
Curves That Must Be Retraced

Xiaoyang Gu1 § ‡, Jack H. Lutz1 § ¶, and Elvira Mayordomo2 ¶†

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA. Email:
{xiaoyang,lutz}@cs.iastate.edu

2 Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza, 50018 Zaragoza, Spain. Email:
elvira@unizar.es

Abstract. We exhibit a polynomial time computable plane curve Γ that has finite length, does not
intersect itself, and is smooth except at one endpoint, but has the following property. For every com-
putable parametrization f of Γ and every positive integer m, there is some positive-length subcurve of
Γ that f retraces at least m times. In contrast, every computable curve of finite length that does not
intersect itself has a constant-speed (hence non-retracing) parametrization that is computable relative
to the halting problem.

1 Introduction

A curve is a mathematical model of the path of a particle undergoing continuous motion. Specifically, in a
Euclidean space Rn, a curve is the range Γ of a continuous function f : [a, b] → Rn for some a < b. The
function f , called a parametrization of Γ , clearly contains more information than the pointset Γ , namely,
the precise manner in which the particle “traces” the points f(t) ∈ Γ as t, which is often considered a time
parameter, varies from a to b. When the particle’s motion is algorithmically governed, the parametrization
must be computable (as a function on the reals, see below).

This paper shows that the geometry of a curve Γ may force every computable parametrization f of Γ to
retrace various parts of its path (i.e., “go back and forth along Γ”) many times, even when Γ is an efficiently
computable, smooth, finite-length curve that does not intersect itself. In fact, our main theorem exhibits a
plane curve Γ ⊆ R2 with the following properties.

1. Γ is simple, i.e., it does not intersect itself.
2. Γ is rectifiable, i.e., it has finite length.
3. Γ is smooth except at one endpoint, i.e., Γ has a tangent at every interior point and a 1-sided tangent at

one endpoint, and these tangents vary continuously along Γ.
4. Γ is polynomial time computable in the strong sense that there is a polynomial time computable position

function ~s : [0, 1] → R2 such that the velocity function ~v = ~s′ and the acceleration function ~a = ~v′

are polynomial time computable; the total distance traversed by ~s is finite; and ~s parametrizes Γ, i.e.,
range(~s) = Γ.

5. Γ must be retraced in the sense that every parametrization f : [a, b] → R2 of Γ that is computable in
any amount of time has the following property. For every positive integer m, there exist disjoint, closed
subintervals I0, . . . , Im of [a, b] such that the curve Γ0 = f(I0) has positive length and f(Ii) = Γ0 for all
1 ≤ i ≤ m. (Hence f retraces Γ0 at least m times.)

The terms “computable” and “polynomial time computable” in properties 4 and 5 above refer to the
“bit-computability” model of computation on reals formulated in the 1950s by Grzegorczyk [9] and Lacombe

‡ Research supported in part by National Science Foundation Grant 0830479.
§ Research supported in part by National Science Foundation Grants 0344187, 0652569, and 0728806.
¶ Research supported in part by the Spanish Ministry of Education and Science (MEC) and the European Regional

Development Fund (ERDF) under project TIN2005-08832-C03-02.
† Part of this author’s research was performed during a visit at Iowa State University, supported by Spanish Gov-

ernment (Secretaŕıa de Estado de Universidades e Investigación del Ministerio de Educación y Ciencia) grant for
research stays PR2007-0368.

[17], extended to feasible computability in the 1980s by Ko and Friedman [13] and Kreitz and Weihrauch
[16], and exposited in the recent paper by Braverman and Cook [4] and the monographs [20,14,22,5]. As will
be shown here, condition 4 also implies that the pointset Γ is polynomial time computable in the sense of
Brattka and Weihrauch [2]. (See also [22,3,4].)

A fundamental and useful theorem of classical analysis states that every simple, rectifiable curve Γ has
a normalized constant-speed parametrization, which is a one-to-one parametrization f : [0, 1] → Rn of Γ
with the property that f([0, t]) has arclength tL for all 0 ≤ t ≤ 1, where L is the length of Γ . (A simple,
rectifiable curve Γ has exactly two such parametrizations, one in each direction, and standard terminology
calls either of these the normalized constant-speed parametrization f : [0, 1] → Rn of Γ . The constant-
speed parametrization is also called the parametrization by arclength when it is reformulated as a function
f : [0, L]→ Rn that moves with constant speed 1 along Γ .) Since the constant-speed parametrization does not
retrace any part of the curve, our main theorem implies that this classical theorem is not entirely constructive.
Even when a simple, rectifiable curve has an efficiently computable parametrization, the constant-speed
parametrization need not be computable.

In addition to our main theorem, we prove that every simple, rectifiable curve Γ in Rn with a computable
parametrization has the following two properties.

I. The length of Γ is lower semicomputable.
II. The constant-speed parametrization of Γ is computable relative to the length of Γ .

These two things are not hard to prove if the computable parametrization is one-to-one, (in fact, they
follow from results of Müller and Zhao [19] in this case) but our results hold even when the computable
parametrization retraces portions of the curve many times.

Taken together, I and II have the following two consequences.

1. The curve Γ of our main theorem has a finite length that is lower semi-computable but not computable.
(The existence of polynomial-time computable curves with this property was first proven by Ko [15].)

2. Every simple, rectifiable curve Γ in Rn with a computable parametrization has a constant-speed parametriza-
tion that is ∆0

2-computable, i.e., computable relative to the halting problem. Hence, the existence of a
constant-speed parametrization, while not entirely constructive, is constructive relative to the halting
problem.

2 Length, Computability, and Complexity of Curves

In this section we summarize basic terminology and facts about curves. As we use the terms here, a curve is
the range Γ of a continuous function f : [a, b]→ Rn for some a < b. The function f is called a parametrization
of Γ . Each curve clearly has infinitely many parametrizations.

A curve is simple if it has a parametrization that is one-to-one, i.e., the curve “does not intersect itself”.
The length of a simple curve Γ is defined as follows. Let f : [a, b] 1−1→ Rn be a one-to-one parametrization of
Γ . For each disection ~t of [a, b], i.e., each tuple ~t = (t0, . . . , tm) with a = t0 < t1 < . . . < tm = b, define the
f -~t-approximate length of Γ to be

Lf~t (Γ) =
m−1∑
i=0

|f(ti+1)− f(ti)|.

Then the length of Γ is
L(Γ) = sup

~t

Lf~t (Γ),

where the supremum is taken over all dissections ~t of [a, b]. It is easy to show that L(Γ) does not depend on
the choice of the one-to-one parametrization f , i.e. that the length is an intrinsic property of the pointset Γ .

In sections 4 and 5 of this paper we use a more general notion of length, namely, the 1-dimensional
Hausdorff measure H1(Γ), which is defined for every set Γ ⊆ Rn. We refer the reader to [7] or the appendix
for the definition of H1(Γ). It is well known that H1(Γ) = L(Γ) holds for every simple curve Γ .

A curve Γ is rectifiable, or has finite length if L(Γ) <∞. In sections 4 and 5 we use the notation RC for
the set of all rectifiable simple curves.
Definition. Let f : [a, b]→ Rn be continuous.

1. For m ∈ Z+, f has m-fold retracing if there exist disjoint, closed subintervals I0, . . . , Im of [a, b] such
that the curve Γ0 = f(I0) has positive length and f(Ii) = Γ0 for all 1 ≤ i ≤ m.

2. f is non-retracing if f does not have 1-fold retracing.
3. f has bounded retracing if there exists m ∈ Z+ such that f does not have m-fold retracing.
4. f has unbounded retracing if f does not have bounded retracing, i.e., if f has m-fold retracing for all
m ∈ Z+.

We now review the notions of computability and complexity of a real-valued function. An oracle for a real
number t is any function Ot : N→ Q with the property that |Ot(s)− t| ≤ 2−s holds for all s ∈ N. A function
f : [a, b]→ Rn is computable if there is an oracle Turing machine M with the following property. For every
t ∈ [a, b] and every precision parameter r ∈ N, if M is given r as input and any oracle Ot for t as its oracle,
then M outputs a rational point MOt(r) ∈ Qn such that |MOt(r)− f(t)| ≤ 2−r. A function f : [a, b]→ Rn
is computable in polynomial time if there is an oracle machine M that does this in time polynomial in r+ l,
where l is the maximum length of the query responses provided by the oracle.

An oracle for a function f : [a, b]→ Rn is any function Of : ([a, b]∩Q)×N→ Qn with the property that
|Of (q, r)− f(q)| ≤ 2−r holds for all q ∈ [a, b] ∩Q and r ∈ N. A decision problem A is Turing reducible to a
function f : [a, b] → Rn, and we write A ≤T f , if there is an oracle Turing machine M such that, for every
oracle Of for f , MOf decides A. It is easy to see that, if f is computable, then A ≤T f if and only if A is
decidable.

A curve is computable if it has a parametrization f : [a, b]→ Rn, where a, b ∈ Q and f is computable. A
curve is computable in polynomial time if it has a parametrization that is computable in polynomial time.

3 An Efficiently Computable Curve That Must Be Retraced

This section presents our main theorem, which is the existence of a smooth, rectifiable, simple plane curve
Γ that is parametrizable in polynomial time but not computably parametrizable in any amount of time
without unbounded retracing. We begin with a precise construction of the curve Γ, followed by a brief
intuitive discussion of this construction. The rest of the section is devoted to proving that Γ has the desired
properties.

y

x

−1

0

1

1 2 3 4 5
25
6

55
12

Fig. 3.1. ψ0,5,1

Construction 3.1 (1) For each a, b ∈ R with a < b, define the functions ϕa,b, ξa,b : [a, b]→ R by

ϕa,b(t) =
b− a

4
sin

2π(t− a)
b− a

and

ξa,b(t) =

{
−ϕa, a+b

2
(t) if a ≤ t ≤ a+b

2

ϕ a+b
2 ,b(t) if a+b

2 ≤ t ≤ b.

(2) For each a, b ∈ R with a < b and each positive integer n, define the function ψa,b,n : [a, b]→ R by

ψa,b,n(t) =

{
ϕa,d0(t) if a ≤ t ≤ d0

ξdi−1,di(t) if di−1 ≤ t ≤ di,

where

di =
a+ 5b

6
+ i

b− a
6n

for 0 ≤ i ≤ n. (See Figure 3.1.)
(3) Fix a standard enumeration M1,M2, . . . of (deterministic) Turing machines that take positive integer

inputs. For each positive integer n, let τ(n) denote the number of steps executed by Mn on input n. It is
well known that the diagonal halting problem

K =
{
n ∈ Z+ | τ(n) <∞

}
is undecidable.

(4) Define the horizontal and vertical acceleration functions ax, ay : [0, 1] → R as follows. For each n ∈ N,
let

tn =
∫ n

0

e−xdx = 1− e−n,

noting that t0 = 0 and that tn converges monotonically to 1 as n→∞. Also, for each n ∈ Z+, let

t−n =
tn−1 + 4tn

5
, t+n =

6tn − tn−1

5
,

noting that these are symmetric about tn and that t+n ≤ t−n+1.

(i) For 0 ≤ t ≤ 1, let

ax(t) =

{
−2−(n+τ(n))ξt−n ,t+n (t) if t−n ≤ t < t+n
0 if no such n exists,

where 2−∞ = 0.
(ii) For 0 ≤ t < 1, let

ay(t) = ψtn−1,tn,n(t),

where n is the unique positive integer such that tn−1 ≤ t < tn.
(iii) Let ay(1) = 0.

(5) Define the horizontal and vertical velocity and position functions vx, vy, sx, sy : [0, 1]→ R by

vx(t) =
∫ t

0

ax(θ)dθ, vy(t) =
∫ t

0

ay(θ)dθ,

sx(t) =
∫ t

0

vx(θ)dθ, sy(t) =
∫ t

0

vy(θ)dθ.

(6) Define the vector acceleration, velocity, and position functions ~a,~v,~s : [0, 1]→ R2 by

~a(t) = (ax(t), ay(t)),
~v(t) = (vx(t), vy(t)),
~s(t) = (sx(t), sy(t)).

(7) Let Γ = range(~s).

Intuitively, a particle at rest at time t = a and moving with acceleration given by the function ϕa,b moves
forward, with velocity increasing to a maximum at time t = a+b

2 and then decreasing back to 0 at time
t = b. The vertical acceleration function ay, together with the initial conditions vy(0) = sy(0) = 0 implied
by (5), thus causes a particle to move generally upward (i.e., sy(t0) < sy(t1) < · · ·), coming to momentary
rests at times t1, t2, t3, Between two consecutive such stopping times tn−1 and tn, the particle’s vertical
acceleration is controlled by the function ψtn−1,tn,n. This function causes the particle’s vertical motion to do
the following between times tn−1 and tn.

(i) From time tn−1 to time tn−1+5tn
6 , move upward from elevation sy(tn−1) to elevation sy(tn).

(ii) From time tn−1+5tn
6 to time tn, make n round trips to a lower elevation s ∈ (sy(tn−1), sy(tn)).

In the meantime, the horizontal acceleration function ax, together with the initial conditions vx(0) = sx(0) =
0 implied by (5), ensure that the particle remains on or near the y-axis. The deviations from the y-axis are
simply described: The particle moves to the right from time tn−1+4tn

5 through the completion of the n round
trips described in (ii) above and then moves to the y-axis between times tn and 6tn−tn−1

5 . The amount of
lateral motion here is regulated by the coefficient 2−(n+τ(n)). If τ(n) = ∞, then there is no lateral motion,
and the n round trips in (ii) are retracings of the particle’s path. If τ(n) < ∞, then these n round trips
are “forward” motion along a curvy part of Γ. In fact, Γ contains points of arbitrarily high curvature, but
the particle’s motion is kinematically realistic in the sense that the acceleration vector ~a(t) is polynomial
time computable, hence continuous and bounded on the interval [0, 1]. Figure 3.2 illustrates the path of
the particle from time tn−1 to tn+1 with n = 1 and hypothetical (model dependent!) values τ(1) = 1 and
τ(2) = 2.

y

x

Fig. 3.2. Example of ~s(t) from t0 to t2

The rest of this section is devoted to proving the following theorem concerning the curve Γ.

Theorem 3.2. (main theorem). Let ~a,~v,~s, and Γ be as in Construction 3.1.

1. The functions ~a,~v, and ~s are Lipschitz and computable in polynomial time, hence continuous and bounded.

2. The total length, including retracings, of the parametrization ~s of Γ is finite and computable in polynomial
time.

3. The curve Γ is simple, rectifiable, and smooth except at one endpoint.
4. Every computable parametrization f : [a, b]→ R2 of Γ has unbounded retracing.

For the remainder of this section, we use the notation of Construction 3.1.
The following two observations facilitate our analysis of the curve Γ. The proofs are routine calculations.

Observation 3.3 For all n ∈ Z+, if we write

d
(n)
i =

tn−1 + 5tn
6

+ i
tn − tn−1

6n

and
e
(n)
i = d

(n)
i +

tn − tn−1

12n
for all 0 ≤ i < n, then

tn−1 < t−n < d
(n)
0 < e

(n)
0 < d

(n)
1 < e

(n)
1 < · · · < d

(n)
n−1 < e

(n)
n−1 < tn < t+n < t−n+1.

Observation 3.4 For all a, b ∈ R with a < b,∫ b

a

∫ t

a

ϕa,b(θ)dθdt =
(b− a)3

8π
.

We now proceed with a quantitative analysis of the geometry of Γ. We begin with the horizontal com-
ponent of ~s.

Lemma 3.5 1. For all t ∈ [0, 1]−
⋃
n∈K(t−n , t

+
n), vx(t) = sx(t) = 0.

2. For all n ∈ K and t ∈ (t−n , tn) , vx(t) > 0.
3. For all n ∈ K and t ∈ (tn, t+n), vx(t) < 0.
4. For all n ∈ Z+, sx(tn) = (e−1)3

1000πe3n 2−(n+τ(n)).
5. sx(1) = 0.

Proof. Parts 1-3 are routine by inspection and induction. For n ∈ Z+, Observation 3.4 tells us that

sx(tn) =
(tn − t−n)3

8π
2−(n+τ(n))

=
(1
5 (tn − tn−1))3

8π
2−(n+τ(n))

=
(1
5 ((e− 1)e−n))3

8π
2−(n+τ(n))

=
(e− 1)3

1000πe3n
2−(n+τ(n))

so 4 holds. This implies that sx(tn)→ 0 as n→∞, whence 5 follows from 1,2, and 3.

The following lemma analyzes the vertical component of ~s. We use the notation of Observation 3.3, with
the additional proviso that d(n)

n = tn.

Lemma 3.6 1. For all n ∈ Z+ and t ∈ (tn−1, d
(n)
0), vy(t) > 0.

2. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (d(n)
i , e

(n)
i), vy(t) < 0.

3. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (e(n)
i , d

(n)
i+1), vy(t) > 0.

4. For all n ∈ Z+, 0 ≤ i < n, and t ∈ {e(n)
i , d

(n)
i , tn}, vy(t) = 0.

5. For all n ∈ Z+ and 0 ≤ i ≤ n, sy(d(n)
i) = sy(d(n)

0).

6. For all n ∈ Z+ and 0 ≤ i < n, sy(e(n)
i) = sy(e(n)

0).
7. For all n ∈ N, sy(tn) = 53(e−1)3

63·8π
∑n
i=1

1
e3i .

8. For all n ∈ Z+, sy(e(n)
0) = sy(tn)− (e−1)3

123n38πe3n .

9. sy(1) = 53(e−1)3

63·8π(e3−1) .

Proof. Parts 1-6 are clear by inspection and induction. By 4. and Observation 3.4,

sy(tn)− sy(tn−1) = sy(d(n)
0)− sy(tn−1)

=
[56 (tn − tn−1)]3

8π
=

[56 ((e− 1)e−n)]3

8π

=
53(e− 1)3

63 · 8πe3n

for all n ∈ Z+, so 6 holds by induction. Also by 4 and Observation 3.4,

sy(tn)− sy(e(n)
0) = sy(d(n)

0)− sy(e(n)
0)

=
[1
12n (tn − tn−1)]3

8π
=

[1
12n ((e− 1)e−n)]3

8π

=
(e− 1)3

123n38πe3n
,

so 7 holds. Finally, by 6,

sy(1) =
53(e− 1)3

638π(e3 − 1)
,

i.e., 8 holds.

By Lemmas 3.5 and 3.6, we see that ~s parametrizes a curve from ~s(0) = (0, 0) to ~s(1) = (0, 53(e−1)3

638π(e3−1)).
The proofs of Lemmas 3.5 and 3.6 are included in the appendix.
It is clear from Observation 3.3 and Lemmas 3.5 and 3.6 that the curve Γ does not intersect itself. We

thus have the following.

Corollary 3.7 Γ is a simple curve from ~s(0) = (0, 0) to ~s(1) = (0, 53(e−1)3

638π(e3−1)).

Proof. Let ~s′ : [0, 1]→ R2 be such that

~s′(t) =

{
~s(t+n) t−t−n

t+n−t−n
+ ~s(t−n) t+n−t

t+n−t−n
t ∈ (t−n , t

+
n), n /∈ K,

~s(t) otherwise.

Note that by construction of ~s, retracing happens along y-axis between (0, ~s(t−n)) and (0, ~s(t+n)) only when
t ∈ (t−n , t

+
n) for n /∈ K. In ~s′, for all n /∈ K, ~s′ maps (t−n , t

+
n) to the vertical line segment between (0, ~s(t−n)) and

(0, ~s(t+n)) linearly. Otherwise, ~s′(t) = ~s(t). Hence, ~s′(0) = (0, 0), ~s′(1) = (0, 53(e−1)3

638π(e3−1)), and ~s′ is a one-to-one
parametrization of Γ = range(~s), although ~s′ is not computable. Therefore Γ is a simple curve.

Lemma 3.8 The functions ~a,~v, and ~s are Lipschitz, hence continuous, on [0, 1].

Proof. It is clear by differentiation that Lip(ϕa,b) = π
2 for all a, b ∈ R with a < b. It follows by inspection

that Lip(ax) ≤ π
4 and Lip(ay) = π

2 , whence

Lip(~a) ≤
√
Lip(ax)2 + Lip(ay)2 ≤ π

√
5

4
.

Thus ~a is Lipschitz, hence continuous (and bounded), on [0, 1]. It follows immediately that ~v and ~s are
Lipschitz, hence continuous, on [0, 1].

Since every Lipschitz parametrization has finite total length [1], and since the length of a curve cannot
exceed the total length of any of its parametrizations, we immediately have the following.

Corollary 3.9 The total length, including retracings, of the parametrization ~s is finite. Hence the curve Γ
is rectifiable.

Lemma 3.10 The curve Γ is smooth except at the endpoint ~s(1).

Proof. We have seen that Γ([0, t−1]) is simply a segment of the y-axis, and that the vector velocity function
~v is continuous on [0, 1]. Since the set

Z = {t ∈ (0, 1) | ~v(t) = 0}

has no accumulation points in (0, 1), it therefore suffices to verify that, for each t∗ ∈ Z,

lim
t→t∗−

~v(t)
|~v(t)|

= lim
t→t∗+

~v(t)
|~v(t)|

, (3.1)

i.e., that the left and right tangents of Γ coincide at ~s(t∗). But this is clear, because Lemmas 3.5 and 3.6 tell
us that

Z =
{
tn
∣∣ n ∈ Z+ and τ(n) =∞

}
,

and both sides of (3.1) are (0, 1) at all t∗ in this set.

Lemma 3.11 The functions ~a,~v, and ~s are computable in polynomial time. The total length including re-
tracings, of ~s is computable in polynomial time.

Proof. This follows from Observation 3.4, Lemmas 3.5 and 3.6, and the polynomial time computability of
f(n) =

∑n
i=1 e

−3i.

Definition. A modulus of uniform continuity for a function f : [a, b] → Rn is a function h : N × N such
that, for all s, t ∈ [a, b] and r ∈ N,

|s− t| ≤ 2−h(r) =⇒ |f(s)− f(t)| ≤ 2−r.

It is well known (e.g., see [14]) that every computable function f : [a, b] → Rn has a modulus of uniform
continuity that is continuous.

Lemma 3.12 Let f : [a, b] → R2 be a parametrization of Γ. If f has bounded retracing and a computable
modulus of uniform continuity, then K ≤T fy, where fy is the vertical component of f .

Proof. Assume the hypothesis. Then there exist m ∈ Z+ and h : N → N such that f does not have m-fold
retracing and h is a computable modulus of uniform continuity for f . Note that h is also a modulus of
uniform continuity for fy.

Let M be an oracle Turing machine that, given an oracle Og for a function g : [a, b] → R, implements
the algorithm in Figure 3.3. The key properties of this algorithm’s choice of r and ∆ are that the following
hold when g = fy.

(i) For each time t with fy(t) = sy(tn), there is a nearby time τj with j high. Similarly for fy(t) = sy(e(n)
0)

and j low.
(ii) For each high j, |fy(τj)− sy(tn)| ≤ 3 · 2−r. Similarly for each low j and sy(e(n)

0).
(iii) No j can be both high and low.

Now let n ∈ Z+. We show that MOfy (n) accepts if n ∈ K and rejects if n /∈ K. This is clear if n ≤ m, so
assume that n > m.

If n ∈ K, then Observation 3.3, Lemma 3.5, and Lemma 3.6 tell us that MOfy (n) accepts. If n /∈ K, then
the fact that f does not have m-fold retracing tells us that MOfy (n) rejects.

Proof (Proof of Theorem 3.2). Part 1 follows from Lemmas 3.8 and 3.11. Part 2 follows from Lemma 3.11.
Part 3 follows from Corollaries 3.7 and 3.9 and Lemma 3.10. Part 4 follows from Lemma 3.12, the fact that
every computable function g : [a, b]→ R2 has a computable modulus of uniform continuity, and the fact that
A is decidable wherever A ≤T g and g is computable.

input n ∈ Z+;
if n ≤ m then
use a finite lookup table to accept if n ∈ K and reject if n /∈ K
else
begin

r:= the least positive integer such that 23−r < sy(tn)− sy(e
(n)
0);

∆:=2−h(r);
for 0 ≤ j ≤ (b− a)/∆ do
begin

τj :=a+∆j ;
call j high if |Og(τj , r)− sy(tn)| < 21−r

call j low if |Og(τj , r)− sy(e
(n)
0 | < 21−r

end;
if there is a sequence 0 < j0 < j1 < · · · < jm in which ji is high for all even i and low for all odd i
then accept
else reject

end.

Fig. 3.3. Algorithm for MOg (n) in the proof of Lemma 3.12.

4 Lower Semicomputability of Length

In this section we prove that every computable curve Γ has a lower semicomputable length. Our proof is
somewhat involved, because our result holds even if every computable parametrization of Γ is retracing.

Construction 4.1 Let f : [0, 1] → Rn be a computable function. Given an oracle Turing machine M
that computes f and a computable modulus m : N→ N of the uniform continuity of f , the (M,m)-cautious
polygonal approximator of range(f) is the function πM,m : N→ {polygonal paths} computed by the following
algorithm.

input r ∈ N;
S := {}; // S may be a multi-set
for i:=0 to 2m(r) do

ai := i2−m(r);
use M to compute xi with
|xi − f(ai)| ≤ 2−(r+m(r)+1);

add xi to S;
output a longest path inside a minimum spanning tree of S.

Definition. Let (X, d) be a metric space. Let Γ ⊆ X and ε > 0. Let

Γ (ε) =
{
p ∈ X

∣∣∣∣ inf
p′∈Γ

d(p, p′) ≤ ε
}

be the Minkowski sausage of Γ with radius ε.
Let dH : P(X)× P(X)→ R be such that for all Γ1, Γ2 ∈ P(X)

dH(Γ1, Γ2) = inf {ε | Γ1 ⊆ Γ2(ε) and Γ2 ⊆ Γ1(ε)} .

Note that dH is the Hausdorff distance function.
Let K(X) be the set of nonempty compact subsets of X. Then (K(X), dH) is a metric space [6].

Theorem 4.2. (Frink [8], Michael [18]). Let (X, d) be a compact metric space. Then (K(X), dH) is a compact
metric space.

Definition. Let RC be the set of all simple rectifiable curves in Rn.

Theorem 4.3. ([21] page 55). Let Γ ∈ RC. Let {Γn}n∈N ⊆ RC be a sequence of rectifiable curves such that
lim
n→∞

dH(Γn, Γ) = 0. Then H1(Γ) ≤ lim inf
n→∞

H1(Γn).

This theorem has the following consequence.

Theorem 4.4. Let Γ ∈ RC. For all ε > 0, there exists δ > 0 such that for all Γ ′ ∈ RC, if dH(Γ, Γ ′) < δ,
then H1(Γ ′) > H1(Γ)− ε.

In the following, we prove a few technical lemmas that lead to Lemma 4.9, which plays an important role
in proving Theorem 4.10.

Lemma 4.5 Let Γ ∈ RC. Let p0, p1,∈ Γ be its two endpoints. Let Γ ′ (Γ such that p0, p1 ∈ Γ ′. Then
Γ ′ /∈ RC.

Lemma 4.6 Let Γ ∈ RC. Let Γ ′ ⊆ Γ be a connected compact set. Then Γ ′ ∈ RC.

Lemma 4.7 Let Γ0, Γ1, . . . be a convergent sequence of compact sets in compact metric space (X, d) that is
eventually connected. Let Γ = lim

n→∞
Γn. Then Γ is connected.

Lemma 4.8 Let Γ ∈ RC and let f : [0, 1]→ Γ be a parametrization of Γ . Let

L(Γ, ε) = inf
{
H1(Γ ′) | Γ ′ ∈ RC and Γ ′ ⊆ Γ (ε) and f(0), f(1) ∈ Γ ′

}
.

Then
lim
ε→0+

L(Γ, ε) = H1(Γ).

Lemma 4.9 Let Γ ∈ RC and let f : [0, 1]→ Γ be a parametrization of Γ . Let

L(Γ, ε, p1, p2) = inf
{
H1(Γ ′) | Γ ′ ∈ RC and Γ ′ ⊆ Γ (ε) and p1, p2 ∈ Γ ′

}
.

Then
lim
ε→0+

sup
p1,p2∈Γ (ε)

L(Γ, ε, p1, p2) = H1(Γ).

Theorem 4.10. Let Γ ∈ RC such that Γ = γ([0, 1]), where γ is a continuous function. (Note that γ may
not be one-one.) Let S(a) = {γ(ai) | ai ∈ a} for all dissection a. Let {an}n∈N be a sequence of dissections
of Γ such that

lim
n→∞

mesh(an) = 0.

Then
lim
n→∞

H1(LMST (an)) = H1(Γ),

where LMST (a) is the longest path inside the Minimum Euclidean Spanning Tree of S(a).

This result implies that when the sampling density is high, the number of leaves in the minimum spanning
tree is asymptotically smaller than the total number of nodes.

We now have the machinery to prove the main result of this section.

Theorem 4.11. Let γ : [0, 1] → Rn be computable such that Γ = γ([0, 1]) ∈ RC. Then H1(Γ) is lower
semicomputable.

5 ∆0
2-Computability of the Constant-Speed Parametrization

In this section we prove that every computable curve Γ has a constant speed parametrization that is ∆0
2-

computable.

Theorem 5.1. Let Γ = γ∗([0, 1]) ∈ RC. (γ∗ may not be one-one.) Let l = H1(Γ) and Ol be an oracle such
that for all n ∈ N, |Ol(n) − l| ≤ 2−n. Let f be a computation of γ∗ with modulus m. Let γ be the constant
speed parametrization of Γ . Then γ is computable with oracle Ol.

Corollary 5.2 Let Γ be a curve with the property described in property 5 of Theorem 3.2. Then the length
of Γ – H1(Γ) is not computable.

6 Conclusion

As we have noted, Ko [15] has proven the existence of computable curves with finite, but uncomputable
lengths, and the curve Γ of our main theorem is one such curve. In the recent paper [10], we have given
a precise characterization of those points in Rn that lie on computable curves of finite length. With these
things in mind, we pose the following.

Question. Is there a point x ∈ Rn such that x lies on a computable curve of finite length but not on
any computable curve of computable length?
Acknowledgment. We thank anonymous referees for their valuable comments.

References

1. T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer-Verlag,
1976.

2. V. Brattka and K. Weihrauch. Computability on subsets of Euclidean space I: Closed and compact subsets.
Theoretical Computer Science, 219:65–93, 1999.

3. M. Braverman. On the complexity of real functions. In Forty-Sixth Annual IEEE Symposium on Foundations of
Computer Science, 2005.

4. M. Braverman and S. Cook. Computing over the reals: Foundations for scientific computing. Notices of the AMS,
53(3):318–329, 2006.

5. M. Braverman and M. Yampolsky. Computability of Julia Sets. Springer, 2008.
6. G. A. Edgar. Measure, topology, and fractal geometry. Springer-Verlag, 1990.
7. K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley, second edition, 2003.
8. O. Frink, Jr. Topology in lattices. Transactions of the American Mathematical Society, 51(3):569–582, 1942.
9. A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.

10. X. Gu, J. H. Lutz, and E. Mayordomo. Points on computable curves. In Proceedings of the Forty-Seventh Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2006), pages 469–474. IEEE Computer Society
Press, 2006.

11. J. Hershberger and S. Suri. An optimal algorithm for euclidean shortest paths in the plane. SIAM Journal on
Computing, 28(6):2215–2256, 1999.

12. S. Kapoor and S. N. Maheshwari. Efficient algorithms for euclidean shortest path and visibility problems with
polygonal obstacles. In Proceedings of the fourth annual symposium on computational geometry, pages 172–182,
New York, NY, USA, 1988. ACM Press.

13. K. Ko and H. Friedman. Computational complexity of real functions. Theoretical Computer Science, 20:323–352,
1982.

14. K.-I. Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.
15. K.-I. Ko. A polynomial-time computable curve whose interior has a nonrecursive measure. Theoretical Computer

Science, 145:241–270, 1995.
16. C. Kreitz and K. Weihrauch. Complexity theory on real numbers and functions. In Theoretical Computer Science,

volume 145 of Lecture Notes in Computer Science. Springer, 1982.
17. D. Lacombe. Extension de la notion de fonction recursive aux fonctions d’une ou plusiers variables reelles, and

other notes. Comptes Rendus, 240:2478-2480; 241:13-14, 151-153, 1250-1252, 1955.

18. E. Michael. Topologies on spaces of subsets. Transactions of the American Mathematical Society, 71(1):152–182,
1951.

19. N. T. Müller and X. Zhao. Jordan areas and grids. In Proceedings of the Fifth International Conference on
Computability and Complexity in Analysis, pages 191–206, 2008.

20. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1989.
21. C. Tricot. Curves and Fractal Dimension. Springer-Verlag, 1995.
22. K. Weihrauch. Computable Analysis. An Introduction. Springer-Verlag, 2000.

Technical Appendix

A Proofs for Section 4

Proof (Proof of Lemma 4.5). If Γ ′ is not closed, then we are done. Assume that Γ ′ is closed. Let γ be a
parametrization of Γ such that γ(0) = p0 and γ(1) = p1.

Since Γ ′ 6= Γ and p0, p1 ∈ Γ ′, γ−1(Γ ′) ⊆ I0 ∪ I1, where I0 ⊆ [0, 1] and I1 ⊆ [0, 1] are closed and disjoint.
It is easy to see that γ(I0) and γ(I1) are closed and disjoint. And thus, for any continuous function

γ′ : [0, 1]→ Rn, γ′−1(γ(I0)) and γ′−1(γ(I1)) are closed and disjoint. Therefore, for any continuous function
γ′ : [0, 1]→ Rn, γ−1(Γ ′) 6= [0, 1], i.e., Γ ′ /∈ RC.

Proof (Proof of Lemma 4.6). Let γ be the parametrization of Γ .
Let a = inf{γ−1(Γ ′)} and let b = sup{γ−1(Γ ′)}.
Let γ′ : [0, 1]→ Rn be such that for all t ∈ [0, 1]

γ′(t) = γ(a+ t(b− a)).

Then γ′ defines a curve and we show that γ′([0, 1]) = Γ ′.
It is clear that Γ ′ ⊆ γ′([0, 1]). Since Γ ′ is compact, we know that γ′(0), γ′(1) ∈ Γ ′.
Suppose for some t′ ∈ (0, 1), γ′(t′) /∈ Γ ′. Since Γ ′ is compact, there exists ε > 0 such that γ′([t′ − ε, t′ +

ε]) ∩ Γ ′ = ∅. Then Γ ′ ⊆ γ′([0, t′ − ε)) ∪ γ′((t′ + ε, 1]). Since γ′ is one-one,

dH(γ′([0, t′ − ε)), γ′((t′ + ε, 1])) > 0.

Hence,
dH(Γ ′ ∩ γ′([0, t′ − ε)), Γ ′ ∩ γ′((t′ + ε, 1])) > 0.

Thus, Γ ′ cannot be connected.
Therefore, if Γ ′ is connected, then Γ ′ = γ′([0, 1]) and hence Γ ′ ∈ RC.

Proof (Proof of Lemma 4.7). We prove the contrapositive.
Assume that Γ is not connected. Then there exists open sets A,B ⊆ X such that A∩B = ∅, Γ ∩A 6= ∅,

Γ ∩B 6= ∅, and Γ ⊆ A ∪B.
Then (Γ ∩A) ∩ (Γ ∩B) = ∅, thus dH(Γ ∩A,Γ ∩B) > 0. Let

δ = dH(Γ ∩A,Γ ∩B).

Since lim
n→∞

Γn = Γ , let n0 be such that for all n ≥ n0,

dH(Γn, Γ) ≤ δ
3 .

It is clear that
(Γ ∩A)(δ3) ∩ Γn 6= ∅,

(Γ ∩B)(δ3) ∩ Γn 6= ∅,

and
Γn ⊆ (Γ ∩A)(δ3) ∪ (Γ ∩B)(δ3).

By the definition of δ,
dH((Γ ∩A)(δ3), (Γ ∩B)(δ3)) ≥ δ

3 .

Thus Γn is not connected for all n ≥ n0.

Proof (Proof of Lemma 4.8). It is clear that limε→0+ L(Γ, ε) ≤ H1(Γ). It suffices to show that limε→0+ L(Γ, ε) ≥
H1(Γ).

Let δ > 0. For each i ∈ N, let

Si =
{
Γ ′ ∈ RC

∣∣ Γ ′ ⊆ Γ (1
i) and γ(0), γ(1) ∈ Γ ′

}
,

where γ is a parametrization of Γ . Note that if i2 < i1, then Si1 ⊆ Si2 .
Let Γ0, Γ1, . . . be an arbitrary sequence such that for all i ∈ N, Γi ∈ Ski

, and k0, k1, · · · ∈ N is a strictly
increasing sequence.

Since for all i ∈ N, Γi is compact and connected, by Theorem 4.2 and Lemma 4.7, there is at least one
cluster point and every cluster point is a connected compact set. Let Γ ′ be a cluster point. It is clear that
Γ ′ ⊆ Γ . Then by Lemma 4.6, Γ ′ ∈ RC.

It is also clear that γ(0), γ(1) ∈ Γ ′ by definition of Si. Thus by Lemma 4.5, Γ ′ = Γ .
By Theorem 4.3, lim inf

n→∞
H1(Γn) ≥ H1(Γ ′) = H1(Γ). Then by Theorem 4.4, this implies that for all

sufficiently large i ∈ N,
(∀Γ ′′ ∈ Si)H1(Γ ′′) ≥ H1(Γ)− δ.

Therefore, for all sufficiently large i ∈ N, L(Γ, 1
i) ≥ H

1(Γ)− δ. Since δ > 0 is arbitrary,

lim
ε→0+

L(Γ, ε) ≥ H1(Γ).

Proof (Proof of Lemma 4.9). For every p ∈ Γ (ε), there exists a point p′ ∈ Γ such that ‖p, p′‖ ≤ ε and line
segment [p, p′] ⊆ Γ (ε). Thus it is clear that for all p1, p2 ∈ Γ (ε), L(Γ, ε, p1, p2) ≤ 2ε+H1(Γ). Therefore,

lim
ε→0+

sup
p1,p2∈Γ (ε)

L(Γ, ε, p1, p2) ≤ H1(Γ).

For the other direction, observe that

lim
ε→0+

sup
p1,p2∈Γ (ε)

L(Γ, ε, p1, p2) ≥ lim
ε→0+

L(Γ, ε).

Applying Lemma 4.8 completes the proof.

Proof (Proof of Theorem 4.10). For all n ∈ N, let

εn = 2dH(Γ, S(an)).

Note that since γ is uniformly continuous and lim
n→∞

mesh(an) = 0, lim
n→∞

εn = 0.
Let w = 2εn.

Claim. Let T be a Euclidean Spanning Tree of S(a). If T has an edge that is not inside Γ (w), then T is not
a minimum spanning tree.

Proof (Proof of Claim). Let E be an edge of T such that E * Γ (w). Then H1(E) > 2w. Removing E
from T will break T into two subtrees T1, T2. By the definition of εn and the continuity of γ, there exists
s1, s2 ∈ S(a) with ‖s1 − s2‖ ≤ εn such that s1 ∈ T1 and s2 ∈ T2.

It is clear that T1∪T2∪{(s1, s2)} is also a Euclidean Spanning Tree of S(a) and H1(T1∪T2∪{(s1, s2)}) <
H1(T), i.e., T is not minimum.

Let T be a Minimum Euclidean Spanning Tree of S(a). Let L be the longest path inside T . Then
L ⊆ T ⊆ Γ (w).

Note that H1(L) ≤ H1(Γ).
Let p0, p1 be the two endpoints of Γ .
Since L is the longest path inside T and p0, p1 are each within εn distance to some point in S(an),

L(Γ,w, p0, p1) ≤ 2εn +H1(L).

By Lemma 4.9,

lim
w→0+

L(Γ,w, p0, p1) = H1(Γ).

Then

lim
n→∞

H1(LMST (an)) = H1(Γ).

Proof (Proof of Theorem 4.11). Let the function f , M , and m in Construction 4.1 be γ, a computation of
γ, and its computable modulus respectively.

For each input r ∈ N, πM,m(r) is the longest path Lr in MST (Sr), where Sr is the set of points sampled
by πM,m(r).

Let lr = H1(Lr)− 2−r. Note that lr is computable from r ∈ N.
We show that for all r ∈ N, lr ≤ H1(Γ) and limr→∞ lr = H1(Γ).
Let f̃ be a one-one parametrization of Γ . Let π : {0, . . . , 2m(r)} → {0, . . . , 2m(r)} be a permutation of

{0, . . . , 2m(r)} such that for all i, j ∈ {0, . . . , 2m(r)},

i < j =⇒ f̃−1(f(aπ(i))) < f̃−1(f(aπ(j))).

Let Γ̂r be the polygonal curve connecting the points f(aπ(0)), f(aπ(1)), . . . , f(aπ(2m(r))) in order. Then Γ̂r
is a polygonal approximation of Γ and H1(Γ̂r) ≤ H1(Γ).

Let Γ̄r be the polygonal curve connecting the points in Sr in the order of xπ(0), xπ(1), . . . , xπ(2m(r)).
Due to the approximation induced by the computation in Construction 4.1,

H1(Γ̄r) ≤ H1(Γ̂r) + 2−r.

Then it is clear that

H1(Lr) = H1(LMST (Sr)) ≤ H1(Γ̄r) ≤ H1(Γ̂r) + 2−r.

Thus

lr ≤ H1(Γ̂r).

Let Ŝr = {f(a0), f(a1), . . . , f(a2m(r))}. Note that Ŝr may be a multi-set. By Theorem 4.10,

lim
r→∞

LMST (Ŝr) = H1(Γ).

Let

εr = 2dH(Γ, Sr).

By Contruction 4.1,

lim
r→∞

εr = 0.

Let wr = 2εr.
Let Tr be a Minimum Euclidean Spanning Tree of Sr. Let Lr be the longest path inside Tr. By the Claim

in Theorem 4.10, L ⊆ T ⊆ Γ (wr).
By an essentially identical argument as the one in the proof of Theorem 4.10,

lim
r→∞

lr = lim
r→∞

H1(LMST (Sr)) = H1(Γ),

which completes the proof.

B Proofs for Section 5

Proof (Proof of Theorem 5.1). On input k as the precision parameter for computation of the curve and a
rational number x ∈ [0, 1] ∩Q, we output a point fk(x) ∈ Rn such that |fk(x)− γ(x)| ≤ 2−k.

Without loss of generality, assume that H1(Γ) > 1000 · 2−k.
Let δ = 2−(4+k).
Run f as in Construction 4.1 with increasingly larger precision parameter r > − log δ until

H1(LMST (a)) > H1(Γ)− δ
2

and the shortest distance between the two endpoints of LMST (a) inside the polygonal sausage around
LMST (a) with width 2d = 2 · 2−r is at least H1(Γ)− δ

2 . This can be achieved by using Euclidean shortest
path algorithms [12,11].

Let dk ≤ 2−(4+k) be the largest d such that the above conditions are satisfied, which is assured by
Theorem 4.11 and Lemma 4.9. Let S be the polygonal sausage around LMST (a) with width 2dk.

For p1, p2 ∈ S, let dS(p1, p2) = the shortest distance between p1 and p2 inside S. Note that S is con-
nected.

Let fk be the constant speed parametrization of LMST (a) and γ be the constant speed parametrization of
Γ . Without loss of generality, assume that ‖γ(0)−fk(0)‖ < ‖γ(1)−fk(0)‖ and ‖γ(1)−fk(1)‖ < ‖γ(0)−fk(1)‖,
since we can hardcode approximate locations of γ(0) and γ(1) such that when dk is sufficiently small, we
can decide wehther a sampled point is closer to γ(0) or γ(1). As we now prove

lim
k→∞

{fk(0), fk(1)} = {γ(0), γ(1)}.

Note that for each s ∈ S such that s /∈ LMST (a), there exists p ∈ LMST (a) ∩ S such that the shortest
path from s to p in MST (a) has length less than δ

2 , i.e., dMST (a)(s, p) < δ
2 , since H1(LMST (a)) > H1(Γ)− δ

2
and H1(MST (a)) ≤ H1(Γ).

Let δ0 = dS(γ(0), fk(0)). Let s0 be the closest point to γ(0) in S∩LMST (a). Then dS(γ(0), s0) ≤ δ
2 +dk.

Then dLMST (a)(s0, fk(0)) ≥ δ0 − δ
2 − dk. Since s0 ∈ S ∩ LMST (a) and we assume H1(Γ) > 1000 · 2−k,

dS(s0, γ(1)) ≤ H1(LMST (a))− δ0 + δ
2 + dk + δ

2 + dk = H1(LMST (a))− δ0 + δ + 2dk.

Then

dS(γ(0), γ(1)) ≤ H1(LMST (a))− δ0 + δ + 2dk + δ
2 + dk

< H1(LMST (a))− δ0 + 3δ
2 + 3dk.

And hence
dS(γ(0), γ(1)) ≤ H1(Γ)− δ0 + 2δ + 3dk. (B.1)

By the choice of dk, we have that dS(fk(0), fk(1)) ≥ H1(Γ) − δ
2 . Now, note that for any two points

p1, p2 ∈ Γ ,

dS(p1, p2) ≤ H
1(Γ) + dS(γ(0), γ(1))

2
,

since we can put them in half of a loop. Therefore

dS(fk(0), fk(1)) ≤ H
1(Γ) + dS(γ(0), γ(1))

2
.

Thus
dS(γ(0), γ(1)) ≥ H1(Γ)− δ. (B.2)

By (B.1) and (B.2), we have
δ0 ≤ 3δ + 3dk ≤ 6δ < 2−k, (B.3)

i.e.,
‖fk(0)− γ(0)‖ ≤ dS(fk(0), γ(0)) ≤ 6δ < 2−k. (B.4)

Similarly,
‖fk(1)− γ(1)‖ ≤ dS(fk(1), γ(1)) ≤ 6δ < 2−k. (B.5)

Now we proceed to show that for all t ∈ (0, 1), ‖fk(t)−γ(t)‖ < 10δ with f(0) being at most 6δ from γ(0)
inside S and f(1) being at most 6δ from γ(1) inside S.

Let ∆k = ‖fk(t)− γ(t)‖.
Let sf ∈ S ∩ LMST (a) be such that |f−1

k (sf) − t| is minimized. Then dLMST (a)(fk(t), sf) ≤ dk, since
every edge in MST (a) is at most dk long.

Let s′γ ∈ S ∩ Γ be such that |γ−1(s′γ)− t| is minimized. Then dΓ (γ(t), s′γ) ≤ dk, since we sample S using
dk as the density parameter.

Let sγ ∈ S ∩ LMST (a) such that dMST (a)(sγ , s′γ) is minimized. Then dMST (a)(sγ , s′γ) ≤ δ
2 , since

H1(MST (a)) ≥ H1(Γ)− δ
2 .

Then ‖fk(t)− sγ‖ ≥ ∆k − (δ2 + dk) = ∆k − δ
2 − dk.

Note that dLMST (a)(sf , sγ) ≥ ‖sf − sγ‖ ≥ ∆k − δ
2 − 2dk.

Without loss of generality, assume that distance from sγ to fk(0) along LMST (a) is ∆k − δ
2 − dk more

than the distance from fk(t) to fk(0). Otherwise, we simply look from the γ(1) and fk(1) side instead.
The path traced by γ from γ(0) to γ(t) has length t · H1(Γ).
The shortest distance between γ(t) to sγ inside Γ ∪MST (a) is at most dk + δ

2 .
The path traced by fk from sγ to fk(1) has length

dLMST (a)(sγ , fk(1)) ≤ H1(LMST (a))− [t(H1(Γ)− δ
2)− dk +∆k − δ

2 − dk].

The shortest distance from γ(1) to fk(1) inside S is at most 6δ.
Then the distance from γ(0) to γ(1) inside S is at most

t · H1(Γ) + dk + δ
2 +H1(LMST (a))− [t(H1(Γ)− δ

2)− dk +∆k − δ
2 − dk] + 6δ

≤ H1(LMST (a)) + 3dk + 8δ −∆k

≤ H1(Γ) + 11δ −∆k.

By (B.2), we have
∆k ≤ 12δ < 2−k.

Proof (Proof of Corollary 5.2). We prove the contrapositive. Let Γ be a curve with a computable parametriza-
tion with a computable length H1(Γ). Then by Theorem 5.1, we can use the Turing machine that computes
H1(Γ) as the oracle in the statement of Theorem 5.1 and obtain a Turing machine that computes the con-
stant speed parametrization of Γ . Therefore, Γ does not have the property described in item 5 of Theorem
3.2.

	 Curves That Must Be Retraced
	 Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo

