # NE and (building
on recent work of Bellare and Goldwasser [1]) the existence of NP search
problems that are not reducible to the corresponding decision problems.



In section 4 we prove our Main Theorem. In section 5, we prove that, if
NP is not small, then many truth-table reducibilities are distinct in NP.

Taken together, our results suggest that “NP does not have p-measure
07 is a reasonable scientific hypothesis, which may have the explanatory
power to resolve many questions that have not been resolved by traditional
complexity-theoretic hypotheses.

2 Preliminaries

In this paper, [¢'] denotes the Boolean value of the condition ¥, i.e.,

I R
[W]]_{ 0 if not
All languages here are sets of binary strings, i.e., sets A C {0,1}*. We
identify each language A with its characteristic sequence x4 € {0,1}> de-

fined by
X4 = [0 € A][s1 € A][s2 € A4]...,

where sg = A, 51 = 0, s9 = 1, s3 = 00,... is the standard enumeration
of {0,1}*. Relying on this identification, the set {0, 1}, consisting of all
infinite binary sequences, will be regarded as the set of all languages.

If we {0,1}* and = € {0,1}* U {0,1}*°, we say that w is a prefiz of z,
and write w C z, if 2 = wy for some y € {0,1}* U {0,1}*°. The cylinder
generated by a string w € {0,1}* is

Co = {2 €{0,1} | w T a} = {A C{0,1}" | wC xa}.

Note that Cy = {0,1}°°, where A denotes the empty string.

As noted in section 1, we work with the exponential time complexity
classes E = DTIME(2!"¢a") and E; = DTIME(2Peyromialy Tt is well-known
that P ; E ; Eg, that P C NP C Eg, and that NP # E.

We let D = {m2™" | m € Z,n € N} be the set of dyadic rationals. We
also fix a one-to-one pairing function (,) from {0,1}* x {0, 1}* onto {0,1}*
such that the pairing function and its associated projections, (z,y) — « and
(z,y) — y, are computable in polynomial time.

Several functions in this paper are of the form d : N* x {0,1}* — Y,
where Y is D or [0,00), the set of nonnegative real numbers. Formally,
in order to have uniform criteria for their computational complexities, we
regard all such functions as having domain {0,1}*, and codomain {0, 1}* if



Y = D. For example, a function d : N?x {0,1}* — D is formally interpreted
as a function d : {0,1}* — {0,1}*. Under this interpretation, d(i,j,w)=r
means that d({0%, (07, w))) = u, where u is a suitable binary encoding of the
dyadic rational r.

For a function d : N X X — Y and k£ € N, we define the function
di: X — Y by dp(z) = d(k,z) = d({0%, 2)). We then regard d as a “uniform
enumeration” of the functions dy, dy, ds, .... For a function d : N x X — Y
(n > 2), we write dy; = (dg )i, ete.

In general, complexity classes of functions from {0, 1}* into {0, 1}* will
be denoted by appending an ‘F’ to the notation for the corresponding com-
plexity classes of languages. Thus, for ¢ : N — N, DTIMEF(?) is the set of
all functions f:{0,1}* — {0, 1}* such that f(z) is computable in O(t(|z|))
time. Similarly, PF = J;2q DTIMEF(n*). (For technical reasons [13], when
discussing resource bounds for measure, we will deviate from this practice,
writing p for PF, etc., as in section 3 below).

We will discuss a variety of specialized polynomial-time reducibilities, in
addition to the well-known reducibilities §$ and §%, mentioned in the intro-
duction. These include SEOS—T (positive Turing reducibility), SE—T (Turing
reducibility with q(n) queries on inputs of length n), §§_tt (truth-table re-
ducibility with q(n) queries on inputs of length n, where ¢ : N — ZT is a
query-counting function), <% (truth-table reducibility), <t (bounded truth-
table reducibility), and < .. (positive truth-table reducibility). We now
indicate the meanings of these specialized reducibilities.

Let A, B C {0,1}*. The condition A <} B means that there is a poly-
nomial time-bounded oracle Turing machine M such that A = L(M?P),
i.e., M decides A with oracle B. The condition A SEOS—T B means that
there is a polynomial time-bounded oracle Turing machine M such that
A= L(MP) and, for all C, D C {0,1}*, C C D implies L(M%) C L(MP).
For ¢ : N — Z%, the condition A SE—T B means that there is a polyno-
mial time-bounded Turing machine M such that A = L(MP?) and M makes
< q(]z]) oracle queries on each input = € {0, 1}*.

Given a query-counting function ¢ : N — Z%, a ¢-query function is a
function f with domain {0, 1}* such that, for all = € {0, 1}*,

(@) = (fil@)s ooy fyqap()) € ({0, 137D,

Fach fi(z) is called a query of f on input z. A ¢-truth table function is a
function ¢ with domain {0,1}* such that, for each z € {0,1}*, g(z) is the
encoding of a ¢(|z|)-input, 1l-output Boolean circuit. We write g(z)(w) for



the output of this circuit on input w € {0, 1}‘1('9"'). A §§_tt—reductz'0n is an
ordered pair (f,¢) such that f is a g-query function, ¢ is a ¢-truth table
function, and f and ¢ are computable in polynomial time.

Let A, B C {0,1}*. A §§_tt—reductz'0n of Ato Bis a §§_tt—reduction
(f,g) such that, for all z € {0,1}*,

[x € A] = g(@)([/i(2) € Bl...[fyqe(®) € B]).

(Recall that 1] denotes the Boolean value of the condition ). In this case
we say that A §§_ttB via g. We say that A is §§_tt—reducz'ble to B, and
write A <P, B, if there exists (f,g) such that A <}, B via (f.g).

The condition A <}, B means that there exists a polynomial ¢ such that
A §§_tt B. The condition A <!, B means that there exists a constant
k such that A §£_tt B. (This is equivalent to saying that there exists a
constant & such that A <P B). Finally, the condition A §EOS_” B means
that there exist a polynomial ¢ such that A §§_tt B via (f,g) and, for
all z, the Boolean function g(z) : {0,1390=D) — {0,1} is monotone, i.e.,
satisfies g(#)(u) < g(x)(v) whenever each bit of u is less than or equal to
the corresponding bit of v.

For more details on these reducibilities, see [10, 24, 25, 26, 27, 6, 4].

3 If NP Is Not Small

In this section we discuss the meaning and reasonableness of the hypothesis
that NP is not small. Inevitably, our discussion begins with a review of
measure in complexity classes.

Resource-bounded measure [14, 13] is a very general theory whose special
cases include classical Lebesgue measure, the measure structure of the class
REC of all recursive languages, and measure in various complexity classes.
In this paper we are interested only in measure in F and Es, so our discussion
of measure is specific to these classes. The interested reader may consult
section 3 of [14] for more discussion and examples.

Throughout this section, we identify every language A C {0, 1}* with its
characteristic sequence x4 € {0,1}, defined as in section 2.

Notation The classes p;y = p and pa, both consisting of functions f :
{0,1}* — {0, 1}*, are defined as follows.

p1 = p = {f|f is computable in polynomial time}
pe = {f|f is computable in p(logn) o) time}



The measure structures of E and E, are developed in terms of the classes
pi, for e =1,2.

Definition. A density function is a function d : {0,1}" — [0, 00) satisfying

d(w0) + d(wl)

d(w) > 5

(3.1)
for all w € {0,1}*. The global value of a density function d is d(A). The set
covered by a density function d is

S[d= |J Cu. (3.2)
wel0,1}*
d(w)>1
(Recall that C,, = {A C{0,1}* | wC x4} is the cylinder generated by w).
A density function d covers a set X C {0,1}™ if X C S[d].

For all density functions in this paper, equality actually holds in (3.1)
above, but this is not required. Consider the random experiment in which
a language A C {0, 1}* is chosen by using an independent toss of a fair coin
to decide whether each string # € {0,1}* is in A. Taken together, parts
(3.1) and (3.2) of the above definition imply that Pr[A € S[d]] < d(A) in
this experiment. Intuitively, we regard a density function d as a “detailed
verification” that Pr[A € X] < d(A) for all sets X C S[d].

More generally, we will be interested in “uniform systems” of density
functions that are computable within some resource bound.

Definition. An n-dimensional density system (n-DS) is a function
d:N"x{0,1}" — [0,00)

such that dr is a density function for every k € N™. It is sometimes conve-
nient to regard a density function as a 0-DS.

Definition. A computation of an n-DS d is a function d : Nt x {0,1}* —
D such that

for all k € N" reN,and w € {0,1}™. For i = 1,2, a p;-computation of an
n-DS d is a computation dof d such that de pi- An n-DS d is p;-computable
if there exists a p;-computation d of d.



If d is an n-DS such that d : N” x {0,1}" — D and d € p;, then d
is trivially p;-computable. This fortunate circumstance, in which there is
no need to compute approximations, occurs frequently in practice. (Such
applications typically do involve approximations, but these are “hidden” by
invoking fundamental theorems whose proofs involve approximations).

We now come to the key idea of resource-bounded measure theory.

Definition. A null cover of a set X C {0,1} is a 1-DS d such that, for all
k € N, dy covers X with global value dy(A\) < 27%. For i = 1,2, a p;-null
cover of X is a null cover of X that is p;-computable.

In other words, a null cover of X is a uniform system of density functions
that cover X with rapidly vanishing global value. It is easy to show that a
set X C {0,1}* has classical Lebesgue measure 0 (i.e., probability 0 in the
above coin-tossing experiment) if and only if there exists a null cover of X.

Definition. A set X has p;-measure 0, and we write pp,, (X ) = 0, if there
exists a p;-null cover of X. A set X has p;-measure 1, and we write pip, (X) =
1, if pp, (X€) = 0.

Thus a set X has p;-measure 0 if p; provides sufficient computational
resources to compute uniformly good approximations to a system of density
functions that cover X with rapidly vanishing global value.

We now turn to the internal measure structures of the classes E = E; =
DTIME(2'"a") and By = DTIME(2polynomialy

Definition. A set X has measure 0 in E;, and we write p(X | E;) = 0, if
pp (X NE;) =0. A set X has measure 1 in E;, and we write pu(X | E;) =1,
if p(X°E;)=0. If o(X | E;) = 1, we say that almost every language in E;
isin X.

We write u(X | E;) # 0 to indicate that X does not have measure 0 in
E;. Note that this does not assert that “u(X | E;)” has some nonzero value.

The following is obvious but useful.

Fact 3.1. For every set X C {0, 1},

pp(X)=0 = pp(X)=0 = PrAeX]=0

U U
pX[E) =0 p(X[E) =0,



where the probability Pr[A € X] is computed according to the random
experiment in which a language A C {0, 1}* is chosen probabilistically, using
an independent toss of a fair coin to decide whether each string « € {0,1}*
is in A.

It is shown in [14] that these definitions endow E and E; with internal
measure structure. This structure justifies the intuition that, if u(X | E) =
0, then X N E is a negligibly small subset of E (and similarly for E3). The
next two results state aspects of this structure that are especially relevant
to the present work.

Theorem 3.2 ([14]). For all cylinders C,, u(C, | E) # 0 and p(C,, |
Eg) # 0. In particular, u(E | E) # 0 and p(Eq | E3) # 0.

The next lemma, which will be used in proving our main results, involves
the following computational restriction of the notion of “countable union.”

Definition. Let ¢ € {1,2} and let Z, Zy, 7y, Z3,--- C {0,1}*°. Then Z is
a pi-union of the p;-measure 0 sets Zo, Zy, Zy, -+ il Z = ;29 Z; and there
exists a p;-computable 2-DS d such that each d; is a p;-null cover of Z;.

Lemma 3.3 ([14]). Let ¢ € {1,2} and let Z, Zy, Z1, Z,--- C {0,1}*>*. If Z
is a p;-union of the p;-measure 0 sets Zy, Z1, Z3, - - -, then Z has p;-measure
0. O

Regarding deterministic time complexity classes, the following fact is an
easy exercise. (It also follows immediately from Theorem 4.16 of [14]).

Fact 3.4. For every fixed ¢ € N,
p(DTIME(27) | E) = pp(DTIME(27)) = 0

and
p(DTIME(2") | E) = pp, (DTIME(2™)) = 0.

a

Figure 1 summarizes known implications among various conditions as-
serting the smallness of NP. (These implications follow from Facts 3.1 and
3.4). Figure 2, the contrapositive of Figure 1, then gives the implications
among various conditions asserting the non-smallness of NP. Lutz has con-



P=NP

\
(3¢)NP C DTIME(2°") = (3k)NP C DTIME(2"")
\ \
pp(NP) =0 = fip, (NP) =0
4 T
(NP |E)=0 f(NP | E) =0

Figure 1: Smallness conditions

p(NP | E) #0 p(NP | E)#0
up2(N11}f’) #0 = up(Nﬁ) #0
(VE)NP ¢ %TIME(Q”k) = (Ve)NP ¢ gTIME(QC”)

P ;éUNP

Figure 2: Non-smallness conditions



jectured that the strongest conditions in Figure 2, namely, u(NP | E3) # 0
and (NP | E) # 0, are true. Most of the results of the present paper involve
the weakest measure-theoretic hypothesis in Figure 2, namely the hypoth-
esis that NP does not have p-measure 0. The rest of this section discusses
the reasonableness and consequences of this particular hypothesis.

The hypothesis that p,(NP) # 0 is best understood by considering the
meaning of its negation, that NP has p-measure 0. A particularly intu-
itive interpretation of this latter condition is in terms of certain algorithmic
betting strategies, called martingales.

Definition. A martingale is a density function d that satisfies condition
(3.1) with equality, i.e., a function d: {0,1}* — [0, c0] such that

d(w) = w (3.3)

for all w € {0,1}*. A martingale d succeeds on a language A C {0,1}* if

lim sup d(x4[0..n — 1]) = oo.
n—oo
Intuitively, a martingale d is a betting strategy that, given a language
A, starts with capital (amount of money) d(A) and bets on the membership
or nonmembership of the successive strings sg, s1, S2, - - - (the standard enu-
meration of {0,1}*) in A. Prior to betting on a string s, the strategy has
capital d(w), where

w = [sg € A] - -[sn-1 € A].

After betting on the string s,, the strategy has capital d(wb), where b =
[s, € A]. Condition (3.3) ensures that the betting is fair. The strategy
succeeds on A if its capital is unbounded as the betting progresses.

Martingales were used extensively by Schnorr [20, 21, 22, 23] in his in-
vestigation of random and pseudorandom sequences. Recently, martingales
have been shown to characterize p-measure 0 sets:

Theorem 3.5 ([14, 13]). A set X of languages has p-measure 0 if and only
if there exists a p-computable martingale d such that, for all A € X, d
succeeds on A. |

In the case X = NP, Theorem 3.5 says that NP has p-measure 0 if
and only if there is a single p-computable strategy d that succeeds (bets
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successfully) on every language A € NP. The fact that the strategy d is p-
computable means that, when betting on the condition “xz € A”, d requires
only 2°°I time for some fixed constant ¢. (This is because the running time
of d for this bet is polynomial in the number of predecessors of z in the
standard ordering of {0,1}*). On the other hand, for all & € N, there exist
languages A € NP with the property that the apparent search space (space
of witnesses) for each input z has 21" elements. Since c is fixed, we have
" < 2" for large values of k. Such a martingale d would thus be a
very remarkable algorithm! It would bet succesfully on all NP languages,
using far less than enough time to examine the search spaces of most such
languages. It is reasonable to conjecture that no such martingale exists, i.e.,
that NP does not have p-measure 0.

Since pp(NP) # 0 implies P # NP, and p,(NP) = 0 implies NP # E,,
we are unable to prove or disprove the p,(NP) # 0 conjecture at this time.
Until such a mathematical resolution is available, the condition p,(NP) # 0
is best investigated as a scientific hypothesis, to be evaluated in terms of the
extent and credibility of its consequences.

We now mention three recently discovered consequences of the hypothesis
that NP does not have p-measure 0. The first concerns P-bi-immunity.

Definition. A language A C {0,1}* is P-immune if, for all Be P, BC A
implies that B is finite. A language A C {0, 1}* is P-bi-immune if A and A°
are both P-immune.

Theorem 3.6 (Mayordomo [16]). The set of P-bi-immune languages has
p-measure 1. Thus, if NP does not have p-measure 0, then NP contains a
P-bi-immune language. |

The next known consequence of p,(NP) # 0 involves complexity cores
of NP-complete languages.

Definition. A language A C {0,1}* is dense if there is a real number € > 0
such that [A<,| > 2" for all sufficiently large n.

Definition. Given a machine M and an input € {0, 1}*, we write M (z) =
1if M accepts z, M(x) = 0if M rejects z, and M(z) =L in any other case.
If M(z) € {0,1}, we write timeps(z) for the number of steps used in the
computation of M(z). If M(z) =1, we define timeps(z) = co. We partially
order the set {0,1, 1} by 1< 0 and L< 1, with 0 and 1 incomparable. A

11



machine M is consistent with a language A C {0,1}* if M(z) < [z € A] for
all 2 € {0,1}".

Definition. Let K, A C {0,1}*. Then K is an exponential complexity core
of A if there is a real number € > 0 such that, for every machine M that is
consistent with A, the “fast set”

F= {x rtimem(x) < 2|x|6}
satisfies |F'N K| < oc.

Theorem 3.7 (Juedes and Lutz [7]). If NP does not have p-measure 0, then
every <P _complete language A for NP has a dense exponential complexity
core. O

Thus, for example, if NP is not small, then there is a dense set K of
Boolean formulas in conjunctive normal form such that every machine that
is consistent with SAT performs exponentially badly (either by running for
more than 211 steps or by failing to decide) on all but finitely many inputs
x € K. (The weaker hypothesis P # NP was already known [19] to imply the
weaker conclusion that every <P _complete language for NP has a nonsparse
polynomial complexity core).

The third consequence of u,(NP) # 0 to be mentioned here concerns
the density of hard languages for NP. Ogiwara and Watanabe [18] recently
showed that P # NP implies that every §£ﬁ—hard language for NP is non-
sparse (i.e., is not polynomially sparse). More recently, it has been proven
that the p,(NP) # 0 hypothesis yields a stronger conclusion:

Theorem 3.8 (Lutz and Mayordomo [15]). If NP does not have p-measure
0, then for every real number a < 1 (e.g., a = 0.99), every <F._,,-hard
language for NP is dense.

We conclude this section by noting some new consequences of the hy-
pothesis that p,(NP) # 0. The following lemma involves the exponential
complexity classes EE = DTIME(2m¢a") and NE = NTIME(2m°%) and also
the doubly exponential complexity classes, EE = [J22, DTIME(22n+C) and
NEE = [J22, NTIME(22"").

Lemma 3.9.
1. If NP contains a P-bi-immune language, then E # NE and EE # NEE.
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2. If NP N co—NP contains a P-bi-immune language, then E # NE N
co—NE and EE # NEE N co—-NEE.

Proof. Let T = { 02" | n € N}. For each A C {0,1}*, let
o(A) = {sn

where sq, $1, 89, - is the standard enumeration of {0, 1}*. It is routine to
show that, for all A C {0,1}*,

02"6A},

o(A)e EEIf ANT e P,

o(A) e NEEiff AnT € NP,

and
o(A) € co-NEE iff ANT € co—NP.

1. Let A € NP be P-bi-immune. Then ANT € NP, so 6(A) € NEE.
Since A€ is P-immune, ANT is infinite. Since A is P-immune, it follows that
ANT ¢ P, whence 0(A) ¢ EE. Thus 6(A) € NEE — EE, so EE # NEE.
Note also that AN T is a tally language in NP — P. The existence of such a
language is known [3] to be equivalent to E # NE.

The proof of 2 is similar.

Theorem 3.10.

1. If NP does not have p-measure 0, then E # NE and EE # NEE.

2. If NP N co—NP does not have p-measure 0, then E # NE N co—NE
and EE # NEE N co—NEE.

Proof. This follows immediately from Theorem 3.6 and Lemma 3.9. O

Corollary 3.11. If NP does not have p-measure 0, then there is an NP
search problem that does not reduce to the corresponding decision problem.

Proof. Bellare and Goldwasser [1] have shown that, if EE # NEE, then
there is an NP search problem that does not reduce to the corresponding
decision problem. The present corollary follows immediately from this and
Theorem 3.10. O
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4 Separating Completeness Notions in NP

In this section we prove our main result, that the CvKL Conjecture holds if
NP is not small:

Theorem 4.1 (Main Theorem). If NP does not have p-measure 0, then
there is a language C' that is §$—complete, but not <P -complete, for NP.

In fact, the language C' exhibited will be §5_T—complete, hence also
<b . ,-complete, for NP.

Our proof of Theorem 4.1 uses the following definitions and lemma.

Definition. The tagged union of languages Ag,---, Ax_1 C {0,1}* is the
language

Ao Agg = {2107 [0 < i< handw € A }.
Definition. For j € N, the j*" strand of a language A C {0,1}* is
Ay = {xrxloj € A}.
Lemma 4.2 (Main Lemma). For any language S C {0, 1}*, the set

x={Aac{o1y

Aoy i Ay B (A N 5) & (A U 5)}
has p-measure 0.
Before proving the Main Lemma, we use it to prove the Main Theorem.

Proof of Theorem 4.1 Assume that NP does not have p-measure 0. Let

X = {A] A < A © (Aga) N SAT) @ (A USAT) |

By the Main Lemma, X has p-measure 0, so there exists a language A €
NP — X. Fix such a language A and let

C = A(4) S5, (A(4) N SAT) S5, (A(4) U SAT)
Since A € NP, we have A, A4y € NP. Since Ay, SAT € NP and NP is

closed under N, U, and &, we have C' € NP. Also, the algorithm
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begin

input x;

ifzleC

then if 210 € C' then accept
else reject

else if 2100 € C' then accept
else reject

end

clearly decides SAT using just two (adaptive) queries to C', so SAT §5_T C.
Thus C is §§_T—complete, hence certainly §$—complete, for NP. On the
other hand, A ¢ X, so A «P . Since Aoy € NP, it follows that C' is not
<P _complete for NP. O

The rest of this section is devoted to proving the Main Lemma. For this
we need the following definitions, lemma, and corollary.

Definition. The collision set of a function f:{0,1}* — {0,1}*is

Cr=A2e{0,1}7[(Fy <) fly) = f(x)}.

Here, we are using the standard ordering sy < s1 < 89 < -+ of {0,1}*.
Note that f is one-to-one if and only if C; = (.

Definition. A function f : {0,1}* — {0,1}* is one-to-one almost every-
where (or, briefly, one-to-one a.e.) if its collision set Cy is finite.
Definition. Let A, B C {0,1}* and let ¢ : N — N. A <DTIMEQ) _eduction

of A to B is a function f € DTIMEF(¢) such that A = f~Y(B), i.e., such

that, for all z € {0,1}*, 2 € Aiff f(z) € B. A SBLTIMEU)

a function f that is a <DTIME®) 1eduction of A to f(A).

-reduction of A is

DTIME(#)

It is easy to see that fis a <p, -reduction of A if and only if there

exists a language B such that fis a §2TIME(t)—reduction of Ato B.

Definition. Let t : N — N. A language A C {0, 1}* is incompressible by
§2TIME(t)—reductz'0ns if every §2TIME(t)—reduction of A is one-to-one a.e. A
language A C {0,1}* is incompressible by <P -reductions if it is incompress-

<DTIME®@)_1oductions for all polynomials g.
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Meyer [17] has shown that there is a language A € E that is incom-
pressible by <P _reductions. Recently, the following stronger result has been
proven.

Lemma 4.3 (Juedes and Lutz [7]). For every fixed ¢ € N, the set

w={Aac{o1y

A is incompressible by §2TIME(2W) —reductions}
has p-measure 1. O

Corollary 4.4. For every fixed ¢ € N, the set

y={Aac{o1} (27)

Aoy is incompressible by §BLTIME —reductions}

has p-measure 1. O

Proof. Fix ¢ € N and let W and Y be as in Lemma 4.3 and Corollary 4.4.
By Lemma 4.3, it suffices to show that W C Y.
DTIME(2°")

Let A € W. To see that A € Y, let f be a <,
A(g)- Define g : {0, 1} — {0, 1}" by

g(2) = {f(y)l if @ =yl
10 if z is not of the form y1.

-reduction of

It is easily checked that ¢ is a §2TIME(2W)—I’eduction of Ato f(Aw)) D A.

Since A € W, it follows that the collision set ', is finite. Now the function
y — yl is one-to-one and maps 'y into C, so the collision set 'y is also
finite. Thus A € Y and the proof is complete. |

We now prove the Main Lemma.

Proof of Lemma 4.2 Assume the hypothesis. Let f € DTIMEF(n!°8") be
a function that is universal for PF, in the sense that

PF={fi|ieN}.
Let Y be as in Corollary 4.4, with ¢ = 2. Define the sets
Z=XNnY
and

Zi={A€Y|Ag <l A& (AnNS) & (A US) via fi |
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for all ¢« € N. Note that Z = ;2 Z;.
Our objective is to prove that p,(X) = 0. Since X C Z U Y and
Corollary 4.4 tells us that p,(Y°) = 0, it suffices to prove that p,(Z) = 0.

For each 7 € N, we define a special partial “inverse” function, fz#, of f;
as follows. (This definition is technical, designed specifically for this proof).
Let y € {0,1}*. Let

Uy ={z]fi(z) € {yl,y10,y100} and |z| < |fi(z)|}.

If U;,, =0, then fl#(y) is not defined. If U;, # (), then fl#(y) is the first
element of U;, in the standard ordering of {0,1}*. (Intuitively, if A € Z;,

fl#(y) is defined, and fz(fz#(y)) = 4107, then the reduction f; transforms the
question “fl#(y) € A()?” into one of the questions “y € A4)?,” “y € Ay N
577 or “y € AqyU 7,7 according to whether j = 0, 1, or 2, respectively).
Forie N, j€{0,1,2},and A C {0,1}*, define the languages
Ri; = {y10000( fi( ¥ () = y107 },
RE(A) = {y10000 € By ; | f#(
- {y10000 € Ri,| fFly
R(A) = {y10000 € By ;| f#(
- {y10000 € Ri,| f*(

(It is implicit that fl#(y) must be defined in order for y10000 to be an
element of R; ;).

Observation. For all y10000 € R; ;, the string fz#(y)l precedes 310000 in
the standard ordering of {0,1}*. (This holds because ‘fz#(y)l‘ = fz#(y)‘ +

SO ()] +1 < [5100] + 1 < [y10000]).

1<

The following claim will be verified at the end of this proof.

Main Claim. For all 7 € N, if A € Z;, then R;o U R;':l(A) U R;,(A) is
infinite.

Define a function d : N x N x {0,1}* — [0, 00) as follows: Let ¢,k € N,
let we {0,1}%, let b € {0,1}, let

By ={s,]0<n<|wland wn]=1},
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and let z = s, (Recall that sg,sp,--- is the standard enumeration of
{0,1}*. Thus if wb is a prefix of the characteristic sequence of a language
A, then By, = AN {sg, -, 8y-1} and b = [z € A]. Also, by the above
observation, for j € {0,1,2}, we have

z € RE(A)iff z € RY(By)

and

2 € R (A)iff 2 € R .(By)).
(i) dis(X) =27,
(ii) If z € Rfy(Buw) U Rfy(Buy), then d;p(wb) = 2 - d; 4(w) - b.
(iii) If 2 € R; o(Bw) U R 5(Buy), then d; g(wb) = 2 - d; p(w) - (1 = b).
(iv) In any other case, d; (wb) = d; r(w).

It is clear that d is a 2-DS. In fact, since f € DTIMEF(n!°#") and the
computation of fz#(y) only involves computing f;(z) for strings  with |z| <
ly| + 3, it is easily ¢ hecked that d € p. Thus d is a p-computable 2-DS.
We now show that Z; C S[d; ;] for all 7,k € N. To this end, fix i,k € N
and let A € Z;. For each m € N, let w,,, = x4[0..m — 1] and consider the
sequence
TosT1,T2,° "

of values r,, = d; y(w,,), computed according to clauses (i)—(iv) above. By
clause (i), 7o = 27%. Also, for all m € N, r,,41 € {0,7,,,27r,}. Moreover,
since f; is a <P -reduction of Aoy to Ay & (A N S) B (A U S), it is
easily checked that 7,4y is never set to 0, i.e., that 7,41 € {rn,2r,}
for all m € N. This means that r,4+; = 2r,, for all m such that s,, €
R¥y(Bu,,) U R (Bu,,) U Rio(Bu,,) U Ry y(Buy,, ), i-e., for all m such that
Sm € RioU R;':I(A) UR;,(A). By the Main Claim, th ere are infinitely many
such m. In particular, then, there is some m such that 1 < r,, = d; (wy,).
Then A € C,,, C S[d;]. This completes the proof that Z; C S[d; ] for
all ¢,k € N. It follows that, for each = € N, d; is a p-null cover of Z;.
This implies that Z = (JZ, Z; is a p-union of p-measure 0 sets, whence
pp(Z) = 0 by Lemma 3.3. This completes the proof of the Main Lemma,
using the Main Claim.

To prove the Main Claim, let i € N and A € Z;. Then f; is a <P-
reduction of Ay and Ay € Y, so f is one-to-one a.e . It clearly suffices to
prove the following three things.
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Claim 1. R; o U R; ;1 U R, 5 is infinite.
Claim 2. If R;; is infinite, then R;':l(A) is infinite.
Claim 3. If R, is infinite, then R;,(A) is infinite.
Proof of Claim 1. Define the languages
Q={y107|y €{0,1}" and j € {0,1,2}},
C=Aud(AuyNS)d (AghyUs)

and fix a string v ¢ A(g). (Such a string v exists because A € Z; C V).
Define a function ¢ : {0,1}* — {0,1}* by
_fe if fi(r)€Q
9le) = {v if fi(z) ¢ Q.
Since €' C @ and A <P C via f;, g is a <P -reduction of Aoy to itself.
Since A € Y, it follows that the set ¢~*({v}) is finite, whence the set f7'(Q)
is cofinite. Since f; is one-to-one a.e., it follows that fl#(y) is defined for
infinitely many y. Since R;o U R;1 U R; 2 = {leOOO(fZ#(y) is deﬁned},
this proves Claim 1. O

Proof of Claim 2. Assume that R;':l(A) is finite. It suffices to prove that
R (A) is also finite.
Fix strings u € Ay and v € A(g). (Such strings exist because A € Z; C
Y'). Define a function h : {0,1}* — {0,1}* by
u i f;(2)000 € RF (A)
h(z) = q v if f;(2)000 € R;1(A)
x if f;(z)000 € R; 1.
For all sufficiently large z, the condition “f;(2)000 € R;1” can be decided
in at most 21l . |z|'°81#] steps. (If fi(z) = y10, then we need to check
predecessors 2’ of « for the condition f(z') € {y1,y100}). Since R (A) is
finite (this is cruciall), it follows that h € DTIMEF(2**). In fact, it is easily
DTIME(2*")_Leduction of Aoy to itself. Since A €Y, it

checked that h is a <j,
follows that the set h='({v}) is finite. This implies that Ry, (A) is finite. O

Proof of Claim 3. This is exactly analogous to the proof of Claim 2. O

The proof of the Main Claim, and hence that of the Main Lemma, is
now complete. O
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5 Separating Reducibilities in NP

In this section, assuming that NP is not small, we establish the distinctness
of many polynomial-time reducibilities in NP.
Our first such result involves known consequences of E # NE.

Theorem 5.1. Assume that NP does not have p-measure 0.

1. There exist A, B € NP U co—NP such that A §$ B, but A %EOS—T B.

2. There exist A, B € NP Uco—NP such that A <!, B, but A ﬁgos_tt B.

Proof. Selman [25] has shown that these conclusions follow from E # NE,
so the present theorem follows immediately from Theorem 3.10. O

Similarly, we have the following.

Theorem 5.2. Assume that NP N co—NP does not have p-measure 0.

1. There exist A, B € NP such that A <% B but A %EOS—T B.

2. There exist A, B € NP such that A <}, B but A ﬁgos_tt B.

Proof. Selman [25] has shown that these conclusions follow from E # NEN
co—NE, so the present theorem follows immediately from Theorem 3.10. O

The rest of our results concern the separation of various polynomial-time
truth-table reducibilities in NP, according to the number of queries. Theo-

rem 5.3 separates §Fk+1)_tt reducibility from §£_tt, for k any constant, while

Theorem 5.5 separates <! reducibilty from <" ;. for 7(n) € o(\/4(n)).

Theorem 5.3. If NP does not have p-measure 0, then for all £ € N there

: P P
exist A, B € NP such that A Sthiy—u B but A £;,_,, B.

The proof of Theorem 5.3 uses the following notation and lemma.

Notation For 2 € {0,1}* and k € N, let

Qr(z) = { 210"

0§i<k}.
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For all B C {0,1}* and k € N, then, define the k-fold disjunction of B to
be the language

VB = {1z € (0,1} Qu()n B £0}.
Lemma 5.4. For all £ € N, the set

Xi={Bc{o1}

v(k-l—l)B Sg—tt B}
has p-measure 0.

Proof of Theorem 5.3. Assume that NP does not have p-measure 0 and
let £ € N. Then Lemma 5.4 tells us that there exists B € NP such that
v+ B ﬁg_tt B. Fix such a language B and let A = VIt B, Then
A € NP (because A SEOS—T B and NP is closed under §EOS_T—reducibﬂity

[25]), A §Fk+1)_tt B (trivially), and A £¥_ . B (by our choice of B). |

Proof of Lemma 5.4 Fix k£ € N and let X, be as in the statement of the
lemma. Let (fo,90),(f1,01)," - be an enumeration of all <} -reductions
such that fi(z) and g;(z) are computable in < 2°+1#l steps for all 7 € N and
z € {0,1}*. (See section 2 for our notation for <}__.-reductions.) Define a

sequence zg, z1, - - - of strings by the recursion

22|Zn|
20 = A, Zn41 = 0 .

For 2,n € N, define the set
Yin = {B C {0,1}*| [z, € VD B]
= gz (Lfua(z) € B+ Uislzn) € BD}.

Here, fi1(zn), -, fix(2n) denote the k queries of f; on input z,, while g;(z,)
is the (binary encoding of a Boolean circuit computing the) truth-table given
by g; on input z,. Thus Y; , is the set of all B such that the §£_tt—reduction
(fi, gi) correctly reduces the single question “z, € vF+1) B2 to B. For each
1 € N, let

Yi= () Yin,
n=0
and let -
Y =)V
1=0
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It is clear that X3 C Y, so it suffices to prove that p,(Y) = 0.

Define a function d : N x N x {0,1}* — [0,00) as follows: let 7,/ € N,
let w € {0,1}* let b € {0,1}, and let y = s,,|. (Recall that sq, sy, s, is
the standard enumeration of {0,1}*.)

(i) d“(/\) =27
(i) If ¢ < |z4| < |y| < |2n41]| and Pr(Y; ,|Cy) # 0, then

Pr(Y;,|Cup) Pr(Y;, N Cyyp)
d; b)=d; e = 2d; —.
Aoy =dilw) 557 e,y = 24 By e,

(iii) In any other case, d; (wb) = d; (w).

(In clause (ii), the probabilities are computed according to the random ex-
periment in which a language is chosen probabilistically, using an indepen-
dent toss of a fair coin to decide membership of each string.) Using the
definition of conditional probability and the fact that Pr(C,) = 2-Pr(Cyy),
it is easy to check that d is a 2-DS. In fact, since k is a constant and f;(z)
and g¢;(z) are computable in < 2t steps, we have d € p. Thus d is a
p-computable 2-DS.

We now show that Y; C S[d;;] for all 7,/ € N. Fix ¢,/ € N and let
B €Y. For each n € N, let

w, = xB[0..m],

where s, = z,. (That is, w, is the initial segment of the characteristic
sequence yp of B up to and including the bit that decides whether z,, € B.
Consider the sequence

TosT1,T2,° "
of values r, = d;;(w,), computed according to clauses (i)—(iii) above. By
clauses (i) and (iii), 7, = 27! for all n such that |z,| < i. Also, since
BeY;, =NZyYin, it is easily checked that Pr(Y;,|C,) # 0 for all w C yp,

i.e., that
_ - PrYinlCunyi)
T T (i C,)
for all n such that |z,| > i. Moreover, for all n such that |z,| > i, all
the queries f;1(2n),- -+, fi k(%) and all the strings in Qx(z,) are decided by
Wyy1, s0 Pr(Y; ,|C ) = 1 for all such n. That is,

Wn41
TTL

r = —

o PI(K7H|Cwn)
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for all n such that |z,| > ¢. Finally, the definitions of Y;, and w,, tell us
that
Pr(Y;,|Cy,) < 1 — 27D

for all n such that |z,| > ¢. We thus have
Tn+1 Z Q- Ty

for all n such that |z,| > i, where a = 1/(1 —2=*+1) > 1. This implies
that there is some n such that 1 < r, = d;;(w,). For this n we have
B € Cy,, C S[d;;]. This completes the proof that Y; C S[d; ] for all 7,/ € N.

It follows that, for each ¢« € N, d; is a p-null cover of Y;. This implies
that Y = U2y Y; is a p-union of p-measure 0 sets, whence p,(Y) = 0 by
Lemma 3.3. This completes the proof of Lemma 5.4. O

Our remaining results are stated without proof in this preliminary draft.

Theorem 5.5. If NP does not have p-measure 0 and ¢, : N — N are
polynomial-time computable query-counting functions satisfying the condi-
tions ¢(n) = o(\/r(n)) and r(n) = O(n), then there exist A, B € NP such
that A <F_,, B but A £}, B.

To prove this theorem, we use a technique very similar to that of Theorem
5.3, this time replacing the disjunctive operator by a majority operator. The
following notation and lemma are used.

Notation For all B C {0,1}* and k& € N, define the ¢-fold majority of B
to be the language

maj® B = {x € {0, 1}*‘ ‘Qq(w(g@) N B‘ > [@l }

Lemma 5.6. For all ¢,7 : N — N polynomial-time computable functions

satisfying the conditions ¢(n) = o(y/r(n)) and r(n) = O(n), the set

x={Bc{o1}

maj(q)B Sf—tt B}
has p-measure 0.

The query bounds of Theorems 5.3 and 5.5 can be relaxed if we make
the stronger assumption that p(NP | Eq) # 0.
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Theorem 5.7. If (NP | Eg) # 0 and ¢ is a polynomial-time computable
query-counting function such that ¢(n) = O(logn), then there exist A, B €

NP such that A §Fq+1)_tt B but A ﬁg)_tt B.

Theorem 5.8. If u(NP | E3) # 0 and ¢,r : N — N are polynomial-time
computable query-counting functions satisfying ¢(n) = o(y/r(n)), then there
exist A, B € NP such that A <F_,, B but 4 ﬁs_tt B.

6 Conclusion

We have shown that the hyothesis “NP does not have p-measure 07 re-
solves the CvKL Conjecture affirmatively. We have also shown that this
hypothesis resolves other questions in complexity theory, including the class
separation E # NE, the existence of NP search problems not reducible to the
corresponding decision problems, and the separation of various truth-table
reducibilities in NP. For each of these questions, the hypothesis gives the
answer that seems most likely, relative to our current knowledge. Further
investigation of this hypothesis and its power to resolve other questions is
clearly indicated.

The most immediate open problem involves the further separation of
completeness notions in NP. We have shown that the hypothesis y,(NP) # 0
separates §$—completeness (“Cook completeness”) from <P -completeness
(“Karp-Levin completeness”) in NP. However, there is a large spectrum of
completeness notions between <} and <F'. Watanabe [26, 27] and Buhrman,
Homer, and Torenvliet [4] have shown that nearly all these completeness
notions are distinct in E and in NE, respectively. In light of the results of
sections 4 and 5 above, it is reasonable to conjecture that the hypothesis
“NP does not have p-measure 0”7 yields a similarly detailed separation of
completeness notions in NP. Investigation of this conjecture may shed new
light on NP-completeness phenomena.
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