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Abstract

Circuit-size complexity is compared with deterministic and nondeterministic time
complexity in the presence of pseudorandom oracles. The following separations are
shown to hold relative to every pspace-random oracle A, and relative to almost every
oracle A € ESPACE.

(i) NP# is not contained in SIZE4(2°") for any real o < &.
(ii) E* is not contained in SIZEA(%-).
Thus, neither NP# nor E# is contained in PA/ Poly.
In fact, these separations are shown to hold for almost every n. Since a randomly
selected oracle is pspace-random with probability one, (i) and (ii) immediately imply

the corresponding random oracle separations, thus improving a result of Bennett and
Gill [9] and answering open questions of Wilson [47].

1 Introduction

The most fundamental problems of complexity theory appear to be those involving the
relationships among deterministic polynomial time, nondeterministic polynomial time, and
polynomial size circuits. Aside from the trivial observations that P C NP, P C PSIZE, and
PSIZE & NP, very little is known. It is likely that NP-complete problems are combinatorially
infeasible in the sense that NP & PSIZE, but even such extreme counter-assertions as P =
NP, NP C LINSIZE, E C LINSIZE, and E, C PSIZE have yet to be disproven. (See sections
3 and 4 for definitions of complexity classes.)

The investigation of relativized complexity classes has arisen largely as an attempt to
better understand the difficulty of these problems, and the types of techniques that will be
required to solve them. Baker, Gill, and Solovay [5] exhibited oracles A and B such that
P4 = NP“ and P? # NPBZ. Wilson [47] exhibited oracles C, D, E, F, and G such that
NPY C LINSIZE®, EP C LINSIZE”, EY C PSIZE”, NP¥ ¢ PSIZE", and E“ ¢ PSIZE®.
Taken collectively, the oracles A through G testify that none of the open problems mentioned
in the preceding paragraph will be solved by techniques that relativize to arbitrary oracles.
This is taken as evidence that these problems may be very hard to solve. (Such evidence is to
be interpreted with caution. For example, the theorems ALOG = P of Chandra, Kozen, and
Stockmeyer [17] and IP = PSPACE of Shamir [42] have simple proofs but do not relativize,
unless one modifies oracle access mechanisms to force them to relativize.)
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Unfortunately, oracle existence results of the above type provide no evidence regarding
the truth or falsity of the underlying conjectures. As a remedy for this situation, Bennett
and Gill [9] proposed the study of complexity classes relative to randomly selected oracles.
In this scheme, an oracle A C {0,1}" is chosen probabilistically by using an independent
toss of a fair coin to decide whether each string z € {0,1}" is in A. Bennett and Gill [9]
proved (among other things) that P4 £ NP holds with probability 1 when the oracle A is
so selected. That is, the conjecture P # NP holds relative to almost every oracle. Moreover,
Bennett and Gill [9] formulated and proposed the random oracle hypothesis, which posits
that any reasonably formed conjecture that holds relative to almost every oracle is in fact
true. Thus, the random oracle result, P # NP* with probability 1, is regarded as evidence
that P # NP.

The random oracle hypothesis was refuted by Kurtz [25], so it is not clear that random
oracle separations of the above type provide evidence that the corresponding unrelativized
conjectures are true. In fact, recent work of Book [11] indicates that such separations do
not provide such evidence. Nevertheless, random oracle separations continue to be of in-
terest. Notably, Cai [14] and Babai [4] have proven that PH # PSPACE relative to almost
every oracle; Kurtz, Mahaney, and Royer [26] have proven that the Berman-Hartmanis [10]
isomorphism conjecture fails relative to almost every oracle; and Beigel [8] has shown that
almost every oracle supports a fine hierarchy between UP and NP, based upon the number
of accepting computations.

At our present state of knowledge (i.e., lack thereof), results of this type merit careful
attention. There are several reasons for this. First, more often than not, random oracle
results correspond to our intuitive conjectures about the unrelativized questions. A scientific
analysis and explanation of this correspondence and its limitations is likely to be instructive.

Second, oracle properties that hold with probability 1 have proven to be useful for char-
acterizing complexity classes. Bennett and Gill [9] and Ambos-Spies [2] have shown that a
language L is in BPP if and only if L € P for almost every oracle A. Nisan and Wigderson
[40] have given a similar characterization of the Arthur-Merlin class AM of Babai [3], show-
ing that a language L is in AM if and only if L € NP4 for almost every oracle A. Other
complexity classes have been given similar characterizations by Ambos-Spies [2], Tang and
Watanabe [45], and Book and Tang [12]. Results of this type indicate that a systematic
study of random oracle properties may be a fruitful enterprise.

Random oracle results, though interesting, are uninformative in a crucial respect. For
example, consider the random oracle separation of P from NP. This results tells us that
almost every oracle A achieves the separation P # NP, but gives no information as to
which oracles A achieve this separation.

To deal with this matter, this paper introduces pseudorandom relativization, a new, more
sophisticated successor to the random oracle technique. Roughly speaking, a pseudorandom
oracle separation result for a relativized separation condition SEP# (e.g., the condition pA £
NP4) identifies a level of (pseudo)randomness A for which the following two conditions hold.

(i) Fwvery oracle A that is A-random satisfies the condition SEP*.

(ii) A randomly selected oracle A is A-random with probability 1.

Taken together, of course, (i) and (ii) give the corresponding random oracle separation,
namely that a randomly selected oracle A satisfies the condition SEP# with probability 1.



However, (i) gives more information than this by identifying the A-randomness of any indi-
vidual oracle A as a sufficient condition for SEP# to hold.

The notion of A-randomness used here was developed and investigated by Lutz
[35, 38] and is discussed in some detail in section 3 below. It is the level A = pspace
that is of interest in this paper. Briefly, a language A (equivalently, the characteristic se-
quence of A) is pspace-random if and only if it has no “pspace-specifiable special properties”,
i.e., if it is in no pspace-measure 0 set of languages. (See section 3 for details.) This defi-
nition resembles the Martin-Lo6f [39] definition of random sequences; indeed every random
sequence is pspace-random. Since Martin-Lof [39] proved that a randomly selected oracle
A is random with probability 1, it immediately follows that property (ii) above holds when
A = pspace. However, much more is true. The definition of A-randomness is based on
the resource-bounded measure theory developed by Lutz [35, 37]. This underlying measure
theory articulates the internal measure-theoretic structure of various complexity classes and,
as it turns out, ensures that most decidable languages are A-random. For example, almost
every language decidable in 2POmomial space is pspace-random [38]. Since no decidable (or
even recursively enumerable) language is random [39], then, pspace-random languages are
pseudorandom, with pspace specifying the “level of randomness”.

It is shown in Corollary 5.2 below that, relative to every pspace-random oracle A, P4 #
NP4, Thus (i) and (ii) above hold for this separation property when A = pspace. This
refines the random oracle separation of Bennett and Gill [9]. (Such refinements are not
automatic. For example, the separation P ¢ REC holds for a randomly selected oracle
with probability one, but fails for every decidable pspace-random oracle.)

This improvement, from randomly selected relativization to pseudorandom relativization,
is only one dimension of the progress reported in this paper. Equally significant is the fact
that the results reported here give quantitative comparisons of circuit-size complexity with
deterministic and nondeterministic time complexity.

The main result of this paper, Theorem 5.1, compares circuit size to nondeterministic
time, relative to pseudorandom oracles. After constructing the above-mentioned oracles C'
and F', Wilson [47] asked what occurs with high probability relative to a randomly selected
oracle. Theorem 5.1 below implies immediately that oracle F' represents the typical case, i.e.,
that NP4 ¢ PSIZE” holds with probability 1. However, Theorem 5.1 is the much stronger
fact that, for every real @ < 5, the condition NP* ¢ SIZEA (2°") is a pspace-test (defined
in section 3). This is stronger than the answer to Wilson’s question in the following three
respects.

(a) The fact that the separation condition is a pspace-test implies that the separation holds
for every pspace-random oracle A and for almost every oracle A that is decidable in
olinear ghace.

(b) The separation holds even when the size bound on the right is 2*" (o < 3). That is,
the separation condition forces NP“ to contain problems with exponential circuit-size
complexity relative to A.

(c) The separation holds for almost every n in the sense that it holds even if the circuits
on the right are only required to be small for infinitely many n.

Thus Theorem 5.1 is a very strong pseudorandom oracle separation of nondeterministic



polynomial time from submaximal exponential circuit size.

Theorem 6.2 gives an even stronger separation for deterministic exponential time. In this
case, the result states that the condition E* ¢ SIZE{.‘O.(%) is a pspace-test. This answers
another open question of Wilson [47], since it implies that, of the above-mentioned oracles D,
E, and G, oracle G represents the probability-one case. Moreover, Theorem 6.2 is stronger
than the answer to Wilson’s question in respects (a), (b), and (c) above. In fact, (b) is
even stronger in this case because the % circuit-size lower bound is essentially maximal.
Theorem 6.2 is a very strong pseudorandom oracle separation of deterministic exponential

time from slightly-submaximal circuit size.

2 Preliminaries

A binary string is a finite sequence x € {0,1}*. A binary sequence is an infinite sequence
z € {0,1}®. We write {0,1}" for the set of strings of length n, and {0,1}=" for the set of
strings of length at most n. We use variables x, vy, 2, etc., to denote strings or sequences.
We write |x| for the length of z. Thus |z| € N U {oco}, where N is the set of nonnegative
integers. The unique string of length 0 is A, the empty string. We write z[i] for the i*" bit
of x. Thus x = z[0]x[1] - - - z[|z| — 1] if = is a string.

If z is a string and y is a string or sequence, then xy is the concatenation of = and y.
If x is already a sequence, then zy = z. If x is a string and k& € N, then 2* is the k-fold
concatenation of x with itself. Thus 2° = \ and z#*! = x2*.

Complexity classes are usually defined as sets of languages. A language here is a set
L C {0,1}*, i.e., a set of binary strings. We fix the lexicographic enumeration sy = A,
s = 0,80 = 1,83 = 00,... of {0,1}* and identify each language L with its characteristic
sequence xr, € {0,1}° defined by

- 1 ifs, el
xulkl = {o if 55 ¢ L.

This identifies the set P ({0, 1}*) of all languages with the set {0, 1}°° of all binary sequences.
We use XY, Z, etc., to denote sets of languages (equivalently, to denote sets of binary
sequences). The complement of a set X is X¢ = P({0,1}*)\ X = {0,1}>*\ X. We sometimes
write L, for L N {0,1}~".

We fix once and for all a one-to-one pairing function (, ) from {0, 1}" x {0, 1}" onto {0, 1}"
such that the pairing function and its associated projections, (z,y) — z and (z,y) — y are
computable in polynomial time. We insist further that (z,y) € {0}* if and only if z,y € {0}*.
This condition canonically induces a pairing function (,) from N x N onto N.

We say that a condition ¢(n) holds almost everywhere (a.e.) if it holds for all but finitely
many n € N. We say that ¢(n) holds infinitely often (i.0.) if it holds for infinitely many
n € N.

We use the discrete logarithm

logn = min{k € N | 2¥ > n}.

Note that log0 = 0.



We will use the following combinatorial bound in section 5.

Proposition 2.1 (Chernoff [18]). For 0 < b < a < 1,

Ebt: <t> a'(l—a) " <27

i=0 \!

where ¢ = b(logb — loga) + (1 — b)[log(1 — b) —log(1 — a)] > 0. O

3 Resource-Bounded Measure and Pseudorandomness

In this section we review those aspects of resource-bounded measure and pseudorandomness
that are essential to this paper. The interested reader is referred to [35, 37, 38] for a more
complete treatment.

We work in two alphabets, the binary alphabet {0, 1} and the extended binary alphabet
¥ ={0,1,L}. The symbol L (“bottom”) denotes an “undefined bit.” We fix the partial
ordering C of ¥ in which L £ 0, L C 1, and 0 and 1 are incomparable. Given a string or
sequence T € ¥* U Y™, we write z[i] for the i*! bit of z and z[i..j] for the string consisting
of the 7*" through ;' bits of 2. We also fix the standard enumeration so = \,s; = 0,5 =
1,53 =00,... of {0,1}", and write x[w] = z[i] whenever w = s; and 0 < i < |z|. We extend
C bitwise to strings and sequences, i.e., x C y iff (Vi € N)2'[i] C ¢'[i], where 2/ = z if
|z| = 00, ' = x L if |z| < 0o, and y' is defined similarly. The cylinder specified by a string
reXisCp, ={A C{0,1}" |z C xa}, where xa € {0,1}* is the characteristic sequence
of A, i.e., each yali] is 1 if s; € A and 0 otherwise. We use the symbol T (“top”) to specify
the empty set, i.e., Ct = (0. For z,y € ¥*, we let A y be the shortest string such that
Cuny = C, N Cy. Note that x Ay = T if  and y are incompatible, i.e., if C, N Cy = 0. The
measure pi(x) of a cylinder C,, is the probability that A € C,, when A C {0,1}" is chosen
according to the random experiment in which an independent toss of a fair coin is used to
decide whether each string w € {0,1}" is in A. Thus if we let #(b, ) denote the number of
occurrences of the symbol b in the string x and define

]| = {#(O,x) +#(1,7) ifzex

00 ifx=T,

then p(z) = 2717 for all z € ¥* U {T}.

We fix once and for all a one-to-one pairing function (, ) from {0, 1}*x {0, 1}* onto {0, 1}*
such that the pairing function and its associated projections, (z,y) — z and (z,y) — y are
computable in polynomial time. We insist further that this pairing function satisfy the
following condition for all z,y € {0,1}*: (z,y) € {0}* if and only if z,y € {0}*. This
condition canonically induces a pairing function (,) from N x N onto N. We write (x,y, z)
for (z, (y, z)), etc., so that tuples of any fixed length are coded by the pairing function.

We let D = {m2™ | m,n € N} be the set of nonnegative dyadic rationals. Many
functions in this paper take their values in D or in [0,00), the set of nonnegative real
numbers. In fact, with the exception of some functions that map into [0, 00), our functions
are of the form f: X — Y, where each of the sets X, Y is N, {0,1}*, D, or some cartesian



product of these sets. Formally, in order to have uniform criteria for their computational
complexities, we regard all such functions as mapping {0,1}* into {0,1}*. For example, a
function f : N?x {0,1}* — N x D is formally interpreted as a function f : {0,1}* — {0,1}".
Under this interpretation, f(i,7,w) = (k,q) means that f((0%, (07, w))) = (0%, (u,v)), where
u and v are the binary representations of the integer and fractional parts of ¢, respectively.
Moreover, we only care about the values of f for arguments of the form (0%, (07, w)), and we
insist that these values have the form (0%, (u,v)) for such arguments.

For a function f : N x X — Y and £ € N, we define the function f;, : X — Y
by fi(z) = f((0F,z)). We then regard f as a “uniform enumeration” of the functions
fos f1, f2,.... For a function f : N" x X — Y (n > 2), we write fx; = (fi);, etc. For a
function f: {0,1}* — {0,1}*, we write f" for the n-fold composition of f with itself.

We work with the resource bound

pspace = {f : {0,1}* — {0,1}" | f is computable in polynomial space}.

(The length |f(z)| of the output is included as part of the space used in computing f.)
Resource-bounded measure and pseudorandomness were originally developed in terms of
“modulated covering by cylinders” [32, 33, 34]. Though the main results of these papers
are true, the underlying development was technically flawed. This situation was remedied
in [35], where resource-bounded measure was reformulated in terms of density functions. We
review relevant aspects of the latter formulation here.
A density function is a function d : {0,1}* — [0, 00) satisfying

d(z0) + d(z1)

() = S50

for all x € {0,1}*. The global value of a density function d is d(\). An n-dimensional density
system (n-DS) is a function d : N" x {0,1}* — [0, 00) such that dj is a density function for
every k € N". It is sometimes convenient to regard a density function as a 0-DS.

A computation of an n-DS d is a function d : N"*! x {0,1}* — D such that

di

(x) — dg(x)| < 277 (3.1)

forallk € N", r € N, and z € {0,1}*. A pspace-computation of an n-DS d is a computation
d such that d € pspace. An n-DS is pspace-computable if there exists a pspace-computation
d of d. (Note that (3.1) implies that

di(x) = lim d ,(2)

r—00

for all k € N* and z € {0,1}*))
The set covered by a density function d is

Sd= | G

z€{0,1}*Ad(z)>1

A density function d covers a set X of languages if X C S[d]. A null cover of a set X of
languages is a 1-DS d such that, for all k& € N, dj covers X with global value di(\) < 27%.
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It is easy to show [37] that a set X of languages has classical Lebesgue measure 0 (i.e.,
probability 0 in the coin-tossing random experiment) if and only if there exists a null cover
of X. In this paper we are interested in the situation where the null cover d is pspace-
computable.

A pspace-null cover of a set X of languages is a null cover of X that is computable.
A set X has pspace-measure 0, and we write fipspace(X) = 0, if there exists a pspace-null
cover of X. A set X has pspace-measure 1, and we write fipspace(X) = 1, if fipspace(X¢) = 0.
Thus a set X has pspace-measure 0 if pspace provides sufficient computational resources to
uniformly enumerate pspace-covers of X with rapidly vanishing total measure.

We say that a set X has measure 0 in ESPACE = DSPACE(2imr)  and write
(X | ESPACE) = 0, if fipspace(X N ESPACE) = 0. A set X has measure 1 in ESPACE,
and we write p(X | ESPACE) = 1, if u(X€¢ | ESPACE) = 0. In this case we say that
almost every sequence in ESPACE is in X. The following routine result of [35] relates
pspace-measure to measure in ESPACE and to classical Lebesgue measure.

Lemma 3.1. Let X be a set of languages.
(a) If ppspace(X) =0, then p(X | ESPACE) = 0.

(b) If ppspace(X) = 0, then p(X) = 0, where p(X) is the classical Lebesgue measure of the
set X. 0

It is shown in [35] that the above definitions endow ESPACE with internal measure-
theoretic structure. Specifically, if Z is either the collection Zygpace 0f all pspace-measure 0
sets or the collection Zpspack of all sets of measure 0 in ESPACE, then Z is a “pspace-ideal,”
i.e., is closed under subsets, finite unions, and “pspace-unions” (countable unions that can
be generated in polynomial space). More importantly, it is shown that the ideal Zgspack is
a proper ideal, i.e., that ESPACE does not have measure 0 in ESPACE.

We need a polynomial notion of convergence for infinite series. All our series here consist

[e.°]
of nonnegative terms. A modulus for a series ) a, is a function m : N — N such that

n=0
Z ap < 27
n=m(j)

for all 7 € N. A series is p-convergent if it has a modulus that is a polynomial. We will
use the following sufficient condition for p-convergence. (This well-known lemma is easily
verified by routine calculus.)

Lemma 3.2. Let a; € [0,00) for all t € N. If there exists a real ¢ > 0 such that a; < 27"

o0
for all sufficiently large t € N, then the series > a; is p-convergent. O
=0

In sections 5 and 6 we will use two theorems that provide sufficient conditions for sets to
have pspace-measure 0. The first is a special case (for pspace) of a resource-bounded version
of the classical first Borel-Cantelli lemma.



Theorem 3.3 (Borel [13], Cantelli [15], Lutz [35]). If d is a pspace-computable 1-DS
such that the series 3 d;()) is p-convergent, then
=0

(o lNe o
e (1 0 S10) = g (1414 € 0] 10)) = 0. :
k=0 t=k

Our second sufficient condition for a set to have pspace-measure 0 involves space-bounded
Kolmogorov complexity. Kolmogorov complexity (also called program-size complexity) was
introduced independently by Solomonoff [44], Kolmogorov [23], and Chaitin [16]. Time-
bounded, space-bounded, and conditional Kolmogorov complexities have since been studied
by Hartmanis [19], Sipser [43], Levin [27], Huynh [20], Ko [22], Longpré [30], Lutz [32, 35],
and many others. For an overview of work in this area, see Kolmogorov and Uspenskii [24]
or Li and Vitanyi [28]. We begin with some terminology.

Given a deterministic machine M, a space bound ¢ : N — N, a language L C {0,1}",
and a natural number n, the t-space-bounded Kolmogorov complexity of L, relative to M is

KS};(L<y) = minf{|x| | M(7,n) = x_, in < #(2") space},

i.e., the length of the shortest program 7 such that M, on input (7, n), outputs the charac-
teristic string of L, and halts without using more than ¢(2") workspace.

Well-known simulation techniques show that there exists a machine U that is optimal in
the sense that for each machine M there is a constant ¢ such that for all £, L, and n we have

KS{ (L) < KSYy (L) + c.
As usual, we fix an optimal machine U and omit it from the notation.

Theorem 3.4 (Lutz [35]). Let ¢ be any polynomial, let £ > 0 be real, and let X be the
set of all languages L such that KS/(L<,) < 2" — 27" j.0. Then ppspace(X) = 0. O

We end this section with a discussion of pseudorandom languages.

A pspace-test is a set X such that ppspace(X) = 1. A language A C {0,1}" passes a pspace-
test X if A € X. A language A C {0,1}" is pspace-random if A passes all pspace-tests. It
is easily shown that every language A that is random (i.e., whose characteristic sequence
x4 € {0,1}% is random) in the sense of Martin-Lof [39] is also pspace-random. As discussed
in the introduction, this implies that a randomly selected language is pspace-random with
probability one. Thus, separations that hold relative to every pspace-random oracle also
hold relative to a randomly selected oracle with probability one. It has also been shown
in [38] that results about pspace-random sequences give information about reasonably low
complexity classes. Specifically, almost every language in E;SPACE = DSPACE (2relynomial)
is pspace-random, but no language in ESPACE is pspace-random.

There are several additional properties of pspace-random languages that support charac-
terizing them as pseudorandom. For example, every pspace-random language L has nearly
maximal circuit-size complexity and nearly maximal space-bounded Kolmogorov complexity
almost everywhere [35]. Also, every pspace-random sequence z € {0,1}> is a structurally
adequate source for every bounded-error probabilistic machine [36].



4 Relativized Complexity

We use the oracle Turing machine and the oracle circuit as our models of relativized uniform
and nonuniform complexity, respectively. For a formal definition of the oracle Turing ma-
chine, see for example Balcazar, Diaz, and Gabarré [7]. Recall that we write DTIME(7'(n))
[resp., NTIME(T' (n))] for the set of languages accepted by deterministic [resp., nondeter-
ministic] Turing machines in O(T(n)) time. Analogously, we write DTIMEA(T'(n)) [resp.,
NTIMEA(T'(n))] for the set of languages accepted by deterministic [resp., nondeterminis-
tic] oracle Turing machines in O(T'(n)) time using oracle set A. We will use the following
relativized and unrelativized uniform complexity classes.

P = Uso DTIME(n") P* = Ugso DTIMEA(nf)
NP = Ujso NTIME(n*) NP* = Ujso NTIME (nF)
E = U.DTIME(2") EY = U.soDTIME#(2)

A (deterministic) oracle circuit is a directed acyclic graph v = (V, E) with vertex set V' =
TUG; UG, where I = {wy,...,w,} is the set of inputs, G is the set of standard gates, and
G, is the set of oracle gates. Each input has indegree 0; each standard gate has indegree 0,
1, or 2; and each oracle gate may have any indegree k£ € N. Each standard gate of indegree 0
is labeled either by the constant 0 or by the constant 1. Each standard gate of indegree 1 is
labeled either by the identity function ID: {0,1} — {0, 1} or by the negation function NOT:
{0,1} — {0,1}. Each standard gate of indegree 2 is labeled either by the conjunction AND:
{0,1}> = {0,1} or by the disjunction OR: {0,1}* — {0,1}. The function computed by an
oracle gate is dependent on the oracle set A C {0,1}" that is “attached” to the circuit. A
k-input oracle gate computes AN{0, 1}k; thus all k-input oracle gates in v compute the same
function. Intuitively, when an oracle gate g is presented with a string of inputs z € {0, 1}’“,
g “queries” A about z, producing 1 if x € A and 0 otherwise. Without loss of generality, we
insist that each oracle circuit contains at most one O-input oracle gate.

An n-input oracle circuit v with attached oracle set A computes a Boolean function
v4:{0,1}" — {0,1} in the usual way. For w € {0,1}", g"/(w) is the value computed at gate
g of 7, and v (w) is the value computed at the unique output gate of v, when the inputs are
assigned the bits wy,...,w, of w. The set computed by an n-input oracle circuit v relative
to an oracle A is then the set of all w € {0,1}" such that v*(w) = 1. Two n-input oracle
circuits v, and 7, are functionally distinct if there exists an oracle A relative to which 4
and v, compute different sets.

This model was first introduced by Wilson [46, 47]. As defined in these references, the
size of a circuit v = (V, E) is equal to |E|, i.e., the number of “wires” in 7, or the sum of the
indegrees of 7’s component gates. We will find it convenient to use the following “almost
equivalent” definition. The size of an oracle circuit ~ is given by

size(y) = 2|Gs| + D ky,

9€Go

where k is the indegree of oracle gate g. Thus every standard gate is considered to contribute
a count of 2 to the size of the circuit, rather than its actual indegree. This will facilitate
some counting arguments below.



The circuit-size complexity of a language L C {0,1}" with respect to an oracle set A is
the function CS7 : N — N defined by

CS#(n) = min{size(y) | v* computes L N {0,1}"}.

We define the relativized circuit-size complexity classes

SIZEA(f(n)) = {L|CS;(n) < f(n) ae.}
SIZE{, (f(n)) = {L|CSi(n) < f(n)io.}
LINSIZE# = Ukso SIZEA(kn)
PSIZE* = Upso SIZEA(nF)
PSIZEZ = Upso SIZEZ, (nF)

The oracle circuit model is an extension of the unrelativized circuit model in which oracle
gates do not appear, and in which the size of a circuit is simply the number of its constituent
gates. In this model, the circuit-size complexity of a language L C {0,1}" is the function
CS,(n) : N — N defined by

CS; (n) = min{size(7) | v computes L N {0,1}"}.

Using this function, the unrelativized circuit-size classes SIZE(f(n)), SIZEi, (f(n)),
LINSIZE, PSIZE, and PSIZE; ,. are defined analogously to their relativized counterparts.

Fix a standard enumeration of all oracle circuits in which no circuit precedes a circuit
of lesser size. Call an n-input oracle circuit v novel for n if v is functionally distinct from
every n-input oracle circuit that precedes it. Observe that testing whether a given circuit
is novel for n can clearly be done using workspace that is polynomial in 2.

Let C be a class of languages, and let F be a class of advice functions from N into {0,1}".
As in Karp and Lipton [21], we define C/F to be the class of languages B for which there
exists a set C' € C and a function f € F such that B = {x | (z, f(|z])) € C'}. The standard
proof (see, for instance, Schoning [41]) that PSIZE = P/Poly may easily be modified to show
that PSIZE* = P4/Poly, and that PSIZE# = P4/Poly"” for every oracle A.

Recall that a partition of an integer s is a nonincreasing sequence of positive integers
(s1,S2,...,5k) such that Zle s; = s. Define a gate partition of an integer s to be a partition
(t1,t2,...,tx) of s with the special property that each ¢; with a value of 2 is also assigned
a label from the set {oracle, standard}, with no such oracle label preceding a standard one.
Intuitively, a gate partition represents a particular set of gate types that may be used to
construct a circuit of size s. We will occasionally abuse notation and use the term “gate
partition” to refer to this set of gate types. We say that a gate partition (¢1,%s,...,t) of s
is equivalent to a partition (sy, S, ..., sx) of the same integer s if s; = ¢; for each 1 <i <k,
regardless of the special labels.

Lemma 4.1. For each positive integer s, the number G of gate partitions of s is less
than (2e)®.

Proof. We can put a weak upper bound on the number P of partitions of s by counting
the number of ways of putting numbers between 1 and s into no more than s slots, under
the condition that the numbers are selected in nonincreasing order such that the sum of the
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numbers selected never exceeds s. There are no more than s ways to select the first number,

no more than EJ ways to select the second number, and so on. This gives

Since each partition is equivalent to no more than s + 1 gate partitions, we have G <
(s+1)P < (2e)". 0

Lemma 4.2. Given any n,s € N with s > n, the number H(s) of functionally distinct
n-input oracle circuits v such that size(y) = s is less than 2685(4es)®.

Proof. For each gate partition 7 of s, let Fy(s) be the number of functionally distinct
such circuits having gates sized according to 7. By Lemma 4.1, we have

H{(s) < (2¢)" max Fr(s). (4.1)

In fact, every oracle circuit is functionally identical to one containing at most one oracle gate
of size 0, so (4.1) holds even if the maximum is only taken over those gate partitions 7 that
allow at most one oracle gate of size 0. It thus suffices to show that

F,(s) < 2685(25)° (4.2)

holds for every such 7.

Let 7 be such a gate partition allowing ¢ standard gates and k oracle gates. The total
size of the oracle gates is thus m = s — 2¢. Since 7 allows at most one oracle gate of size 0,
we have k£ + 2g < s+ 1. Since s > n, it follows that

n+k+2g < 2s. (4.3)

We now prove (4.2). There are two cases. First, suppose that g = 0. Then Fj(s) is simply
the number of ways to select the source for each of the s inputs to the oracle gates. Each
gate input may be taken from one of the n circuit inputs or from one of the £ — 1 other gate
inputs. Thus F,(s) < (n+ k)*. It follows by (4.3) that F,(s) < (2s)%, so (4.2) is affirmed in
this case.

Next, suppose that ¢ > 0. Observe that the number of potential sources of input for any
gate is less than n 4+ k + g. There are m oracle gate inputs, each of which may come from
one of the n circuit inputs or from one of the k£ + g — 1 other gate outputs. Thus there are
fewer than (n 4+ k 4 ¢g)™ ways to configure the oracle gates. For each of the standard gates,
there are 6 choices of gate type and fewer than n + k + ¢ choices of source for each of its
at most 2 inputs. Thus there are fewer than 69(n + k + g)? ways to configure the standard
gates. The total number of circuits is thus less than 69(n + k + ¢)™"% = 69(n + k + g)*.
By (4.3), this is less than or equal to 67(2s)°. Note, however, that these circuits are not all
functionally distinct. Each of these circuits is equivalent to at least (¢ — 1)! circuits obtained
by permuting its non-output standard gates. Since all these circuits are sized according to
m, it follows that
69(25)°  g-69(2s)°
(g —1)! g

F.(s) <
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Using the weak Stirling approximation g! > (£)¢, this gives Fy(s) < g'79(6e)?(2s)*. Routine
calculus shows that g'~9(6e)? takes its absolute maximum at the solution of In £ = %. This
solution satisfies 6.93 < g < 6.94 and gives a maximum value less than 2685. Thus we have
F,(s) < 2685(2s)*, again affirming (4.2). O

It should be noted that care must be taken in comparing standard and relativized circuit-
size results. Define a degenerate oracle circuit to be a circuit whose size is defined according
to the oracle circuit model described above, but which does not contain any oracle gates.
Then it is clear that any degenerate oracle circuit of size s is equivalent to a standard circuit
of size exactly s/2. As a result of the fact that any language accepted by a family of standard
circuits can be accepted by a family of oracle circuits, a proof of Lupanov [31] gives us the
following useful fact.

Proposition 4.3. For every language L and oracle A,

CSA(n) < 27:1 (1 +0 (%)) . .

If we write pspace? for the set of all functions computable in polynomial workspace
relative to oracle A, and ESPACE# for DSPACE#(2!¢r) it is straightforward to prove a
relativized version of Lemma 3.1(a). Then using methods of Lutz [35], together with the
counting argument of Lemma 4.2 above, the following can also be shown.

Proposition 4.4. For every fixed oracle A and every o < 1, the set of all L such that
CSi(n) > 2 (1 + %) a.e. has pspace’-measure 1, hence measure 1 in ESPACE“. O

This strengthens a result of Wilson [47] and, together with Proposition 4.3, shows that
ESPACE“ exhibits a weak Shannon effect: For any fixed oracle A, almost every language
in ESPACE has circuit-size complexity that is within a factor of 2 of maximal. The linear
separation from maximal size in Proposition 4.4 will resurface in the main result of section 6,
below.

We will need the following facts in sections 5 and 6.

Lemma 4.5. For every 0 < a < o' < 1 and all sufficiently large n, the number of
functionally distinct n-input oracle circuits having size < 29" is less than 22" ",

Proof. Fix @ < o/ <1 and let s = 2*" in Lemma 4.2. (Note that every oracle circuit of
size < s is functionally equivalent to some circuit of size s.) This gives

H(2°m) < 2685[4e(20m)2" < 22"
for all sufficiently large n. a

Lemma 4.6. For all sufficiently large n, the number of functionally distinct n-input
. . . . n . n(n—1
oracle circuits having size < % is less than 22" (%)
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Proof. Letting s = % in Lemma 4.2, we have
2" 2"\1 ™
H <—> < 2685 {46 (—)]
n n
)

for all sufficiently large n. U

5 Nondeterministic Time Versus Circuit Size

In this, the main section of the paper, we prove that every pspace-random oracle A supports
the separation NP* ¢ SIZE{ (2°%) for every real a < 5. We begin by showing that the
desired separation is a pspace-test.

Theorem 5.1. For every 0 < a < %,

ppspace({A | NP4 € SIZE{, (2°™)}) = 1.

Proof. Fix 0 < a0 < % For each y € {0,1}", let %y denote the string consisting of the

first ‘—g' bits of y. (For clarity, we omit the floors and ceilings required for strict accuracy in
this proof.) For each oracle A, define the function 64 by

0a(y) = (39)[y0 € A[y0* € A]---[y07" € A]
and let
Ly = range(0s) = { | (Jy) Oa(y) = =}.

It is clear that L, € NP# for every oracle A, so it suffices to show that Upspace (X ) = 0, where

X ={A| L, € SIZEA (2°™)}.

For each n € N, partition {0,1}" into blocks

B, ={y € {0,1}" | 3y = 52}

for z € {0,1}", and define the set
BR, = {u0% | [u] = %}

of block representatives. Note that 04(B,) C B, for all . Our proof focuses on the difficulty
of determining that block representatives are not in range(fy).

Throughout this proof, to simplify notation, we write s = 2*" for the circuit-size bound
used in the definition of X. For each n € N, let CIRC(s) = CIRC(2%") be the set of all
novel n-input oracle circuits v with size(y) < s, and define the set

Xn - U Xn,'y;

YECIRC(s)
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where

Xo,={A| L(¥*") NBR, = LA NBR,}
for each v € CIRC(s). Note that

X C{A|A€X,io0). (5.1)

For each n € N, let

That is, Y,, is the set of all oracles A for which at least 25% of the block representatives
u0% € BR,, escape being in range(f4) = L4. Finally, let

Y = {A|A€Y, ae}
Z = {A|A€X,NY,i0)}

By (5.1), X CY“U Z, so it suffices to prove that

Hpspace(Y ) = 0 (5.2)

and
Hipspace(Z) = 0. (5.3)

Our proof is thus in two parts, establishing (5.2) and (5.3) separately. Note that the
definition of Y does not involve circuits, so the verification of (5.3) is the main part of this
proof.

To establish (5.2), it suffices by Theorem 3.4 to show that there is a polynomial ¢ such
that the implication

A €Y = KSY(Acy,) < 22"t — 2% (5.4)

holds for all sufficiently large n. For each n € N, let Si,...,S5;4) be the lexicographic
enumeration of all sets S C {0, 1}=>" such that S € Y. It is routine to design a deterministic
machine M that takes inputs ¢,¢ € N in binary and has the following property. If 1 < i <
I(n), then M(i,2n) is the (22"T' — 1)-bit characteristic string of S;, and this computation is
carried out using workspace that is polynomial in 2". For all n, it is clear that ¥, = {A |
Acop € Y, }, since 64({0,1}") is entirely determined by A<s,. Since we have fixed an optimal
machine in defining K8, it follows that there exist a polynomial ¢ and a constant a such that
the implication

AeYy = KSYA<,) <logl(n)+a (5.5)

holds for all sufficiently large n. We thus estimate log I(n).

Intuitively, /(n) is small because for most sets S, approximately |BR,| > }|BRy| of the
elements of BR,, escape being in range(fs). To formalize this intuition, consider the random
experiment in which a set S C {0, 1}9” is chosen probabilistically according to the uniform
distribution on all such sets. It is clear that

log I(n) < 2*"*! 4+ log Pr[S € Y1]. (5.6)
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For z € BR,, let Y, , be the event that x ¢ range(fs). For each n, the events Y, , are
independent for distinct # € BR,, and the probability p, = Pr[S € Y}, ;] does not depend on
x. In fact,

Pn = (1 — 2’%")2 > % a.e.,

since p, — % as n — 0o. By Proposition 2.1,

%2% 2% 1 g 2 2

Pr[S e Y’ < ) (—) (—)
r[ 2 i=0 ( v ) 3 3

< 2*62%

so it follows by (5.5) and (5.6) that

qu(ASQn) < 22ntl _ 02% +a
< 22n+1 _ 2%

for all A € Y, for all sufficiently large n, confirming (5.4) and hence (5.2). This completes
the first part of the proof.

The second, and main, part of the proof is to establish (5.3). For this, by Theorem 3.3,
it suffices to exhibit a pspace-computable 1-DS d such that

> dy(\) is p-convergent (5.7)
t=0
and o o
Z < N U Sl (5.8)
k=0 t=k
Define d : N x {0,1}" — [0, 00) by
> Pr(X,,NnY,|C,) ift=2"
di(w) = { 7ECIRC(s) o ) (5.9)
0 if ¢ is not a power of 2,

where the conditional probabilities Pr(X,,NY, | C,) = Pr[4d € X,,,NY, | A € C,] are
computed according to the random experiment in which the language A C {0,1}" is chosen
probabilistically, using an independent toss of a fair coin to decide membership of each string
in A.
For each n € N and v € CIRC(s), it is immediate from the definition of conditional
probability that
Pr(X,,NY, | Cuw)+Pr(X,,NY, | Cyu)

Pr(X,., NY, | Cyp) = . .

It follows from this and (5.9) that d is a 1-DS.
Now let 2, be the set of all subsets of {0, 1}<™*{=2"} anq let

v,,=Q,NX,,NY,
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for each v € CIRC(s). (Note that s = 2%" > 2n for all sufficiently large n.) Intuitively, ¥, ,
is the set of all T C {0, 1352} guch that (i) 47 correctly decides Ly when restricted to
inputs from BR,,; and (ii) at least 25% of the elements of BR,, escape being in range(6r) = L.
Since Ly N {0,1}" depends only upon T<s,, and since circuits of size < s only query strings

of length <'s, we have
Xn,’Y n Yn = {A | ASmax{s,Zn} € \Ijn,y}

for all n € N and v € CIRC(s). It follows immediately from this that, for all n € N,
v € CIRC(s), and w € {0,1}",

. |‘~Ifn,7 N Cwl|

Pr(X,,NY, | Cy) = 2, 0T

(5.10)

where w' = w[0..m — 1], m = min{|w|, 2max{s2n}+1 _ 1}

The denominator of (5.10) is triply exponential in n, hence too large to store in polynomial
space. Nevertheless, Pr(X,,NY, | Cy) can be computed in space polynomial in ¢ + |w],
where ¢ = 2", To see this, let n € N, v € CIRC(s), and w € {0,1}". We first compute
the number m and the string w' as in (5.10). Now note that, for T' € €,,, membership of T
in U, , depends upon at most [{0,1}"]- 2= + |BR,| - s bits of the characteristic string of 7.
(The first term counts all bits affecting range(fr)—,, while the second term bounds the total
number of oracle queries on inputs x € BR,,.) For sufficiently large n, these terms are less

than t* and ¢, respectively. For each y € {0, 1}1t2 and z € {0,1}, construct a partial oracle
specification oracle(y, z) € {0, 1, L}* as follows. The length of oracle(y, ) is 2ma{s2n}+1 _ 1,
i.e., oracle(y, z) decides (some) strings of length < max{s,2n}. Initially, oracle(y, 2) is of the
form w' L', where w' is as in (5.10). (This ensures that Coracte(y,s) C Cur.) The “bit sources”
y and z are then used to further specify oracle(y, z) in the following two phases.

Phase I. For each 2 € {0,1}" and each 1 <4 < 2* (in some canonical order), if the bit
of oracle(y, z) corresponding to x0° is L, then the first bit of y is deleted from y and used
to replace this L in oracle(y, z). At the end of Phase I, oracle(y, z) completely determines
range(07)—, for all T € Ciracie(y,z)- We let y' be the prefix of (the original string) y consisting
of those bits actually used in this phase.

Phase II. For each x € BR,,, simulate the oracle circuit v on input z. During the
course of this simulation, oracle queries are handled as follows. If the bit of oracle(y, z)
corresponding to the queried string is L, then the first bit of z is deleted from z and used
to replace this L in oracle(y, z). Then, in any case, the bit of oracle(y, z) corresponding to
the queried string is used as the answer to the query. At the end of Phase II, oracle(y, z)
completely determines membership (or non-membership) of 7" in W, for all ' € Coracie(y,s)-
We let z, be the prefix of (the original string) z consisting of those bits actually used in this
phase. Since z, depends only upon the prefix y' of y, and since oracle(y, z) depends only
upon y' and z,, we write oracle(y’, z,/) for oracle(y, z). We also let T'(y', z,/) be the smallest
language in Comcle(y/,zy,).

We are primarily concerned with the strings y" and z,/, which are the bit sources actually
used in Phases I and II above. Accordingly, we define the set

SOURCES(n,7) = {(v, 2) | y € {0,1}", 2 € {0,1}'}.
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It is important to note that
{Coracle(y’,zy/) | (yla Zy’) € SOURCES(”: 7)}

is a partition of Cyy, whence (5.10) tells us that

\Ijn,’y N Coracle(y’,zy/)
12, N Cyr|

Pr(X,,NY,|Cy,) = >
(y’,zy/)ESOURCES(n,'y)

>

(y',2,1)ESOURCES(n,y)

— Z o—([y'[+2,7]) . [T, 2,) € V]
(y',2,1)ESOURCES(n,y)

(5.11)

Qn N Coracle(y’,zy/) . [[T(yla Zy’) € \Ijn,'y]]
|2, N Cu|

We use (5.11) as the basis for our computation of Pr(X,,NY, | C,). Having computed
m and w' as in (5.10), we can, for any y € {0, 1}1t2 and z € {0,1}", compute the partial
specification oracle(y, z). This can be done in space polynomial in ¢ + |w| = 2" + w because
at most |w| + t* + ¢ bits of oracle(y, z) are not L. (We thus represent oracle(y, z) in a
compressed form by a list of positions i at which w[i] = 0 and a list of positions j at which
w(j] = 1.) Once we have oracle(y, z), we can test the condition 7'(y', z,) € ¥, in space
polynomial in ¢+ |w|. Thus we can use (5.11) to compute each Pr(X, , NY, | C,) in space
polynomial in ¢ + |w|. It follows by (5.9) that d : N x {0,1}" — D and d € pspace. Thus d
is a pspace-computable 1-DS.

To see that (5.8) holds, let A € Z. Then the set

K={2"| A€ X,nY,}

is infinite. Moreover, for each t = 2" € K, if we let w = y4[0..2m>{s2r}+1 _ 1] then

dw) = 3 Pr(X,,nY,|C,)
YECIRC(s)
> Pr( U XopnY, | Cu)
vE€CIRC(s)
= Pr(X,NnY,|C,)
=1

Y

so A e Oy C S[d;]. Thus A € S[d,] i.0., confirming (5.8).
All that remains is to verify (5.7). For this it suffices by Lemma 3.2 to prove that

dy(\) <27 (5.12)

for all sufficiently large ¢. This is trivial if ¢ is not a power of 2, so for the rest of the proof
we assume that ¢t = 2"; we will show that (5.12) holds for all sufficiently large n.
By (5.9) and (5.10), we have

d(N)= S Pr(X,,nY,)= 3 o (5.13)

YECIRC(s) YECIRC(s)
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for all n € N. We thus seek an upper bound for |¥,,|. We use a refinement of the
measure-preserving transformation argument of [9]. However, we give our argument in purely
combinatorial terms. For convenience, write N = %2% and let

A= {2 € {0, 1} | #(0,2) = #(1,2) = N}.

Intuitively, we will show that |¥, .| cannot be much larger than |,[/|A,|. Roughly,
the idea is that each T € W, , must have 4" (z) = 0 for at least 125 = 2V of the strings
x € BR,,. We can thus use each z € A, as a selection of N of these 2V strings at which
to “introduce an error,” creating from T a new set U € €, such that (i) vV (z) = +T(z) for
every © € BR,, but (ii) the IV strings selected by z are in range(fy). If our construction
made the function (7, z) — U one-to-one from ¥, , x A, into 2, we could conclude that
U, < |2]/|A,|. However, matters are not so simple. To make our function one-to-one,
we must carry extra information, namely the “old” values of 61 that were changed to put
N new block representatives into the range. Also, to ensure the condition vV (z) = 77 (z),
we avoid changing the answers to queries of 4T (), thereby slightly restricting our freedom
to choose preimages for the N new elements of the range. Thus our construction is a little
more elaborate and does not quite achieve |¥,, .| < [Q,|/|A,|.

Formally, for sufficiently large n, and for each v € CIRC(s), we will exhibit a function

Fam t U x A, x {0,115~V onetogne o g 13557 (5.14)

The existence of such a function implies that each |¥,, .| < 2V|Q,|/|A,|, whence each

W 2V _ 2
o ST )

N
Using the estimate e(2)" < n! <en(2)" gives
2N - 22N
N 4N2’
Vs |
€20
for all v € CIRC(s), for all sufficiently large n. Now fix 3 > 1 such that aff < % By (5.13),
(5.15), and Lemma 4.5, we have, for all sufficiently large n,
d;(\) < 22NN CIRC(s)|

< 227 NNZp
227N+t°‘5 N2,

whence we have

< 227N N? (5.15)

Recalling that N = %2% = ét% and a < aff < %, it follows that (5.12) holds for all sufficiently
large n. Thus, to complete the proof, it suffices to define the functions f, , as in (5.14).

Fix ng € N such that 2G+®" < 2% -1 for all n > ny. Given n > ng, v € CIRC(s),
2nN
TeV,, z€A,, and v € {0, 1}T_N, we now describe the value

Fur (T, 2,0) = (U,w) € Qu x {0,1}°5 . (5.16)
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We will write v = vy --- vy and w = w; - - - wy, where each |v;| = 2?” — 1 and each |w;| = 2?”
(Intuitively, vq,...,vx specify a choice of preimages, while wy,..., wy specify the “old”
values of 67 at these preimages.) Since T € ¥, ,, we have 7 (z) = 0 for at least {25 = 2N
of the strings x € BR,,. Call these strings !, z, ... (in lexicographical order) and let D(T, z)
be the set consisting of all } such that 1 < i < 2N and the i*® bit of 2 is 1. Note, then, that
|D(T, z)| = N; write D(T, z) = {x1,...,xy} in lexicographic order.

Let Q(T) be the set of all strings y € {0, 1}" such that, for some z € BR,, and 1 < j < 2?”,
T (z) queries y07. Note that |Q(T)| < |BR,| - size(y) < 26T9" < 251 For cach z € BR,
and each v' € {0, 1}%”_1, let zxv' denote the j* string in B, \ Q(T'), where ¢’ is the j* string
in {0,113 . (Note that 2+ exists because |B, \ Q(T)| > |Bs| — |Q(T)| > 2% — 2%~ =
2751 )

The pair (U, w) of (5.16) is now defined by

U=T\{(z;xv;))0/ |1<i<N,1<j< 2}

and
w; = [(x; xv;)0 € T] -+ - [(; *Ui)O%n €T

for 1 < ¢ < N. Intuitively, U is obtained from 7" by making just those changes required to
establish the conditions
9[](1‘2' *'Uz') = T;

for 1 <¢ < N. The string w satisfies

1
3
for 1 <7 < N. Note that v”" does not query any string in T AU =T \ U, so vV (z) = 7" (z)
for every x € BR,,.

To see that the resulting function f, , is one-to-one, it suffices to show that T, z, and v
can be recovered from U and w. First note that D(T), z) is precisely the set of all z € BR,
such that vY(z) = 0 but = € range(y). Thus D(T, z) and z are determined by U. Now
each x; € D(T,z) has a unique preimage under ;. This preimage is z; x v;, so v is also
determined by U. Finally,

HT(a:i*vz-) = ( ZUZ')U)Z'

T = U U {(z; % v;)07 | the j*" bit of w; is 1},

so T is determined by U and w. This establishes (5.14) and completes the proof of Theo-
rem 95.1. O

Corollary 5.2. For every pspace-random oracle A and every real a < %,
NP4 ¢ SIZE# (207).

Proof. By Theorem 5.1, this condition is a pspace-test. O

Note that Corollary 5.2 gives an explicit, sufficient condition for an oracle A to support
the indicated separation.

Corollary 5.3. For every real a < %, for almost every oracle A € ESPACE,
NP* ¢ SIZE# (2¢7).
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Proof. Immediate from Theorem 5.1 and Lemma 3.1. O

Corollary 5.4. For every real o < %, for a randomly selected oracle A,

Pr [NP* ¢ SIZEZ, (22m)] = 1.
Proof. Immediate from Theorem 5.1 and Lemma 3.1. O

Wilson [47] constructed oracles A and B such that NP4 C LINSIZE* and NP? ¢
P?/Poly, and asked which of these holds with probability one. We can now answer this
question.

Corollary 5.5. For a randomly selected oracle A,

Pr[NP4 ¢ P4/Poly] = 1.
Proof. Immediate from Corollary 5.4. a
Of course the original random oracle result is an immediate consequence of Corollary 5.4.

Corollary 5.6 (Bennett and Gill [9]). For a randomly selected oracle A,

Pr[P* # NP4| = 1.

a
Often one is only interested in the case of polynomial advice.
Corollary 5.7. For every pspace-random oracle A, NP4 ¢ P4/Poly.
Proof. Immediate from Corollary 5.2. a

6 Deterministic Time Versus Circuit Size

It is interesting to observe that the test language L4 of the previous section is computable
in 2'"€ar time relative to A for each oracle A. That is, we have the following.

Corollary 6.1. fipspace({A | E* € SIZEZ (297)}) =1 for every 0 < a < L. O

In this section, we show that this separation condition remains a pspace-test even when
the size bound becomes virtually maximal.

Theorem 6.2. fipspace ({A | E* Z SIZES, (£)}) = 1.
Proof. For each oracle A, let
La={z|20”" € A}.

Clearly, L, € E* for each A. Thus it suffices to prove that pspace(Y) = 0, where

n

y = {A | L, € SIZES (2—>} .
n
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For this, by Theorem 3.3, it suffices to exhibit a pspace-computable 1-DS d such that

> di(A) is p-convergent (6.1)
t=0
and o =
Y C (U Sld. (6.2)

k=0t=k

Throughout this proof, to simplify notation, we write s = % for the circuit-size bound
used in the definition of Y. For each n € N, then, let CIRC(s) be the set of all novel n-input
oracle circuits that have size < s, and define the set

Yn - U Yn,'y;

YECIRC(s)

where each
Yoy ={A [ L(y") = (La)=n}.
Define d : N x {0,1}" — [0, 00) by

> Pr(Y,,|Cy) ift=2"
dy(w) = { veCIRC(s) ! (6.3)
0 if ¢ is not a power of 2,

where the conditional probabilities Pr(Y, , | C,) = Pr[A € Y,,, | A € C,] are computed
according to the random experiment in which A C {0,1}" is chosen probabilistically, using
an independent toss of a fair coin to decide membership of each string in A.

As in the proof of Theorem 5.1, it is easily checked that d is a 1-DS. By a bit source
argument analogous to (but simpler than) the one in the proof of Theorem 5.1, d is pspace-
computable. All that remains, then, is to verify conditions (6.1) and (6.2).

To see that (6.1) holds, fix n € N and let t = 2". By (6.3),

d(N)= Y Pr(Y,,).

vE€CIRC(s)

For all v € CIRC(s), all z € {0,1}", and all oracles A, the string 202" is not queried in
the computation of y4(x). Thus, for all v € CIRC(s), Pr(Y,,) = 271{01"l = 2=t By
Lemma 4.6, it follows that

1
2

d,(\) = [CIRC(s)] - 2 " < 2 st < 27!

if n is sufficiently large. By (6.3), then, d;(\) < 2% for almost all t, whence (6.1) follows
from Lemma 3.2.

Finally, to verify (6.2), let n € N and A € Y,,. Fix v € CIRC(s) such that A € Y}, , and
let w be the characteristic string of A<, ., where ¢t =2". Then A € C,, and

dy(w) > Pr(Y,, | C) = 1,
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so A € S[dy]. Thus Y,, C S[d;] for all n € N, where ¢t = 2". It follows that

AceY <<— AcY,i.o.
- Ae S[dt] i.O.,

whence (6.2) holds. This completes the proof of Theorem 6.2. O

Corollary 6.3. For every pspace-random oracle A, E* ¢ SIZE{, (£).

Proof. By Theorem 6.2, this condition is a pspace-test. O

Corollary 6.4. For almost every oracle A € ESPACE, E* ¢ SIZE#, ().

Proof. Immediate from Theorem 6.2 and Lemma 3.1. O

Corollary 6.5. For a randomly selected oracle A,

n

2
Pr |E* ¢ SIZE# (—)] = 1.
n
Proof. Immediate from Theorem 6.2 and Lemma 3.1. O

Corollary 6.6. For a randomly selected oracle A,

Pr[E* ¢ P4/Poly] = 1.
Proof. Immediate from Corollary 6.5. O

Although Corollary 6.6 is considerably weaker than Corollary 6.5 (which, in turn, is
much weaker than Theorem 6.2), Corollary 6.6 gives an explicit answer to an open question
of Wilson [47]. Specifically, after exhibiting oracles A, B, and C such that E* C LINSIZE“,
EZ C P%/Poly, and E¢ ¢ P¢/Poly, Wilson asked what relation holds for randomly selected
oracles. Corollary 6.6 tells us that oracle C gives the typical situation, while oracles A and
B are exceptional.

7 Conclusion

We have established pspace-randomness as a sufficient condition for an oracle to achieve
certain separations. Intuitively, for example, we now know that NP4 ¢ P4/Poly for every
oracle A whose information content is high enough that A is pspace-random. In contrast,
work of Hartmanis [19], Long and Selman [29], Balcdzar and Book [6], and Allender and
Rubinstein [1], can be used to show the following. If there ezxists an oracle A, whose infor-
mation content is sufficiently low (e.g., A € K[log,poly]), such that NP* ¢ P4/Poly, then
the unrelativized separation NP ¢ P/Poly follows. It will be interesting to see these high
and low information criteria pushed closer together.
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