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Abstract

This paper initiates the study of sets in Euclidean space Rn (n ≥ 2) that are defined in
terms of the dimensions of their elements. Specifically, given an interval I ⊆ [0, 1], we are
interested in the connectivity properties of the set DIMI consisting of all points in Rn whose
(constructive Hausdorff) dimensions lie in the interval I. It is easy to see that the sets DIM[0,1)

and DIM(n−1,n] are totally disconnected. In contrast, we show that the sets DIM[0,1] and
DIM[n−1,n] are path-connected. Our proof of this fact uses geometric properties of Kolmogorov
complexity in Euclidean space.

1 Introduction

Constructive dimension, an effectivization of classical Hausdorff dimension introduced in 2000
[10, 11], assigns a dimension dim(S) ∈ [0, 1] to each sequence S ∈ C, where C = {0, 1}∞ is
the Cantor space. The properties of constructive dimension and its relationships with algorithmic
randomness, Kolmogorov complexity, and other topics in the theory of computing have been ex-
tensively investigated over the past few years [6]. Intuitively, the dimension of a sequence S is the
asymptotic density of information in S [13, 12].

Constructive dimension on the Cantor space naturally induces constructive dimensions on Eu-
clidean spaces. Specifically, for each positive integer n, constructive dimension assigns a dimension
dim(x) ∈ [0, n] to each individual point x ∈ Rn. For each real number α ∈ [0, n], there do in
fact exist points x ∈ Rn with dim(x) = α [11]. Although it may at first seem counter-intuitive to
assign dimensions, which may be positive, to individual points, there are now several indications
that these dimensions are geometrically meaningful in Euclidean space. For example, results of
Hitchcock [7] and Lutz [11] imply that, if X ⊆ Rn is a union (not necessarily effective) of Π0

1 (i.e.,
computably closed) sets, then

dimH(X) = sup
x∈X

dim(x), (1.1)

where dimH(X) is the classical Hausdorff dimension of X. We thus have a “pointwise” charac-
terization of Hausdorff dimension, which is the most important dimension in fractal geometry, on
unions of Π0

1 sets. Gu, Lutz, and Mayordomo [4] have noted that (1.1), in combination with classi-
cal results in geometric measure theory, implies that every point x ∈ Rn that lies on a computable
curve of finite length has dimension dim(x) ≤ 1. For another example, Lutz and Mayordomo
[12] have recently carried out a pointwise analysis of the dimensions of self-similar fractals, using
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information-theoretic methods to show that, for every computably self-similar fractal F ⊆ Rn,
every point x ∈ F , and every symbolic sequence T that naturally encodes x in the construction of
F , the dimension identity

dim(x) = sdim(F )dimπ(T ) (1.2)

holds. In this equation, dim(x) is the dimension of the point x in Euclidean space, sdim(F ) is a well
known and easily computed quantity called the similarity dimension of F [3], and dimπ(T ) is the
dimension of the sequence T with respect to a probability measure π that the fractal F naturally
induces on the alphabet of T . (This is a constructive version of Billingsley dimension [1, 2].) The
classical theorem of Moran [14], stating that

dimH(F ) = sdim(F ) (1.3)

holds for every self-similar fractal F , follows easily from (1.2) by relativization. Considering the
dimensions of individual points thus gives a new, information-theoretic proof of (1.3), while at the
same time providing additional geometric information about how the dimension is “distributed” in
the fractal F and “where it comes from” in the dynamical construction of F .

In this paper we investigate the structures of sets in Euclidean space that are defined in terms
of the dimensions of their elements. For each nonempty interval I ⊆ [0, n], we are interested in the
dimension level set

DIMI = {x ∈ Rn | dim(x) ∈ I } .

As will be seen below, known results easily imply that each such set DIMI is a dense subset of Rn

whose Hausdorff and constructive dimensions are both the supremum of I. Results of Hitchcock,
Lutz, and Terwijn [8] imply that (except in the degenerate case I = [0, 1]) dimension level sets are
somewhat complex, in that they all lie in the second or third level of the arithmetical hierarchy.

Our focus here is on the connectivity properties of the dimension level sets. This is a trivial
matter in R1, so our attention is henceforth directed to Euclidean spaces Rn, where n ≥ 2. As will
be seen, an easy argument shows that the dimension level sets DIM[0,1) and DIM(n−1,n] are totally
disconnected, i.e., all connected components of these sets are single points.

In contrast, our main theorem shows that the dimension level sets DIM[0,1] and DIM[n−1,n]

are path-connected, i.e., any two points in one of these sets are connected by a continuous path
lying entirely in the set. That is, adding the dimension-1 points to the set DIM[0,1), or adding
the dimension-(n − 1) points to the set DIM(n−1,n], transforms a totally disconnected set into a
path-connected set. To prove this theorem, we use geometric properties of Kolmogorov complexity
in Euclidean space to develop a theorem relating the dimensions of points that are collinear. This
development is itself likely to be useful in future investigations.

The above-described transformations from one extreme of the “connectivity spectrum” to the
other are especially intriguing given that, at the time of this writing, we know nothing about
the connectivity properties of the dimension level sets DIM1 and DIMn−1 that produce these
transformations. We do not know whether either of these sets is totally disconnected, and we
do not know whether either is path-connected.

2 Kolmogorov Complexity and Constructive Dimension in Eu-
clidean Space

This section summarizes basic elements of Kolmogorov complexity and constructive dimension in
Euclidean space that are used in proving our results. Our treatment here is brief and assumes some
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knowledge of Kolmogorov complexity.
It is convenient to use the (prefix) Kolmogorov complexity

K(w) = min {|π| | U(π) = w} ,

defined for each string w ∈ {0, 1}∗, where U is a fixed, optimal prefix Turing machine. (We refer
to the standard text by Li and Vitányi [9] for the definitions of prefix Turing machine, optimal
such machines, and basic properties of K(w).) We define the Kolmogorov complexity of a natural
number r ∈ N to be K(r) = K(sn), where s0, s1, s2, . . . is the standard enumeration of {0, 1}∗. Note
that K(r) = O(log r) for all r ∈ Z+.

Encoding sign bits, numerators, denominators, and tuples, it is straightforward to define, for
each n ∈ Z+, a coding function rat(n) : {0, 1}∗ onto−−→ Qn. We then define the Kolmogorov complexity
of a rational point q ∈ Qn in the Euclidean space Rn to be K(q) = min

{
K(w)

∣∣ rat(n)(w) = q
}
.

Standard techniques show that this quantity is, up to the usual additive constant, independent of
the precise choice of the coding function rat(n).

We define the Kolmogorov complexity of a point x ∈ Rn at precision r ∈ N to be

Kr(x) = min
{
K(q)

∣∣ q ∈ B(x, 2−r)
}

,

where
B(x, ρ) = {y ∈ Rn | |x− y| ≤ ρ}

is the closed ball of radius ρ about x. This is the minimum length of any program π ∈ {0, 1}∗ for
which U(π) ∈ Qn ∩ B(x, 2−r). We also mention the related quantity

Kr(r, x) = min
{
K(r, q)

∣∣ q ∈ Qn ∩ B(x, 2−r)
}

,

in which the program π must output the precision parameter r in addition to a rational approxi-
mation q of x to within 2−r. Using standard techniques, it is easy to verify that there is a constant
a ∈ N such that, for all x ∈ Rn and r ∈ N,

Kr(x)− a ≤ Kr(r, x) ≤ Kr(x) + K(r) + b. (2.1)

Lutz and Mayordomo [12] have also shown there is a constant c ∈ N such that, for all x =
(x1, . . . , xn) ∈ Rn, all r ∈ N, and all w1, . . . , wn ∈ {0, 1}r such that each wi is a prefix of a binary
expansion of the fractional part xi − bxic of xi, we have

|Kr(r, x)−K(bxc , w1w2 . . . wn)| ≤ c. (2.2)

The following characterization of the (constructive) dimension dim(x) of each point x ∈ Rn is
the only property of dim(x) that we use in this paper. The reader may reasonably either regard
this as the definition of dim(x) or consult the papers [11, 12] for the development of dim x as a
constructive version of classical Hausdorff dimension.

Theorem 2.1. [12]. For all x ∈ Rn,

dim(x) = lim inf
r→∞

Kr(x)
r

.
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By Theorem 2.1 and elementary properties of Kolmogorov complexity, for all x ∈ Rn, all y ∈ Rn,
and all permutations π of {1, . . . , n}, we have

0 ≤ dim(x) ≤ n, (2.3)

max{dim(x),dim(y)} ≤ dim(x, y) ≤ dim(x) + dim(y), (2.4)

and
dim(x) = dim(π(x)), (2.5)

where we write π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). These facts imply that, for all x = (x1, . . . , xn) ∈
Rn and 1 ≤ i ≤ n,

dim(xi) ≤ dim(x) ≤ n− 1 + dim(xi). (2.6)

A point x ∈ Rn is random if there is a constant d ∈ N (which may depend on x) such that, for
all r ∈ N, Kr(r, x) ≥ nr − d. It is well known that almost every point in Rn is random, i.e., that
the set of nonrandom points form a set of Lebesgue measure 0 in Rn [9].

Given a point x(i) ∈ Rni for each 0 ≤ i < k, we say that the points x(0), . . . , x(k−1) are
independently random if the point (x(0), . . . , x(k−1)) ∈ Rn0+···+nk−1 is random.

Given a point x(i) ∈ Rni for each i ∈ N, we say that the points x(0), x(1), x(2), · · · are indepen-
dently random if the points x(0), . . . , x(k−1) are independently random for every k ∈ Z+.

It is easy to see that dim(x) = 0 for all computable points x ∈ Rn and dim(x) = n for all
random points x ∈ Rn. It follows by (2.6) that, for all x = (x1, . . . , xn) and 1 ≤ i ≤ n,

xi is computable =⇒ dim(x) ≤ n− 1 (2.7)

and
xi is random =⇒ dim(x) ≥ 1. (2.8)

We also use relativized Kolmogorov complexity and dimension in Euclidean space. An oracle
for a point x ∈ Rn is any function g : N → Qn such that |g(r) − x| ≤ 2−r holds for all queries
r ∈ N. If we write Or(x) for the set of all oracles for x, then we define the Kolmogorov complexity
of a point y ∈ Rn at precision r ∈ N relative to the point x ∈ Rn to be

Kx
r (y) = sup

g∈Or(x)
Kg

r(y), (2.9)

where Kg
r(y) denotes the Kolmogorov complexity of y at precision r relative to the specific oracle

g. Similarly, the dimension of a point y ∈ Rn relative to the point x ∈ Rn is

dimx(y) = sup
g∈Or(x)

dimg(y), (2.10)

where dimg(y) is the dimension of y relative to g. Definitions (2.9) and (2.10) use the supremum
over all g to ensure that Kx

r (y) and dimx(y) depend only upon x, y, and r, i.e., that they cannot
be artificially reduced by extra information in any particular oracle g ∈ Or(x).

It is routine to verify that all the properties of Kolmogorov complexity and dimension that we
have discussed continue to hold when relativized to any point x ∈ Rn. It is also easy to see that
dimx(y) = dim(y) whenever x is computable. A well-known theorem of van Lambalgen [15, 16]
implies that dimx(y) = dim(y) = n whenever x and y are independently random.
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3 Dimension Level Sets

The main theorem of this paper concerns dimension level sets, which are defined as follows.

Definition. The dimension level set given by a set I ⊆ [0, n] is the set

DIMI = {x ∈ Rn | dim(x) ∈ I } .

For α ∈ [0, n], we use the abbreviations DIMα = DIM{α}, DIM<α = DIM[0,α), DIM≤α =
DIM[0,α], DIM>α = DIM(α,n], and DIM≥α = DIM[α,n].

It was shown in [11] that, for each α ∈ [0, n], the level sets DIM<α, DIM≤α, and DIMα all have
both constructive dimension and Hausdorff dimension α. The following fact follows readily.

Theorem 3.1. For all ∅ 6= I ⊆ [0, n], dim(DIMI) = dimH(DIMI) = sup I.

We now turn to the connectivity properties of the dimension level sets.

Theorem 3.2. The sets DIM<1 and DIM>n−1 are totally disconnected.

Proof. Let x and y be distinct elements of D, where D is either DIM<1 or DIM>n−1. Fix i ∈
{1, . . . , n} such that xi 6= yi, and assume without loss of generality that xi < yi. If D = DIM<1 let
θ be a random real number such that xi < θ < yi. If D = DIM>n−1, let θ be a rational number
such that xi < θ < yi. In either case, define the (n− 1)-dimensional hyperplane

P = {x ∈ Rn | xi = θ}

and the open half-spaces
H− = {x ∈ Rn | xi < θ} ,

H+ = {x ∈ Rn | xi > θ} .

By (2.7) and (2.8), P ∩D = ∅. Hence, H− and H+ are open sets in Rn with x ∈ H−, y ∈ H+, and
D ⊆ H− ∪H+. This shows that x and y lie in distinct connected components of D. Since x and y
are arbitrary distinct points in D here, this shows that D is totally disconnected.

In contrast with Theorem 3.2, we will show that the sets DIM≤1 and DIM≥n−1 are path-
connected. Our proof uses the following geometric lemma.

Lemma 3.3. Let x, y, z ∈ Rn be distinct, collinear points. If

a > 1− log |x− z|+ max{0, log(|x− y|+ |y − z|)},

then the following two conditions hold for all r ∈ N.

1. B(x, 2−(r+a)) ∩ B(z, 2−(r+a)) = ∅.

2. Every line that meets B(x, 2−(r+a)) and B(z, 2−(r+a)) also meets B(y, 2−(r+1)).

Proof. Assume the hypothesis. Then we have

a > 1− log |x− z| (3.1)

and
a > 1 + log(|x− y|+ |y − z|)− log |x− z|. (3.2)
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By the triangle inequality, (3.2) implies that

a > 1. (3.3)

Let r ∈ N.
By (3.1), we have

2−(r+a) ≤ 2−a <
1
2
|x− z|,

so part 1 of the lemma holds.
To prove part 2 of the lemma, let L be a line that meets B(x, 2−(r+a)) and B(z, 2−(r+a)). Fix

points qx ∈ L ∩ B(x, 2−(r+a)) and qz ∈ L ∩ B(z, 2−(r+a)). Since x, y, and z are distinct, collinear
points, we have the following two cases.

Case 1. y is between x and z. Then there exists α ∈ (0, 1) such that y = αx + (1− α)z. Let

qy = αqx + (1− α)qz,

noting that qy ∈ L. By (3.3), we have qx ∈ B(x, 2−(r+1)) and qz ∈ B(z, 2−(r+1)), so

|qy − y| = |αqx + (1− α)qz − αx− (1− α)z|
≤ α|qx − x|+ (1− α)|qz − z|
≤ α2−(r+1) + (1− α)2−(r+1)

= 2−(r+1),

so qy ∈ L ∩ B(y, 2−(r+1)).
Case 2. y is not between x and z. Then, by symmetry, we can assume without loss of generality

that z is between x and y. Then there exists β ∈ (0, 1) such that z ∈ βx + (1− β)y. Let

qy =
1

1− β
(qz − βqx),

noting that qy ∈ L. Then

|qy − y| =
∣∣∣∣ 1
1− β

(qz − βqx)− 1
1− β

(z − βx)
∣∣∣∣

≤ 1
1− β

(|qz − z|+ β|qx − x|)

≤ 1
1− β

(2−(r+a) + β2−(r+a))

= 2−(r+a) 1 + β

1− β

= 2−(r+a)
1 + |y−z|

|y−x|

1− |y−z|
|y−x|

= 2−(r+a) |x− y|+ |y − z|
|x− y| − |y − z|

= 2−(r+a) |x− y|+ |y − z|
|x− z|

< 2−(r+1).
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(The last inequality holds by (3.2).) Hence, qy ∈ L ∩ B(y, 2−(r+1)).
In either case, we have shown that L meets B(y, 2−(r+1)), confirming part 2 of the lemma.

We next extract the following Kolmogorov complexity result from Lemma 3.3.

Lemma 3.4. If x, y, z ∈ Rn are distinct, collinear points, then there exist constants a, b ∈ N such
that, for all r ∈ N,

Kx
r (y) ≤ Kr+a(z) + r + K(r) + b.

Proof. Assume the hypothesis. Let a ∈ N satisfy the hypothesis of Lemma 3.3, and let l =
max{1, log |y − z|}.

Let M be an oracle prefix Turing machine with the following behavior. Assume that π, π′ ∈
{0, 1}∗ are programs that cause the optimal prefix Turing machine U to produce outputs U(π) =
q ∈ Qn and U(π′) = r ∈ N. Then, for all w ∈ {0, 1}r+l+2 and d ∈ {0, 1}, Mx(ππ′wd) obtains an
approximation qx ∈ Qn ∩ B(x, 2−(r+a)) from its oracle and, if qx 6= q, outputs the point

q∗ = q + (−1)d2−(r+1)iw
qx − q

|qx − q|
∈ Qn,

where w is the (r + l + 2)-bit binary representation of iw ∈ N. Let b = 3 + l + cM , where cM is an
optimality constant for M .

Let π, π′ ∈ {0, 1}∗ be programs testifying to the values of Kr+a(z) and K(r), respectively, and
let q = U(π). Then q ∈ B(z, 2−(r+a)), so part 1 of Lemma 3.3 assures us that the point qx obtained
by M will satisfy qx 6= q. Let L be the line through q and qx. Then L meets B(x, 2−(r+a)) and
B(z, 2−(r+a)), so part 2 of Lemma 3.3 tells us that L meets B(y, 2−(r+1)). Since the points

q(, d) = q + (−1)d2−(r+1)i
qx − q

|qx − q|
∈ Qn,

for i ∈ N and d ∈ {0, 1}, lie along L at intervals of length 2−(r+1), it follows that there exist i ∈ N
and d ∈ {0, 1} such that q(i, d) ∈ B(y, 2−r). We then have

2−(r+1)i = |q(i, d)− q)|
≤ |y − z|+ |q(i, d)− y|+ |q − z|
≤ 2l + 2−r + 2−(r+a)

< 2l+1,

so i < 2r+l+2. It follows that there is a string w ∈ {0, 1}r+l+2 such that M(ππ′wd) = q(i, d). Since
q(i, d) ∈ B(y, 2−r), it follows that

Kx
r (y) ≤ Kx

M,r(y) + cM

≤ |ππ′wd|+ cM

= Kr+a(z) + r + K(r) + b.

We now prove the following useful theorem on the dimensions of collinear points.
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Theorem 3.5. If x, y, z ∈ Rn are collinear points with x 6= z, then

dimx(y) ≤ dim(z) + 1.

Proof. Assume the hypothesis. We have three cases.

1. If y = x, then dimx(y) = 0 < dim(z) + 1.

2. If y = z, then dimx(y) ≤ dim(z) < dim(z) + 1.

3. If y 6= x and y 6= z, then, by Lemma 3.4 and Theorem 2.1, there exist constants a, b ∈ N such
that

dimx(y) = lim inf
r→∞

Kx
r (y)
r

≤ lim inf
r→∞

Kr+a(z) + r + K(r) + b

r

= 1 + lim inf
r→∞

Kr+a(z)
r

= 1 + lim inf
r→∞

Kr(z)
r − a

= 1 + lim inf
r→∞

Kr(z)
r

= dim(z) + 1.

Our main theorem uses the following two corollaries of Theorem 3.5.

Corollary 3.6. If L is a line through two computable points, then L ⊆ DIM≤1.

Proof. Assume the hypothesis. Then there exist computable points x, z ∈ L such that x 6= z. To
see that L ⊆ DIM≤1, let y ∈ L. Then, by Theorem 3.5 and the computability of x and z,

dim(y) = dimx(y) ≤ dim(z) + 1 = 1.

We note that Corollary 3.6 is already known, because it follows from the fact, noted by Gu, Lutz,
and Mayordomo [4], that every point on every rectifiable computable curve (i.e., every computable
curve of finite length) has dimension at most 1. The direct proof above is nevertheless instructive.

Corollary 3.7. If L is a line through two independently random points in Rn, then L ⊆ DIM≥n−1.

Proof. Assume the hypothesis. Then there exist independently random points x, y ∈ L. To see
that L ⊆ DIM≥n−1, let z ∈ L. We have two cases.

1. If z = x, then dim(z) = dim(x) = n.

2. If z 6= x, then, by Theorem 3.5 and the independent randomness of x and y,

dim(z) ≥ dimx(y)− 1 = n− 1.
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In either case, dim(z) ≥ n− 1.

We now have the machinery to prove our main theorem.

Theorem 3.8. The sets DIM≤1 and DIM≥n−1 are path-connected.

Proof. Let D be either DIM≤1 or DIM≥n−1. To see that D is path-connected, let x, y ∈ D. If
D = DIM≤1, let p0, p1, . . . and q0, q1, . . . be sequences of points in Qn converging to x and y,
respectively. If D = DIM≥n−1, let p0, p1, . . . and q0, q1, . . . be sequences of points in Rn converging
to x and y, respectively, such that the points p0, q0, p1, q1, . . . are independently random. Define a
function f : [0, 1] → Rn as follows.

(i) For each 0 < t ≤ 1
3 , fix m(t) ∈ N such that 1

m(t)+4 < t ≤ 1
m(t)+3 , and set f(t) = αpm(t)+1 +

(1− α)pm(t), where t = α
m(t)+4 + (1−α)

m(t)+3 .

(ii) For each 2
3 ≤ t < 1, fix m(t) + N such that 1 − 1

m(t)+3 ≤ t < 1 − 1
m(t)+4 , and set f(t) =

αqm(t) + (1− α)qm(t)+1, where

(a) f(0) = x.

(b) On each interval [ 1
m+4 , 1

m+3 ], for m ∈ N, f is a straight-line path from pm+1 to pm.

(c) On the interval [13 , 2
3 ], f is a straight-line path from p0 to q0.

(d) On each interval [m+2
m+3 , m+3

m+4 ], for m ∈ N, f is a straight-line path from qm to qm+1.

(e) f(1) = y.

Then f is continuous, so Γ = range(f) is a path from x to y. If D = DIM≤1, then Γ ⊆ D by
Corollary 3.6. If D = DIM≥n−1, then Γ ⊆ D by Corollary 3.7.

We note that the path-connectedness of DIM≤1 is a quantitative extension of the theorem of
Hertling and Weihrauch [5] stating that the set of non-random points in Rn (n ≥ 2) is path-
connected.
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