
Computational Depth and Reducibility �

David W� Juedes� James I� Lathrop� and Jack H� Lutz
Department of Computer Science

Iowa State University
Ames� IA �����

Abstract

This paper reviews and investigates Bennett�s notions of strong
and weak computational depth �also called logical depth� for in�nite
binary sequences� Roughly� an in�nite binary sequence x is de�ned to
be weakly useful if every element of a non�negligible set of decidable
sequences is reducible to x in recursively bounded time� It is shown
that every weakly useful sequence is strongly deep� This result �which
generalizes Bennett�s observation that the halting problem is strongly
deep� implies that every high Turing degree contains strongly deep
sequences� It is also shown that� in the sense of Baire category� almost
every in�nite binary sequence is weakly deep� but not strongly deep�

Contents

� Introduction �

� Preliminaries �

� Measure and Category �

� Algorithmic Information and Randomness ��

� Strong Computational Depth ��

� Weak Computational Depth ��

� Conclusion ��

�This research was supported in part by National Science Foundation Grant CCR�

�������� with matching funds from Rockwell International and Microware Systems

Corporation	

�

� Introduction

Algorithmic information theory� as developed by Solomono� �����
Kolmogorov ���� ��� �	�� Chaitin �
� ��� ��� ���� Martin�L�of �	
�
��� Levin
���� ��� ��� �
� 	�� 	�� ���� Schnorr �
��� G�acs ����� Shen� �
��

�� and others�
gives a satisfactory� quantitative account of the information content of in�
dividual binary strings ��nite� and binary sequences �in�nite�� However� a
given quantity of information may be organized in various ways� rendering it
more or less useful for various computational purposes� In order to quantify
the degree to which the information in a computational� physical� or bio�
logical object has been organized� Bennett �
� �� has extended algorithmic
information theory by de�ning and investigating the computational depth of
binary strings and binary sequences�

Roughly speaking� the computational depth �called �logical depth� by
Bennett �
� ��� of an object is the amount of time required for an algorithm to
derive the object from its shortest description� �Precise de�nitions appear
in the sections to follow�� Since this shortest description contains all the
information in the object� the depth thus represents the amount of �compu�
tational work� that has been �added� to this information and �stored in the
organization� of the object� �Depth is closely related to Adleman�s notion
of �potential� ��� and Koppel�s notion of �sophistication� ��
� �����

One way to investigate the computational usefulness of an object is to
investigate the class of computational problems that can be solved e�ciently�
given access to the object� When the object is an in�nite binary sequence�
i�e�� a sequence x � f�� �g�� this typically amounts to investigating the
class of binary strings y � f�� �g� that are Turing reducible to x in some

recursive time bound s � N � N� This condition� written y �DTIME�s�
T x�

means that there is an oracle Turing machine M that� on input n � N with
oracle x� computes y�n�� the nth bit of y� in at most s�l� steps� where l is the
number of bits in the binary representation of n� For example� consider the
diagonal halting problem �K � f�� �g�� whose nth bit �K�n� is � if and only
if Mn� the n

th Turing machine� halts on input n� It is well�known that �K is
useful� in the sense that every recursive sequence �in fact� every recursively
enumerable sequence� y � f�� �g� is Turing reducible to �K in polynomial
time�

An interesting feature of this example is that �K has relatively low in�
formation content� In fact� an n�bit pre�x of �K � denoted �K ����n � ���
contains only O�logn� bits of algorithmic information �	�� Intuitively� this
is because �K����n � �� is completely speci�ed by the number of indices

�

i � f�� � � � � n��g such that the ith Turing machineMi halts on input i� Once
this O�logn��bit number is known� direct simulation of M��M�� � � � �Mn��

on inputs �� �� � � � � n� �� respectively� will eventually determine all n bits of
�K ����n� ���

In contrast� consider a sequence z � f�� �g� that is algorithmically ran�
dom in the equivalent senses of Martin�L�of �	
�� Levin ����� Schnorr �
���
Chaitin ����� Solovay ����� and Shen� �
��

�� �See section
 below for a
precise de�nition and basic properties of algorithmic randomness�� An n�bit
pre�x z����n� �� of an algorithmically random sequence z contains approxi�
mately n bits of algorithmic information �	
�� so the information content of
z is exponentially greater than that of �K � On the other hand� z is much
less useful than �K � in the following sense� While every recursive sequence is
Turing reducible to �K in polynomial time� a recursive sequence y � f�� �g�

is Turing reducible to z in polynomial time if and only if y is in the com�
plexity class BPP ��� ��� �The class BPP� de�ned by Gill ����� consists of
those sequences y � f�� �g� such that there is a randomized algorithm that
decides y�n�� the nth bit of y� with error probability less than �

n � using time
that is at most polynomial in the number of bits in the binary representation
of n�� Since BPP contains only the simplest recursive sequences� this means
that� for the purpose of e�ciently deciding recursive sequences� �K is much
more useful than an algorithmically random sequence z�

Bennett has argued that the computational usefulness of �K derives not
from its algorithmic information content �which is relatively low�� but rather
from its computational depth� In support of this thesis� Bennett ��� has
proven that �K is strongly deep� while no algorithmically random sequence
can even be weakly deep� �Precise de�nitions of these terms appear in sec�
tions � and � below��

This paper furthers Bennett�s investigation of the computational depth
of in�nite binary sequences� We pay particular� quantitative attention to
interactions between computational depth and time�bounded Turing reduc�
tions�

In order to further investigate the above�discussed notion of the compu�
tational usefulness of a sequence x � f�� �g�� we quantify the size of the set
of recursive sequences that are Turing reducible to x within some recursive
time bound� For this purpose� let REC be the set of all recursive �i�e�� decid�
able� sequences� and� for a recursive time bound s �N� N� let DTIMEx�s�

be the set of all sequences y � f�� �g� such that y �DTIME�s�
T x� We are

interested in the size of DTIMEx�s��REC as a subset of REC� To quantify

	

this� we use a special case of the resource�bounded measure theory of Lutz
�	�� 	��� �A detailed description of the relevant special case appears in sec�
tion 	 below�� Intuitively� this theory� a generalization of classical Lebesgue
measure theory� de�nes a set X of in�nite binary sequences to have measure
� in REC if X � REC is a negligibly small subset of REC�

In this paper� we de�ne a sequence x � f�� �g� to be weakly useful
if there exists a recursive time bound s � N � N such that DTIMEx�s�
does not have measure � in REC� Returning to the two examples discussed
earlier� �K is weakly useful because every element of REC is in DTIME�K�s��
provided that s is superpolynomial� e�g� if s�n� � nlogn� On the other hand�
if z is algorithmically random� then z is not weakly useful� by the following
two facts�

�i� For every recursive time bound s � N� N there exists a recursive time
bound bs �N� N such that� for all algorithmically random sequences
z� DTIMEz�s� � REC � DTIME�bs� ��� �� ���

�ii� For every recursive time bound bs �N� N� DTIME�bs� has measure �
in REC �	���

Our main result� Theorem ���� below� establishes that every weakly
useful sequence is strongly deep� This implies that every high Turing degree
contains strongly deep sequences �Corollary ������ Since the Turing degree
of �K is one of many high Turing degrees� our main result thus generalizes
Bennett�s result ��� that �K is strongly deep�

More importantly� our main result rigorously con�rms Bennett�s intuitive
arguments relating the computational usefulness of �K to its depth� The
fact that the useful sequence �K is strongly deep is no coincidence� Every
sequence that is even weakly useful must be strongly deep�

Bennett ��� also de�nes the class of weakly deep binary sequences� �As
noted by Bennett� this class has been investigated in other guises by Levin
and V�jugin ���� 	�� 	�� �	� �
� ����� A sequence x � f�� �g� is weakly deep
if there do not exist a recursive time bound s � N � N and an algorithmi�

cally random sequence z such that x �
DTIME�s�
T z� Bennett ��� notes that

every strongly deep sequence is weakly deep� but that there exist weakly
deep sequences that are not strongly deep� In section � below we strengthen
the separation between these two notions by proving that� in the sense of
Baire category� almost every sequence x � f�� �g� is weakly deep� but not
strongly deep� �A self�contained discussion of Baire category appears in

section 	�� Intuitively� this means that weakly deep sequences are �topolog�
ically abundant�� �They �cannot be avoided� by one player in a two�person
game described in section 	�� In contrast� weakly deep sequences are �prob�
abilistically scarce�� in the sense that� with respect to Lebesgue measure�
almost every sequence x � f�� �g� is algorithmically random �	
�� hence not
weakly deep�

In order to provide a basis for further investigation of Bennett�s funda�
mental ideas� this paper also includes a self�contained mathematical treat�
ment of the weak and strong computational depth of in�nite sequences� In
section � we introduce our basic terminology and notation� In section 	
we review fundamental ideas of Baire category and measure that are used
in our work� In section
 we give a similar review of algorithmic informa�
tion and randomness� Section � is the main section of the paper� In this
section� we present the strong computational depth of in�nite binary se�
quences in a uni�ed� self�contained framework using a convenient family of
parametrized depth classes� Dt

g� This framework is used to prove our main
result �Theorem ������ that every weakly useful sequence is strongly deep�
In the course of our development� we prove several results� some of which
were already proven by Bennett ���� giving precise� quantitative relationships
among depth� randomness� and recursiveness� We also prove �Theorem �����
that strongly deep sequences are extremely rare� in that they form a meager�
measure � subset of f�� �g�� In section � we give a brief discussion of weak
computational depth� including a proof that� in the sense of Baire category�
almost every sequence is weakly deep� but not strongly deep� In section �
we mention possible directions for further research�

� Preliminaries

We work primarily in the set f�� �g� of all �in�nite� binary� sequences� We
also use the set f�� �g� of all ��nite� binary� strings� We write jxj for the
length of a string x� and � for the empty string� The standard enumeration
of f�� �g� is the sequence s�� s�� � � �� in which shorter strings precede longer
ones and strings of the same length are ordered lexicographically�

Given a sequence x � f�� �g� and m�n � N with m � n� we write
x�m��n� for the string consisting of the mth through nth bits of x� In par�
ticular� x����n� �� is the string consisting of the �rst n bits of x� We write
x�n� for x�n��n�� the nth bit of x�

�

We write ����� for the Boolean value of a condition �� i�e��

����� �

�
� if � is true
� if � is false

The characteristic sequence of a setA � N is then the sequence �A � f�� �g�

de�ned by �A�n� � ��n � A�� for all n � N�
We say that a condition ��n� holds in�nitely often �i�o�� if it holds

for in�nitely many n � N� We say that a condition ��n� holds almost
everywhere �a�e�� if it holds for all but �nitely many n � N�

All logarithms in this paper are base�� logarithms�
Given a function f � Nn � f�� �g� � Y and an n�tuple �k � Nn� we

de�ne the function f�k � f�� �g� � Y by f�k�x� � f��k� x� for all x � f�� �g��
This enables us to regard the function f as a �uniform enumeration� of the
functions f�k �

Although we introduce a very speci�c Turing machine model to de�ne
algorithmic information� algorithmic probability� and algorithmic depth in
sections
 and �� we assume that the reader is already familiar with the
general ideas of Turing machine computation� including computation by
oracle Turing machines� �Discussion of such machines may be found in
many texts� e�g�� ��� �
�

� �����

Given a recursive time bound s � N� N� we say that an oracle Turing
machine M is s�time�bounded if� given any input n � N and oracle y �
f�� �g�� M outputs a bit My�n� � f�� �g in at most s�l� steps� where l

is the number of bits in the binary representation of n� In this case� if
x � f�� �g� satis�es x�n� � My�n� for all n � N� then we say that x is

Turing reducible to y in time s via M � and we write x �
DTIME�s�
T y via M �

We say that x is Turing reducible to y in time s� and we write x �
DTIME�s�
T y�

if there is some oracle Turing machine M such that x �
DTIME�s�
T y via M �

For y � f�� �g� and s �N� N� we write

DTIMEy�s� �
n
x � f�� �g�

��� x �DTIME�s�
T y

o
�

�Note that the time bound here is �sharp�� there is no �big�O��� The un�
relativized complexity class DTIME�s� is then de�ned to be DTIME���s��
where �� is the sequence consisting entirely of ��s�

A sequence x � f�� �g� is truth�table reducible to a sequence y � f�� �g��
and we write x �tt y� if there exists a recursive time bound s � N � N

such that x �DTIME�s�
T y� �This de�nition is easily seen to be equivalent to

�

standard textbook de�nitions of truth�table reducibility �

� ����� Given a
set Y � f�� �g�� we write

RECtt�Y � � fx � f�� �g� j ��y � Y � x �tt yg

�
�

recursive s

�
y�Y

DTIMEy�s��

We write REC for the set of all recursive �i�e�� decidable� sequences x �
f�� �g�� Note that REC 	 Y � RECtt�Y � for all sets Y � f�� �g�� A
sequence x � f�� �g� is Turing reducible to a sequence y � f�� �g�� and we
write x �T y� if there is an oracle Turing machineM such thatMy�n� � x�n�
for every n � N� Two sequences x� y � f�� �g� are Turing equivalent� and
we write x
T y� if x �T y and y �T x� A Turing degree is an equivalence
class of f�� �g� under the equivalence relation
T�

The complement of a set X � f�� �g� is Xc � f�� �g��X �

� Measure and Category

Three di�erent senses in which a set X of binary sequences may or may not
be �small� are used in this paper� A set X � f�� �g� may have measure
�� in which case it is small �in the sense of Lebesgue measure�� A set
X � f�� �g� may have measure � in REC� in which case X�REC is a small
subset of REC� �in the sense of resource�bounded measure�� Finally� a set
X � f�� �g� may be meager �also known as �rst category�� in which case it
is small �in the sense of Baire category�� This section reviews the basic ideas
from Lebesgue measure� resource�bounded measure� and Baire category that
are involved in our use of these three notions of �smallness�� The interested
reader may consult ��� ��� 	�� 	��
	�
�� for further discussion of these
notions� but the material in the present section is su�cient for following the
arguments of this paper�

Resource�bounded measure �	�� 	�� is a generalization of classical
Lebesgue measure� As such it has classical Lebesgue measure and measure
in REC as special cases� We use this fact to present the notions �measure
�� and �measure � in REC� more or less simultaneously�

Consider the random experiment in which a binary sequence x � f�� �g�

is chosen probabilistically� using an independent toss of a fair coin to decide
each bit of x� Intuitively� a set X � f�� �g� has �Lebesgue� measure ��a
condition de�ned precisely below�if Pr�x � X � � �� where Pr�x � X � is
the probability that x� the outcome of the coin�tossing experiment� is an

�

element of X � In this case� we write ��X� � � ��X has measure ���� We
now develop the necessary de�nitions�

A string w � f�� �g� is a pre�x of a string or sequence x � f�� �g� 	
f�� �g�� and we write w v x� if there exists y � f�� �g� 	 f�� �g� such that
x � wy� The cylinder generated by a string w � f�� �g� is

Cw � fx � f�� �g� j w v xg�

i�e�� the set of all in�nite binary sequences beginning with the string w�

De�nition �	��� A density function is a function d � f�� �g� � �����
satisfying

d�w� �
d�w��� d�w��

�
�	���

for all w � f�� �g�� The global value of a density function d is d���� The set
covered by a density function d is

S�d� �
�

w�f���g�

d�w���

Cw� �	���

An n�dimensional density system �n�DS� is a function

d �Nn � f�� �g�� �����

such that� for all �k � Nn� the function d�k is a density function� �Recall that

d�k�w� � d��k� w� for all �k �Nn and w � f�� �g���

Taken together� parts �	��� and �	��� of the above de�nition imply that

Pr�x � S�d��� d���

in our coin�tossing random experiment� We thus intuitively regard d as a
�detailed veri�cation� that Pr�x � X � � d��� for all X � S�d�� With this
intuition in mind� we present the central idea of resource�bounded measure
� sets�

De�nition �	��� A null cover of a set X � f�� �g� is a ��DS d that satis�es
the following two conditions for all k � N�

�i� X � S�dk��

�

�ii� dk��� � ��k �

De�nition �	��� A set X � f�� �g� has �Lebesgue� measure �� and we write
��X� � �� if it has a null cover� A set X � f�� �g� has �Lebesgue� measure
�� and we write ��X� � �� if ��Xc� � �� In this latter case� we say that X
contains almost every sequence x � f�� �g��

It is a routine exercise to check that this de�nition is equivalent to �stan�
dard textbook� de�nitions ��� ���
	�
�� of measure � and measure � sets�

The main advantage of the above de�nition is that it naturally yields
analogous notions of measure in REC and various complexity classes� To
specify the analogous measure in REC� we need to de�ne the computability
of density systems� Since density systems are real�valued� they must be
computed via approximations� For this purpose� it is natural to use the set

D � fm��n j m � Z� n � Ng

of dyadic rationals� These are real numbers whose standard binary repre�
sentations are �nite�

De�nition �	��� An n�DS d is computable if there is a total recursive
function bd � Nn�� � f�� �g� � D such that� for all �k � Nn� r � N� and
w � f�� �g�� ��� bd�k�r�w�� d�k�w�

���� ��r�

Note that the above de�nition is uniform� in the sense that it requires
a single total recursive function bd to compute approximations for all the
density functions d�k �given �k� a precision parameter r� and the input to d�k
as inputs to bd��
De�nition �	��� A recursive null cover of a set X � f�� �g� is a null cover
of X that is computable� A set X � f�� �g� has recursive measure �� and
we write �rec�X� � �� if X has a recursive null cover� A set X � f�� �g�

has recursive measure �� and we write �rec�X� � �� if �rec�Xc� � �� A set
X � f�� �g� has measure � in REC� and we write ��X j REC� � �� if
�rec�X � REC� � �� A set X � f�� �g� has measure � in REC� and we
write ��X j REC� � �� if ��Xc j REC� � �� In this latter case� we say that
X contains almost every recursive sequence x � REC�

Note that the implications

(|) = 0X RECµ= 0X)(µ

()rec = 0µ X

)(X = 1µ X(| REC) = 1µ

µrec (X)= 1
and

all follow immediately from the above de�nitions� It is easy to see that
every subset of a recursive measure � set has recursive measure �� that every
�nite subset of REC has recursive measure �� and that every �nite union
of recursive measure � sets has recursive measure �� In fact� the recursive
measure � sets enjoy a stronger closure property� which we now de�ne�

De�nition �	��� Let Z� Z�� Z�� � � � � f�� �g�� Then Z is a recursive union

of the sets Z�� Z�� � � � of measure � in REC if Z �
�S
j��

Zj and there exists a

computable ��DS d such that� for all j � N� dj is a recursive null cover of
Zj � REC�

Theorem �	� �Lutz �	���� If Z � f�� �g� is a recursive union of sets of
measure � in REC� then Z has measure � in REC�

On the other hand� the following result shows that not every set has
measure � in REC�

Theorem �	� �Lutz �	���� No cylinder Cw has measure � in REC� In par�
ticular� REC does not have measure � in REC�

Taken together� the above facts justify the intuition that� if X has mea�
sure � in REC� then X � REC is a negligibly small subset of REC� Further
discussion of this intuition may be found in �	��
	��

Other formulations of measure in REC have been investigated by Freid�
zon ��
�� Mehlhorn �
��� and others� The advantage of the formulation here
is that it uniformly yields Lebesgue measure� measure in REC� and measure
in various complexity classes �	��� It is easy to show that� if X has �measure
� in REC� in the sense of ��
�� then X has measure � in REC in our sense�

We now turn to the fundamentals of Baire category� Baire category gives
a topological notion of smallness� usually de�ned in terms of �countable
unions of nowhere dense sets� �
��
	�
��� Here it is more convenient to
de�ne Baire category in terms of certain two�person� in�nite games of perfect
information� called Banach�Mazur games�

��

Informally� a Banach�Mazur game is an in�nite game in which two play�
ers construct a sequence x � f�� �g� by taking turns extending a pre�x of
x� There is a �payo� set� X � f�� �g� such that Player I wins a play of the
game if x � X and Player II wins otherwise�

More formally� a strategy for a Banach�Mazur game is a function � �
N� f�� �g� � f�� �g� with the property that w �

�� �m�w�� i�e�� w is a proper
pre�x of �m�w� for all m � N and w � f�� �g�� A play of a Banach�Mazur
game is an ordered pair ��� �� of strategies� The result of the play ��� ��

is the unique sequence R��� �� �
�T
k��

Cwk � where the strings w�� w�� � � � are

de�ned by the following recursion�

�i� w� � ��

�ii� For all m � N� w�m�� � �m�w�m��

�iii� For all m � N� w�m�� � �m�w�m����

Intuitively� Player I uses strategy �� Player II uses strategy � � and wk is
the pre�x of R��� �� that has been constructed when the two players have
moved a total of k times� For example� if � and � are de�ned by

�m�w� � w�m��� �m�w� � w��

then
w� � �� w� � �� w� � ��� w� � ����� � � � �

so
R��� �� � �������������������� � � � �

We write G�X � for the Banach�Mazur game with payo� set X � f�� �g��
A winning strategy for Player I in G�X � is a strategy � such that� for all
strategies � � R��� �� � X � A winning strategy for Player II in G�X � is a
strategy � such that� for all strategies �� R��� �� 	� X �

De�nition	 A set X � f�� �g� is meager if there exists a winning strat�
egy for Player II in the Banach�Mazur game G�X �� A set X � f�� �g� is
comeager if Xc is meager� �A meager set is sometimes called a �set of �rst
category���

As an easy example� let FIN be the set of all characteristic sequences of
�nite subsets of N� i�e��

FIN � fx � f�� �g� j x has only �nitely many ��s g�

��

Then the strategy � de�ned by �m�w� � w� is a winning strategy for Player
II in G�FIN�� so FIN is meager�

The proof that the above de�nition is equivalent to the �standard text�
book� de�nition of the meager sets is due to Banach and may be found in
�
�� or �
	�� It is clear that every subset of a meager set is meager and that
every countable set X � f�� �g� is meager� In fact� it is well�known that
every countable union of meager sets is meager �
	�� On the other hand� for
every w � f�� �g�� the strategy

�m�u� �

�
w if u ��� w

u� otherwise

is a winning strategy for Player I in G�Cw�� so no cylinder is meager� �This
is the Baire Category Theorem �
	��� These facts justify the intuition that
meager sets are �topologically small�� or �negligibly� small in the sense of
Baire category� Thus� if a set X � f�� �g� is comeager� we say that its
elements are �topologically abundant�� or that X is large in the sense of
Baire category� or that X contains almost every sequence in the sense of
Baire category�

The proofs of our Baire category results� Theorems ���� and ��� below�
are easy� given some elementary properties of the Cantor topology on the
set f�� �g�� For completeness� we review these properties� Further details
may be found in a number of texts� e�g�� ����
���

A set X � f�� �g� is open� or
�
�� if it can be expressed as a �countable�

union of cylinders� A set X � f�� �g� is closed� or ��
�� if X

c is open� For
each positive integer k� a set X � f�� �g� is
�

k�� if it can be expressed as
a countable union of��

k sets� For each positive integer k� a set X � f�� �g�

is ��
k�� if Xc is
�

k��� �The �boldface� classes
�
���

�
��

�
���

�
�� � � � are col�

lectively known as the �nite Borel hierarchy� This hierarchy is closely analo�
gous to the �lightface� arithmetical hierarchy ��

���
�
���

�
���

�
�� � � � of recursion

theory �
����
A �nite variation of a sequence x � f�� �g� is a sequence y � f�� �g�

such that y�n� � x�n� for all but �nitely many n � N� A set X � f�� �g� is
closed under �nite variations if every �nite variation of every element of X
is an element of X �

A function f � f�� �g� � f�� �g� is continuous if� for every x � f�� �g�

and n � N� there exists k � N such that f�Cx����k��	� � Cf�x�����n��	�
We use the following two facts� For completeness� we sketch proofs�

Further details may be found in standard texts� e�g�� ����
���

��

Fact �	�	

�� Let X and Y be disjoint subsets of f�� �g�� If X is
�
�� Y ��
� and

Y is closed under �nite variations� then X is meager�
�� If X �

�� f�� �g
� is
�

� and closed under �nite variations� then X is
meager�

Proof	 To prove part �� assume the hypothesis and �x a sequence z � Y �
Since X is
�

�� there exist closed sets X�� X�� � � � � f�� �g� such that X �
�S
k��

Xk� To see that X is meager� it su�ces to exhibit a winning strategy

for Player II in the Banach�Mazur game G�X �� Player II�s strategy uses
z as a source of bits� To specify this strategy� let wk � f�� �g� be the
string constructed by the game play prior to move k of Player II� where
k � N� Let wk		z be the sequence obtained from z by putting wk in place
of the �rst jwkj bits of z� Since z � Y and wk		z is a �nite variation of
z� it must be the case that wk		z � Y � In particular� this implies that
wk		z 	� Xk� Since Xk is closed� it follows that there exists n
 jwkj such
that C�wk��z�����n��	 � Xk �
� Player II�s strategy in move k is to extend
wk to �wk		z�����n� �� for this value of n� The �nal sequence x � f�� �g�

constructed by the game play is now guaranteed to satisfy x 	� Xk� Since
Player II eventually establishes this for every k � N� it follows that x 	� X �
Hence this is a winning strategy for Player II in G�X �� so X is meager�

To prove part �� take Y � Xc in part �� �

Fact �	�	 If X � f�� �g� is
�
� and f � f�� �g� � f�� �g� is continuous�

then the image f�X� is also
�
��

Proof	 Assume the hypothesis� Then there exist closed sets Y�� Y�� � � � �

f�� �g� such that X �
�S
k��

Yk � Each Yk is a closed subset of the compact

Hausdor� space f�� �g�� so each Yk is compact� Since f is continuous� it

follows that each f�Yk� is compact� hence closed� Since f�X� �
�S
k��

f�Yk��

this implies that f�X� is
�
�� �

We have described three notions of smallness in this section� It should
be noted that no two of them coincide� Although some sets �e�g� �nite
sets� are small in all three senses� it is possible for a set to be small in any
one of these senses without being small in the other two� For example� in
section
 below� we de�ne the set RAND� consisting of all algorithmically

�	

random sequences� Consider also the set REC of all recursive sequences� It
is well�known �	
� that REC � RAND �
� that RAND is meager� and that
RAND has measure �� �See also Theorems
�� and ��� below�� Also� since
REC is countable� REC is meager and has measure �� The following three
things follow easily from these observations�

�a� RAND 	 REC is meager� but has measure � and measure � in REC�

�b� RECc has measure � in REC but is comeager and has measure ��

�c� RANDc has measure �� but is comeager and has measure � in REC�

As Oxtoby �
	� has noted� �There is of course nothing paradoxical in the
fact that a set that is small in one sense may be large in some other sense��

� Algorithmic Information and Randomness

In this section we review some fundamentals of algorithmic information the�
ory that are used in this paper� We are especially concerned with self�
delimiting Kolmogorov complexity and algorithmic randomness� The inter�
ested reader is referred to �		� 	�� for more details� discussion� and proofs�

Kolmogorov complexity� also called program�size complexity� was discov�
ered independently by Solomono� ����� Kolmogorov ����� and Chaitin �
��
Self�delimiting Kolmogorov complexity is a technical improvement of the
original formulation that was developed independently� in slightly di�erent
forms� by Levin ���� ���� Schnorr �
��� and Chaitin ����� The advantage of the
self�delimiting version is that it gives precise characterizations of algorithmic
probability and randomness�

Self�delimiting Kolmogorov complexity employs a slightly restricted
model of �deterministic� Turing machine computation� In this model� a
Turing machine M has a program tape� an output tape� and some number
k of worktapes� �For some purposes it is also advantageous to have a special
input tape� but we do not need one here�� Only ��s� ��s and blanks can ever
appear on a tape� The program tape and the output tape are in�nite to the
right� while the worktapes are in�nite in both directions� Each tape has a
scanning head� The program and output tape heads cannot move left� but
the worktape heads can move left or right� The program tape is read�only�
the output tape is write�only� and the worktapes are read write� The output
tape head can only write ��s and ��s� it cannot write blanks�

�

ATuring machineM starts in the initial state with a program � � f�� �g�

on its program tape� the output tape blank� and the worktapes blank� The
leftmost cell of the program tape is blank� with the program tape head
initially scanning this cell� The program � lies immediately to the right of
this cell� The rest of the program tape is blank� The output tape head
initially scans the leftmost cell of the output tape�

If� after �nitely many steps� M halts with the program tape head scan�
ning the last bit of �� then the computation is deemed to be a success� we
writeM����� and the output of the computation is the stringM��� � f�� �g�

that has been written on the output tape� Otherwise� the computation is a
failure� we write M����� and there is no output �i�e�� we disregard the con�
tents of the output tape�� If M����� then timeM��� denotes the number of
steps executed in this computation� IfM����� then we write timeM��� � ��

It should be emphasized that a successful computation must end with
the program tape head scanning the last bit of the program� Since the
program tape head is read�only and cannot move left� this implies that� for
every Turing machine M � the set

PROGM � f� � f�� �g� j M����g

must be an instantaneous code� i�e�� must be a set of nonempty strings� no
one of which is a pre�x of another� �It is this feature of the model that the
adjective �self�delimiting� describes�� It follows by Kraft�s inequality �see
��	�� for example� that� for all Turing machines M �X

��PROGM

��j�j � ��

It is well�known that there are Turing machines U that are universal� in
the sense that� for every Turing machine M � there exists a program pre�x
�M � f�� �g� such that� for all � � f�� �g��

U��M�� � M����

�This condition means that M���� if and only if U��M�� �� in which case
U��M�� � M����� Furthermore� there are universal Turing machines U

that are e�cient� in the sense that� for each Turing machine M there is a
constant c � N �which depends on M� such that� for all � � f�� �g��

timeU��M�� � c�� � timeM��� log timeM�����

��

Notational Convention� Throughout this paper� U is a �xed� e�cient�
universal Turing machine�

The set of programs for a string x � f�� �g� relative to a Turing machine
M is

PROGM �x� � f� � f�� �g� j M��� � xg �

Similarly� given a time bound t � N � N� the set of t�fast programs for x
relative to M is

PROGt
M�x� � f� � PROGM �x� j timeM ��� � t�jxj�g �

�Note that the time bound here is computed in terms of the output length��
We write PROG� PROG�x�� and PROGt�x� for PROGU � PROGU�x�� and
PROGt

U �x�� respectively�
We de�ne the probability of an instantaneous code I � f�� �g� to be

Pr�I� �
X
w�I

��jwj�

Intuitively� if we choose a sequence x � f�� �g� probabilistically� using an
independent toss of a fair coin to decide each bit of x� then Pr�I� is the
probability that x �

S
w�I

Cw� i�e�� the probability that some element of I is

a pre�x of x�
We now come to the central ideas of algorithmic information theory� �See

�		� for a history of the development of these de�nitions��

De�nition	 Let x � f�� �g�� let t � N� N be a time bound� and let M be
a Turing machine�

�� The �self�delimiting� Kolmogorov complexity of x relative to M is

KM�x� � min
n
j�j

��� � � PROGM �x�
o
�

�Here we use the convention that min
 � ��� The �self�delimiting�
Kolmogorov complexity of x is

K�x� � KU�x�

The quantityK�x� is also called the algorithmic entropy� or algorithmic
information content� of x�

��

�� The t�time�bounded �self�delimiting� Kolmogorov complexity of x rela�
tive to M is

Kt
M�x� � min

n
j�j

��� � � PROGt
M �x�

o
�

The t�time�bounded �self�delimiting�Kolmogorov complexity� or t�time�
bounded algorithmic entropy� of x is

Kt�x� � Kt
U �x��

	� The algorithmic probability of x relative to M is

mM�x� � Pr�PROGM �x���

The algorithmic probability of x is

m�x� �mU�x��

� The t�time�bounded algorithmic probability of x relative to M is

mt
M�x� � Pr�PROGt

M �x���

The t�time�bounded algorithmic probability of x is

mt�x� �mt
U�x��

In general� we omit the adjective �self�delimiting�� since this is the only
type of Kolmogorov complexity in this paper�

We now present some basic properties of Kolmogorov complexity and
algorithmic probability that are used in this paper� The �rst is obvious�
well�known� and useful�

Lemma �	�	 There is a constant c� � N such that� for all x � f�� �g� and
all � � PROG�x��

K�x� � K��� � c��

The next two important theorems express the fundamental relationship
between Kolmogorov complexity and algorithmic probability�

Theorem �	� �Levin ���� ���� Chaitin ������ There is a constant ec � N such
that� for all x � f�� �g��

� logm�x� � K�x� � � logm�x� � ec�
��

A straightforward modi�cation of the proof of Theorem
�� yields the
following time�bounded version� �This result also follows immediately from
Lemma 	 of �	
���

Theorem �	�	 Let t �N� N be recursive�

�� For all x � f�� �g��
� logmt�x� � Kt�x��

�� There exist a recursive function t� � N � N and a constant c� � N

such that� for all x � f�� �g��

Kt��x� � � logmt�x� � c��

In addition to the above facts� we need the following lemma and corollary�
due to Bennett� For the lemma� say that a string � � f�� �g� computes a
�nite instantaneous code I if U��� � �x�� � � � � xn��� is a binary string that
encodes an enumeration of the elements x�� � � � � xn�� of I in some standard
fashion�

Lemma �	� �Bennett ����� There is a constant c� � N such that� for all
� � f�� �g�� if � computes a �nite instantaneous code I � then for all x � I �

K�x� � jxj� logPr�I� � j�j� c��

�Note that �jxj � log Pr�I� � �� so that the bound becomes tighter as Pr�I�
becomes smaller��
Proof	 Let M be a Turing machine that performs as indicated in Figure �
with program �b�� where � computes a �nite instantaneous code and b� �
f�� �g�� �If the program for M is not of this form� then the computation is
a failure�� Since U is a universal Turing machine� there is a program pre�x
�M � f�� �g� such that� for all � � f�� �g�� U��M�� � M���� Let

c� � j�M j� ��

To see that c� has the desired property� let � � f�� �g� compute a �nite
instantaneous code I � If I �
� then the lemma is a�rmed vacuously� so
assume that I ��
� Let x�� � � � � xn�� and k�� � � � � kn�� be as in Figure ��
De�ne real numbers r� � � � �� rn by the recursion

r� � �� ri�� � ri � ��ki �

��

begin

simulate U��� to obtain I �on a worktape� in the form
I � fx�� � � � � xn��g�

where x�� � � � � xn�� are in standard order�
�� �� ��
for � � i � n do

begin

if i � � then w �� �ki else w �� next�w� ki��
where ki � jxij � b� log Pr�I�c and next�w� ki� is the

immediate lexicographic successor of the string w�ki�jwj�
while �� v w do

if �� � w then output xi and halt
else �� �� ��b� where b is the

next bit on the program tape
end

end M��b���
Figure �� The Turing Machine M used in the proof of Lemma
�
�

�

and note that

rn �
n��X
i��

��ki �
X
x�I

�b� logPr�I�c�jxj � Pr�I���
X
x�I

��jxj � ��

De�ne strings b�� � � �� b�n�� � f�� �g� by

b�� � �k� � b�i�� � next�b�i� ki����
where the function next is de�ned as in Figure �� A routine induction on i
shows that each b�i is the standard ki�bit binary representation of the natural
number ri ��ki � �The key point in the induction step is that� for � � i � n���
we have ri � ��ki � ri�� � rn�� � rn � �� so ri � �

ki � �ki � �� By the
induction hypothesis� this means that b�i does not consist entirely of ��s� sob�i�� � next�b�i� ki��� contains only ki�� bits�� Moreover� it is easily checked
that� for all � � i � n� b�i is the value assigned to w by M during iteration
i of the for�loop� and that

U��M�b�i� � M��b�i� � xi�

whence

K�xi� � j�M�b�ij � ki � j�j� c� � �

� jxij� logPr�I� � j�j� c��

�

Corollary �	�	 For every recursive function t � N � N there exists a
constant c� �N such that� for all y � f�� �g� and all � � PROGt�y��

K��� � j�j� logmt�y� �K�y� � c��

�Note that �j�j � logmt�y� � �� so the bound becomes tighter as the
time�bounded algorithmic probability of y becomes smaller��

Proof	 Let t � N � N be recursive� Let M be a Turing machine that�
with program � � f�� �g�� does the following� First M simulates U���� If
this computation does not succeed� then M����� Otherwise� if U��� � y�
then M simulates U���� for t�jyj� steps for every string �� � f�� �g�t�jyj��
and uses the result of this simulation to output an �encoded� enumeration
���� � � � � �n��� of the �nite instantaneous code PROGt�y��

��

Since U is a universal Turing machine� there is a program pre�x �M �
f�� �g� such that� for all � � f�� �g�� U��M�� � M���� Let

c� � j�M j� c��

where c� is the constant given by Lemma
�
� For y � f�� �g�� let �y be a
shortest element of PROG�y�� Then� for all y� the string �M�y computes
the �nite instantaneous code PROGt�y�� It follows by Lemma
�
 that� for
all y � f�� �g� and � � PROGt�y��

K��� � j�j� logPr�PROGt�y�� � j�M�y j� c�

� j�j� logmt�y� �K�y� � c��

�

In this paper we are especially interested in the Kolmogorov complexi�
ties of initial segments of in�nite binary sequences� In this regard� given a
function g � N � ����� and a recursive time bound t � N � N� we de�ne
the classes

Ki�o��� g�n�� � fx � f�� �g� j K�x����n� ��� � g�n� i�o�g

and

Kt
i�o��� g�n�� �

n
x � f�� �g� j Kt�x����n� ��� � g�n� i�o�

o
�

Thus we are using g�n� as a �threshold value� for the Kolmogorov complexity
of the n�bit pre�x of a sequence x � f�� �g�� These classes contain those
sequences for which this Kolmogorov complexity is below the threshold value
for in�nitely many pre�xes�

The following theorem� which is used in proving our main result� says
that almost every recursive sequence has very high time�bounded
Kolmogorov complexity almost everywhere�

Theorem �	� �Lutz �	���� For every recursive bound t �N� N and every
real number � �
 � ��

��Kt
i�o���
n�

��� REC� � ��

�In fact� Corollary
�
 of �	�� is stronger than this in several respects��

��

We conclude this section with a brief discussion of the algorithmic ran�
domness of in�nite binary sequences� Algorithmic randomness was origi�
nally de�ned by Martin�L�of �	
�� using constructive versions of ideas from
measure theory� Subsequently� Levin ���� ���� Schnorr �
��� and Chaitin
���� showed that algorithmic randomness could be characterized in terms
of self�delimiting Kolmogorov complexity� �Indeed� this was an important
motivation for developing the self�delimiting formulation�� For the purposes
of the present paper� it is convenient to use this characterization as the
de�nition�

De�nition	 A sequence x � f�� �g� is algorithmically random� and we write
x � RAND� if there is a constant k � N such thatK�x����n����
 n�k a�e�
That is�

RAND �
��
k��

Ki�o��� n� k�c�

The following theorem summarizes some elementary properties of RAND
that are used in this paper�

Theorem �	� �Martin�L�of �	
��� RAND is a
�
�� measure � subset of

f�� �g� that is closed under �nite variations and does not contain the char�
acteristic sequence of any recursively enumerable set�

� Strong Computational Depth

In this section� we investigate Bennett�s notion of strong computational
depth for in�nite binary sequences� This notion can be de�ned in several
equivalent ways� We start with the de�nition most convenient for our pur�
poses� Subsequently� in Theorem ��
 below� we prove the equivalence of this
de�nition with others that have appeared in the literature�

De�nition	 For t� g �N� N and n � N� we de�ne the sets

Dt
g�n� � fx � f�� �g�

��� ��� � PROGt�x����n� ����K���� j�j � g�n�g

and

Dt
g �

��
m��

��
n�m

Dt
g�n�

� fx � f�� �g�
��� x � Dt

g�n� a�e�g�

��

A sequence x � f�� �g� is strongly deep� and we write x � strDEEP� if for
every recursive time bound t � N � N and every constant c � N� it is the
case that x � Dt

c�

Intuitively� then� a sequence x � f�� �g� is in Dt
g�n� if every t�fast pro�

gram � for x����n� �� can be compressed by at least g�n� bits� Note that� if

t�n� � bt�n� and g�n� � bg�n�� then Dbtbg�n� � Dt
g�n�� Thus� if t�n� � bt�n� a�e�

and g�n� � bg�n� a�e�� then Dbtbg � Dt
g� In particular� if g�n� � c and bg�n� � bc

are constant� then we have the situation depicted in Figure ��

D
c
t

t

c

strDEEP

{0,1}∞

D

Figure �� The classes Dt
c� D

btbc� in the case where t�n� � bt�n� a�e� and c � bc�
We start by examining the relationship between randomness and strong

depth� We use the following technical lemma�

Lemma �	�	 If x � RAND� then there exist a sequence k�� k�� � � � of natural

�	

numbers and a sequence ��� ��� � � � of programs satisfying the following three
conditions for all i � N�

��� For all n � ki� K�x����ki� ���� ki � K�x����n� ���� n�

��� U��i� � x����ki� �� and j�ij � K�x����ki� ����

�	� ki��
 ki � timeU��i��

Proof	 Let x � RAND� De�ne f �N� Z by f�n� � K�x����n�����n� For
each i � N� �x the least argument ni � i such that f�ni� � f�n� for all n � i�
�Since x � RAND� f is bounded below� so ni exists�� De�ne the sequences
k�� k�� � � � and ��� ��� � � � recursively as follows� Let k� � n� and let �� be a
minimal program for x����k����� Given ki and �i� let ki�� � nki�timeU ��i���

and let �i�� be a minimal program for x����ki�� � ��� It is easily veri�ed
that the sequences k�� k�� � � � and ��� ��� � � � satisfy conditions ���� ���� and
�	�� �

Bennett ��� has noted that no algorithmically random sequence is
strongly deep� We now prove this fact� Moreover� we show that it holds
in a very strong way� Intuitively� we show that every algorithmically ran�
dom sequence lies �very near the top� of the diagram in Figure ��

Theorem �	� �Bennett ����� RAND � strDEEP �
� In fact� there exist
a recursive function t�n� � O�n logn� and a constant c � N such that
RAND �Dt

c �
�

Proof	 Let M be a Turing machine that� with program �y� does the follow�
ing� The machine M simulates U���� recording timeU��� while doing so�
If the simulated computation succeeds� M then reads and outputs the �rst
timeU ��� bits of y �appended to the string U��� already produced as out�
put� and halts� Note that if jyj � timeU���� then the computation ofM��y�
succeeds� with M��y� � U���y� Otherwise� the computation of M��y� is a
failure�

On successful computations� the Turing machine M takes O�jyj� steps
to produce U���y� Thus there exist a program pre�x �M and a recursive�
nondecreasing time bound t�n� � O�n logn� such that� for all successful
computations U��� and all strings y with jyj � timeU���� the following two
conditions hold�

�i� U��M�y� � U���y�

�

�ii� timeU��M�y� � t�jyj��

Let c � j�M j� c�� where c� is the constant from Lemma
��� We prove that
RAND �Dt

c �
�
Let x � RAND� Fix sequences k�� k�� � � � and ��� ��� � � � as in Lemma ����

For each i � N� let ni � ki � timeU ��i�� Note that the sequence n�� n�� � � �
is strictly increasing� We prove that x �� Dt

c by showing that� for all i � N�
x �� Dt

c�ni��
Conditions �i� and �ii� above imply that the following conditions hold

for all i � N�

�iii� U��M�ix�ki��ni � ��� � x����ni � ���

�iv� timeU��M�ix�ki��ni � ��� � t�ni � ki� � t�ni��

Then� for all i � N

�M�ix�ki��ni � �� � PROGt�x����ni � ���

and Lemma ��� tells us that

K�x����ki� ��� � K�x����ni� ���� ni � ki

� K�x����ni� ���� timeU ��i��

whence

K��M�ix�ki��ni � ��� � K�x����ni � ���� c�

� K�x����ki� ��� � timeU��i�� c�

� j�ij� ni � ki � c�

� j�ix�ki��ni � ��j � c�

� j�M�ix�ki��ni � ��j � c�

Thus x �� Dt
c�ni� for all i � N� so x �� Dt

c� �

We next show that strong computational depth can be characterized in
several equivalent ways� For this� we need some notation and a lemma� We
�rst recall Bennett�s de�nition of the computational depth of �nite strings�

De�nition ���� Let w � f�� �g� and c � N� Then the computational depth
of w at signi�cance level c is

depthc�w� � minft � N j ��� � PROGt�w�� j�j � K��� � cg�

��

That is� the depth of a �nite string at signi�cance level c is the minimum
time required to compute w from a program that is not compressible by c
or more bits�

Our alternate characterizations of strong depth also use the following
classes�

De�nition	 For t� g �N� N and n � N� we de�ne the sets

bDt
g�n� � fx � f�� �g� j K�x����n� ��� � Kt�x����n� ���� g�n�g�eDt
g�n� � fx � f�� �g� j m�x����n� ��� � �g�n�mt�x����n� ���g�

bDt
g �

��
m��

��
n�m

bDt
g�n��

eDt
g �

��
m��

��
n�m

eDt
g�n��

The following lemma shows that the classes bDt
g and eDt

g are� in a quanti�
tative sense� �minor variants� of the classes Dt

g� This result was proven in
a slightly di�erent form in ����

Lemma �	� �Bennett ����� If t � N � N is recursive� then there exist
constants c�� c�� c� � N and a recursive function t� � N � N such that the
following six conditions hold for all g �N� N and all n � N�

�� Dt
g�c��n� �

bDt
g�n�
� Dt

g�c� �
bDt
g

�� bDt�
g�c��n� �

eDt
g�n� �� bDt�

g�c� �
eDt
g

	� eDt
g�c��n� � Dt

g�n� �� eDt
g�c� � Dt

g

Proof	 It su�ces to prove �� �� and 	� since
� �� and � then follow imme�
diately�

�� Let c� be as in Lemma
�� and assume that x � Dt
g�c��n�� Let �

be a shortest element of PROGt�x����n� ���� Since x � Dt
g�c��n�� we have

K��� � j�j � g�n�� c�� It follows that

K�x����n� ��� � K��� � c�

� j�j � g�n�

� Kt�x����n� ���� g�n��

��

whence x � bDt
g�n��

�� Choose c� and t� for t as in Theorem
�	 and assume that x �bDt�
g�c��n�� Then K�x����n� ��� � Kt��x����n� ���� g�n�� c�� It follows by

Theorems
�� and
�	 that

m�x����n� ��� � ��K�x����n��	�

� �g�n��c��K
t� �x����n��	�

 �g�n�mt�x����n� ����

whence x � eDt
g�n��

	� Let ec be as in Theorem
��� choose c� for t as in Corollary
��� let
c� � ec� c�� and assume that x � eDt

g�c��n�� Then

K�x����n� ��� � � logm�x����n� ��� � ec
� � logmt�x����n� ���� g�n�� c� � ec
� � logmt�x����n� ���� g�n�� c��

Thus� for all � � PROGt�x����n� ����

K��� � j�j�K�x����n� ��� � logmt�x����n� ��� � c�

� j�j � g�n��

whence x � Dt
g�n�� �

We now prove the equivalence of several characterizations of strong com�
putational depth�

Theorem �	� �Bennett ����� For x � f�� �g�� the following four conditions
are equivalent�

��� x is strongly deep�

��� For every recursive time bound t � N� N and every constant c � N�
depthc�x����n� ���
 t�n� a�e�

�	� For every recursive time bound t � N� N and every constant c � N�
x � bDt

c�

�
� For every recursive time bound t � N� N and every constant c � N�
x � eDt

c�

��

Proof	 The equivalence of ��� and ��� follows immediately from the de�ni�
tions� The equivalence of ���� �	�� and �
� follows immediately from Lemma
��	� �

In ���� Bennett uses condition ��� of Theorem ��
 above as the de�nition
of strong computational depth� As noted above� this is trivially equivalent
to condition ���� i�e�� to our de�nition in terms of the classes Dt

c� Bennett
��� also considers de�nitions in terms similar to those used in de�ning the
classes bDt

c and eDt
c and implicitly proves the equivalence of conditions ����

�	�� and �
�� The discussions of depth by Li and Vit�anyi in the Handbook of
Theoretical Computer Science �		� and their recent book �	�� essentially use
condition �
� as the de�nition� In any case� a sequence x is strongly deep if�
for every recursive t and constant c� almost every pre�x x����n� �� is �more
than t deep at signi�cance level c�� in the sense that more than t�n� time is
required to derive x����n� �� from any description whose length is within c
bits of the minimum possible length�

We next prove a technical lemma on the quantitative relationship be�
tween computational depth and time�bounded Turing reducibility� This can
be regarded as a quantitative� in�nitary version of Bennett�s deterministic
slow�growth law ���� We need two special notations for this lemma� First�
for any function s �N� N� we de�ne the function s� � N� N by

s��n� � �s�dlogne����

Second� for any unbounded� nondecreasing function f � N � N� we de�ne
the special�purpose �inverse� function f�� � N� N by

f���n� � maxfm j f�m� � ng�

Also� for this lemma� say that a function s � N� N is time�constructible if
there exist a constant cs � N and a Turing machine that� given the stan�
dard binary representation w of a natural number n� computes the standard
binary representation of s�n� in at most cs �s�jwj� steps� Using standard tech�
niques ��� �
�� it is easy to show that� for every recursive function r �N� N�
there is a strictly increasing� time�constructible function s � N � N such
that� for all n � N� r�n� � s�n��

Lemma �	�	 Let s � N � N be strictly increasing and time�constructible�
with the constant cs � N as witness� For each s�time�bounded oracle Turing
machine M � there is a constant cM � N with the following property� Given

��

nondecreasing functions t� g � N � N� de�ne the functions �� bt� bg � N � N

by

��n� � t�s��n� ��� �
s��n� �� � ��n� ��css�l� � �ns��n� ��s�l��bt � cM�� � ��n�dlog ��n�e��bg � g�s��n� ��� � cM �

where l is the number of bits in the binary representation of n� For all

x� y � f�� �g�� if y �
DTIME�s�
T x via M and y � Dbtbg� then x � Dt

g�

Proof	 Let s and M be as in the statement of the lemma� Let M � be
a Turing machine that� with program � � f�� �g�� operates as in Figure 	�
Since U is an e�cient universal Turing machine� there exist a program pre�x
�M � � f�� �g� and a constant cM � � N such that� for all � � f�� �g��

U��M ��� � M ����

and
timeU��M ��� � cM ��� � timeM ���� log timeM ������

Let M �� be a Turing machine that� with program �� � f�� �g�� simulates
U���� and outputs � if and only if U���� � �M ��� Since U is universal�
there is a program pre�x �M �� � f�� �g� such that� for all �� � f�� �g��
U��M ����� � M ������� Let

cM � max fcM � � j�M �j� j�M ��jg �

Fix m� � N such that �s�����m�
 � for all m � m��
Now de�ne � � bt� and bg as in the statement of the lemma and assume that

x� y � f�� �g� satisfy y �
DTIME�s�
T x via M and y � Dbtbg� Fix n� � N such

that y � Dbtbg�n� for all n � n� and let

m� � max fm�� s
��n�� � �g �

The following two claims are veri�ed at the end of this proof�

Claim �	 For all m � m� and � � f�� �g�� if � � PROGt�x����m� ����

then �M �� � PROGbt�y����n� ���� where n � �s�����m��

Claim �	 For all m � m� and all � � PROGt�x����m� ����

K��� � j�j � bg�n� � cM �

�

begin

u �� U����
n �� �s�����juj��
for � � i � n do

append the bit Mu���i� to the output�
halt�

end M �����

Figure 	� The Turing machine M � used in the proof of Lemma ����

where n � �s�����m��

To �nish proving the lemma� letm � m� and let � � PROGt�x����m�����
Then� by Claim � and the monotonicity of g�

K��� � j�j � bg��s�����m�� � cM

� j�j � g�s���s�����m� � ���

� j�j � g�m��

Thus x � Dt
g�m�� Since this holds for all m � m�� it follows that x � Dt

g�
a�rming the lemma� All that remains� then� is to prove the two claims�

To prove Claim �� assume thatm � m� and � � PROGt�x����m����� Let
u � x����m��� and n � �s�����m�� Since m � m�� we must have s��n� � m�
Since M is s�time�bounded� this implies that Mu���i� � Mx�i� � y�i� for
all � � i � n� �All queries in these computations must be made to bits x�j�
for j � juj�� Thus

U��M ��� � M ���� � y����n� ���

With program �� M � requires at most t�m� steps to compute u� at most

m additional steps to compute juj in binary� at most ��n � ��css�l� steps
to compute n� and at most �nms�l� steps to execute the for�loop� Since
s��n� �� � m� and t is nondecreasing� it follows that timeM ���� � ��n�� so

timeU ��M ��� � bt�n��
Thus �M �� � PROGbt�y����n� ���� This proves Claim ��

	�

Finally� to prove Claim �� let m � m�� let � � PROGt�x����m � ����
and let n � �s�����m�� Since m
 s��n��� it must be the case that n �

�s�����m� � n�� whence y � Dbtbg�n�� Since m � m�� Claim � tells us that

�M �� � PROGbt�y����n� ���� Since y � Dbtbg� it follows that
K��M ��� � j�M ��j � bg�n� � j�j � bg�n� � j�M �j�

Now let �� be a shortest element of PROG��M ���� Then U���� � �M ��� so

U��M ����� � M ������ � ��

so

K��� � j�M ����j

� K��M ��� � j�M ��j

� j�j � bg�n� � cM �

This proves Claim � and completes the proof of Lemma ���
�

Using Lemma ���� we prove that a strongly deep sequence cannot be
truth�table reducible �equivalently� reducible in recursively bounded time�
to a sequence that is not also strongly deep� This implies the fact� noted by
Bennett ���� that strong depth is invariant under truth�table equivalence�

Theorem �	�	 Let x� y � f�� �g�� If y �tt x and y is strongly deep� then x
is strongly deep�

Proof	 Assume the hypothesis� To see that x is strongly deep� �x a recursive
function t �N� N and a constant c � N� It su�ces to prove that x � Dt

c�
Since y �tt x� there exist a strictly increasing time�constructible function

s � N � N and an s�time�bounded oracle Turing machine M such that

y �
DTIME�s�
T x via M � Choose a constant cM for M as in Lemma ��� and

de�ne g � N � N by g�n� � c for all n � N� Then� in the notation of
Lemma ���� bt is recursive and bg is constant� Since y is strongly deep� it

follows that y � Dbtbg � It follows by Lemma ��� that x � Dt
c � �

We now note that no recursive sequence is strongly deep�

Corollary �	� �Bennett ����� REC � strDEEP �
�

	�

Proof	 Let x � REC� it su�ces to show that x �� strDEEP� Fix z � RAND�
Then� trivially� x �tt z� By Theorem ���� z �� strDEEP� so by Theorem ����
x �� strDEEP� �

Up to this point� this section has largely followed the line of Bennett�s
work� We now build on this work to prove some new results� Our �rst such
result says� roughly� that every recursive sequence is either somewhat deep
or somewhat compressible� It is convenient to use the classes bDt

g for this
result�

Theorem �	�	 If t �N� N is recursive and � �
 � � � �� then

REC � bDt
�n 	K

t
i�o��� �n��

Proof	 Assume the hypothesis and let

x � REC�Kt
i�o��� �n��

It su�ces to prove that x � bDt
�n�

Since x �� Kt
i�o��� �n�� we have

Kt�x����n� ��� � �n a�e�

Since x is recursive� it follows that there is a constant c � N such that� for
all su�ciently large n�

K�x����n� ��� � � logn � c

� �n�
n

� Kt�x����n� ����
n�

whence x � bDt
�n� �

Corollary �	
	 For every recursive function t �N� N and every � � � � ��
the set Dt

�n has measure � in REC�

Proof	 Let t � N � N be recursive and let � � � �
 � � � �� Choose a
recursive function t� � N � N and constants c�� c� � N for t as in Lemma
��	� so that bDt�

�n�c��c��n� �
eDt
�n�c��n� � Dt

�n�n�

for all n � N� For all su�ciently large n�

bDt�
�n�n� �

bDt�
�n�c��c��n��

	�

so it follows that bDt�
�n � Dt

�n�

By Theorem
��� Kbti�o��� �n� has measure � in REC� By Theorem ����
this implies that bDt�

�n has measure � in REC� Since bDt�
�n � Dt

�n� it follows
that Dt

�n has measure � in REC� �

Corollary �	��	 For every recursive function t �N� N and every constant
c � N� Dt

c has measure � in REC�

It is instructive to compare RAND with REC in light of Theorem ����
Corollary ���� and Corollary ����� Neither RAND nor REC contains a
strongly deep sequence� However� referring to Figure �� Corollary ���� says
that REC �reaches arbitrarily close to� strDEEP� in the sense that each
class Dt

c �for t recursive and c constant� contains almost every sequence in
REC� In contrast� if t and c are �xed as in Theorem ���� then every element
of RAND lies above �i�e� outside of� Dt

c in Figure �� In this sense� intuitively�
REC is much deeper than RAND�

We have now developed enough machinery to examine the computational
depth of computationally useful sequences� We use the following de�nition�

De�nition	 A sequence x � f�� �g� is weakly useful if there is a recursive
time bound s � N � N such that DTIMEx�s� does not have measure � in
REC�

That is� x is weakly useful if it can be used to �e�ciently� �i�e�� in some
recursive time s� solve all the problems in a non�negligible subset of REC�

If x � REC� then for every recursive time bound s� there is a recur�
sive time bound t such that DTIMEx�s� � DTIME�t�� Since every such
set DTIME�t� has measure � in REC by Theorem
��� this shows that no
recursive sequence is weakly useful�

The following result� which is the main theorem of this paper� shows
that much more is true�

Theorem �	��	 Every weakly useful sequence is strongly deep�

Proof	 Let x � f�� �g� be weakly useful� To see that x is strongly deep�
let t �N� N be a recursive time bound� and let c �N� It su�ces to prove
that x � Dt

c�
Since x is weakly useful� there is a recursive time bound s �N� N such

that DTIMEx�s� does not have measure � in REC� Since every recursive

		

function is bounded above by a strictly increasing� time�constructible func�
tion� we can assume without loss of generality that s is strictly increasing
and time�constructible�

Let et�n� � n � �� � ��n�dlog ��n�e�� where � is de�ned from t and s as
in Lemma ���� and let � � �

� � Since et is recursive� Corollary ��
 tells us

that Det�n has measure � in REC� Since DTIMEx�s� does not have measure

� in REC� it follows that Det�n � DTIMEx�s� ��
� Fix a sequence y �

Det�n �DTIMEx�s�� Then there is an s�time�bounded oracle Turing machine

M such that y �
DTIME�s�
T x� Fix a constant cM for M as in Lemma ����

De�ne g�n� � c for all n � N and de�ne the functions �� bt� and bg from t and
g as in Lemma ���� Since bg and cM are constant� we have et�n�
 bt�n� a�e�
and �n
 bg�n� a�e�� so y � Det�n � Dbtbg� It follows by Lemma ��� that x � Dt

c�
�

Notation� Let �H and �K be the characteristic sequences of the halting
problem and the diagonal halting problem� respectively� That is� the se�
quences �H � �K � f�� �g� are de�ned by

�H �hi� ni� � � � Mi�n� halts�

�K �n� � � � Mn�n� halts�

where M��M�� � � � is a standard enumeration of all deterministic Turing ma�
chines and h� i is a standard pairing function� e�g�� hi� ni �

�i�n��
�

�
� n�

Corollary �	�� �Bennett ����� The sequences �H and �K are strongly deep�

Proof	 It is well�known that H and K are polynomial�time complete for
the set of all recursively enumerable subsets of N� so �H and �K are weakly
useful� Thus �H and �K are strongly deep by Theorem ����� �

Note that Theorems ��� and ���� also provide a new proof of the fact�
noted in the introduction� that no algorithmically random sequence is weakly
useful�

To see that Theorem ���� is actually stronger than Corollary ����� we
use two known facts concerning high Turing degrees� We �rst review the
relevant de�nitions� �More detailed discussion can be found in a standard
recursion theory text� e�g� ������

Recall from section � that the characteristic sequence of a set A � N is
the sequence �A � f�� �g� such that A � fn � N j �A�n� � �g� A sequence

	

x � f�� �g� is recursively enumerable �r�e�� if x � �A for some r�e� set
A � N� The diagonal halting problem relative to a sequence x � f�� �g� is
the set

Kx � fn � N
��� Mx

n �n� haltsg�

where Mn is the nth oracle Turing machine in a standard enumeration� The
jump of a sequence x � f�� �g� is the sequence

jump�x� � �Kx �

A sequence x � f�� �g� is high if x �T �K and jump�x�
T jump��K�� A
Turing degree is high if it contains a high sequence� It is clear that �K and
its Turing degree are high�

A set X � f�� �g� is uniformly recursive in a sequence x � f�� �g� if
there is a sequence y � f�� �g� with the following two properties�

�i� y �T x�

�ii� X � fyk j k � Ng� where each yk � f�� �g� is de�ned by yk �n� �
y�hk� ni� for all n � N� �Here we are using the standard pairing func�
tion hk� ni �

�k�n��
�

�
� n��

We use the following two known facts�

Theorem �	�� �Sacks �
���� There exist r�e� sequences that are high and
not Turing equivalent to �K �

Theorem �	�� �Martin �	���� A sequence y � f�� �g� satis�es jump��K� �T

jump�y� if and only if there exists x
T y such that REC is uniformly re�
cursive in x�

Corollary �	��	 Every high Turing degree contains a strongly deep se�
quence�

Proof	 The key observation� pointed out to the third author by Stuart
Kurtz� is that every high Turing degree contains a weakly useful sequence�
To see this� let a be a high Turing degree� By Theorem ���
� there is a
sequence x � a such that REC is uniformly recursive in x� Then there is a
sequence y �T x such that REC � fyk j k � Ng� De�ne z � f�� �g� by

z�k� �

�
x�k� � if k is even

y�k��� � if k is odd

	�

Then z
T x� so z � a� Also� there is a constant c � N such that

REC � fyk j k � Ng � DTIMEz�cn� � c��

so z is weakly useful� This con�rms that every high Turing degree contains a
weakly useful sequence� By Theorem ����� the corollary follows immediately�
�

Taken together� Theorem ���	 and Corollary ���� show that Theorem
���� does indeed strengthen Bennett�s result� Corollary �����

We conclude this section by proving that strongly deep sequences are
extremely rare� both in the sense of Lebesgue measure and in the sense of
Baire category�

Theorem �	��	 The set strDEEP is meager and has measure �� In fact� if
t and c are as in Theorem ���� then Dt

c is meager and has measure ��

Proof	 Let t and c be as in Theorem ���� Then RAND � Dt
c �
� Since

RAND has measure �� it follows that Dt
c has measure ��

For each n � N� the complement of Dt
c�n� can be written as a ��nite�

union of cylinders Cw� with each jwj � n� �This is because membership or
nonmembership of a sequence x in Dt

c�n� depends only upon x����n � ����
Thus� for each n � N� the set Dt

c�n� is closed� It follows that� for each

m � N� the set
�T

n�m
Dt
c�n� is closed� whence the set Dt

c �
�S

m��

�T
n�m

Dt
c�n�

is
�
�� By Theorems
�� and ���� RAND is nonempty� closed under �nite

variations� and disjoint from Dt
c� It follows by Fact 	�	 that Dt

c is meager�
�

If we combine the proofs of Fact 	�	 and Theorem ���� to form a direct
proof of Theorem ����� then Player II�s strategy in this proof is to play an
appropriate number of �random bits� �bits from a sequence z � RAND�
during each turn� Intuitively� it is only the �shallowness� of these random
bits that is relevant to the argument� For example� let FIN be the set of all
characteristic sequences of �nite subsets of N� i�e��

FIN � fx � f�� �g� j x�n� � � a�e�g

If t and c are as in Theorem ���� then it is not di�cult to show that FIN �
Dt
c �
� It follows that Player II could use the sequence �� in place of z in

the above strategy� That is� Player II could win by playing an appropriate
number of ��s� instead of random bits� during each turn�

	�

� Weak Computational Depth

In Theorem ����� we saw that strongly deep sequences are very rare� both
in the sense of Lebesgue measure and in the sense of Baire category� In
this brief section� we show that the situation is di�erent for weakly deep
sequences� We �rst recall the de�nition�

De�nition �Bennett ����� A sequence x � f�� �g� is weakly deep� and we
write x � wkDEEP� if there is no sequence z � RAND such that x �tt z�

We use the notation

RECtt�RAND� � fx � f�� �g� j ��z � RAND�x �tt zg�

We thus have
wkDEEP � RECtt�RAND�c�

Since REC 	 RAND � RECtt�RAND�� it follows immediately that

wkDEEP � REC � wkDEEP � RAND �
�

i�e�� that no weakly deep sequence can be recursive or algorithmically ran�
dom�

As the terminology suggests� every strongly deep sequence is weakly
deep�

Theorem �	� �Bennett ����� strDEEP � wkDEEP�

Proof	 Assume that x � strDEEP and x �tt y� To see that x � wkDEEP�
it su�ces to show that y �� RAND� But this follows immediately from
Theorems ��� and ���� �

In particular� Theorems ���� and ��� imply that weakly deep sequences
exist� It should be noted that G�acs ���� has proven that� for every sequence
x � f�� �g�� there exists a sequence z � RAND such that x �T z� Thus
�T�reducibility cannot be used in place of �tt�reducibility in the de�nition
of wkDEEP�

We have already noted that wkDEEP � RAND �
� Since RAND has
Lebesgue measure �� it follows that wkDEEP� like strDEEP� has Lebesgue
measure �� The situation for Baire category is quite di�erent� While
strDEEP is meager by Theorem ����� wkDEEP is comeager by the following
result�

	�

Theorem �	�	 The set wkDEEP is comeager�

Proof	 Each �tt�reduction can be interpreted as a continuous function f �
f�� �g� � f�� �g�� �The condition y � f�x� means that y �tt x via the
�tt�reduction f �� If we let F be the set of all �tt�reductions� then F is
countable and

RECtt�RAND� �
�
f�F

f�RAND��

We noted in section
 that RAND is
�
�� It follows by Fact 	�
 that

f�RAND� is
�
� for every f � F � Since f is countable� this implies that

RECtt�RAND� is
�
��

It is clear that RECtt�RAND� is closed under �nite variations� Also�
by Corollary ���� and Theorem ���� RECtt�RAND� ��� f�� �g�� Thus� by
Fact 	�	� RECtt�RAND� is meager� whence wkDEEP � RECtt�RAND�c is
comeager� �

Bennett ��� noted that there exist sequences that are weakly deep� but
not strongly deep� The following corollary shows that such sequences are�
in the sense of Baire category� commonplace�

Corollary �	�	 The set wkDEEP� strDEEP is comeager�

Proof	 This follows immediately from Theorems ���� and ���� �

Thus� in the sense of Baire category� almost every sequence x � f�� �g�

is weakly deep� but not strongly deep�

Corollary �	� �Bennett ����� strDEEP �
�� wkDEEP�

Proof	 This follows immediately from Theorem ��� and Corollary ���� �

Figure
 summarizes the relationships among REC� RAND� wkDEEP�
and strDEEP� In the sense of Lebesgue measure� almost every binary se�
quence is in RAND� On the other hand� in the sense of Baire category�
almost every binary sequence is in wkDEEP� strDEEP�

	�

REC (RAND)tt

RAND

wkDEEP

strDEEP

REC

Figure
� A classi�cation of binary sequences� RAND has measure �� while
wkDEEP� strDEEP is comeager�

	

� Conclusion

We have shown that every weakly useful sequence is strongly deep� This
result generalizes Bennett�s observation that �K is strongly deep� and gives
support to Bennett�s thesis that the computational usefulness of �K is re�
lated to its computational depth� We mention two open questions that are
suggested by this result�

Recall that a sequence x � f�� �g� is weakly useful if there is a recursive
time bound s � N � N such that DTIMEx�s� does not have measure �
in REC� De�ne a sequence x � f�� �g� to be strongly useful if there is a
recursive time bound s � N � N such that REC � DTIMEx�s�� Clearly�
every strongly useful sequence is weakly useful�

Question �	�	 Do there exist sequences that are weakly useful� but not
strongly useful! �We conjecture in the a�rmative��

Our main result implies that every high Turing degree contains a strongly
deep sequence� A well�known generalization of high sequences and degrees
de�nes a sequence x � f�� �g� to be highn �n � N� if x �T �K and
jump�n��x�
T jump�n���K�� where jump�n� is the n�fold iteration of the
jump operation� A Turing degree a is then highn if it contains a highn
sequence� �See ����� for example�� If a sequence or degree is highn� then it
is clearly highn��� The Turing degree of �K is clearly the only high� degree�
It is also clear that a sequence or degree is high� if and only if it is high�
Thus� by Corollary ����� every high� Turing degree contains a strongly deep
sequence�

Question �	�	 For n
 �� is it necessarily the case that every highn Turing
degree contains a strongly deep sequence!

Answers to Question ��� and ��� may well improve our understanding
of computational depth vis��a�vis computational usefulness� More generally�
further investigation of Bennett�s fundamental notions may yield profound
insights into the role of depth in the organization of computational� physical�
and biological information�

Acknowledgments

The third author thanks Charles Bennett for several helpful discussions�
and Stuart Kurtz for pointing out Theorem ���
� We also thank Ron Book�

�

Josep D�"az� and two anonymous referees for suggestions that have improved
the exposition of this paper�

References

��� L� Adleman� Time� space� and randomness� Technical Report
MIT LCS �
 TM��	�� Massachusettes Institute of Technology� Lab�
oratory for Computer Science� March �
�
�

��� J� L� Balc�azar� J� D�"az� and J� Gabarr�o� Structural Complexity I�
Springer�Verlag� �
���

�	� Y� M� Barzdin�� Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set�
Soviet Mathematics Doklady�
�����#���
� �
���

�
� C� H� Bennett� Dissipation� information� computational complexity and
the de�nition of organization� In D� Pines� editor� Emerging Syntheses
in Science	 Proceedings of the Founding Workshops of the Santa Fe
Institute� pages �
�#	�	� �
���

��� C� H� Bennett� Logical depth and physical complexity� In R� Herken�
editor� The Universal Turing Machine
 A Half�Century Survey� pages
���#���� Oxford University Press� �
���

��� P� Billingsley� Probability and Measure	 second edition� John Wiley and
Sons� �
���

��� R� V� Book� On languages reducible to algorithmically random lan�
guages� SIAM Journal on Computing� �

	� to appear�

��� R� V� Book� J� H� Lutz� and K� W� Wagner� An observation on proba�
bility versus randomness with applications to complexity classes� Math�
ematical Systems Theory� to appear�

�
� G� J� Chaitin� On the length of programs for computing �nite bi�
nary sequences� Journal of the Association for Computing Machinery�
�	��
�#��
� �
���

���� G� J� Chaitin� On the length of programs for computing �nite binary
sequences� statistical considerations� Journal of the ACM� ����
�#��
�
�
�
�

�

���� G� J� Chaitin� A theory of program size formally identical to information
theory� Journal of the Association for Computing Machinery� ���	�
#
	
�� �
���

���� G� J� Chaitin� Incompleteness theorems for random reals� Advances in
Applied Mathematics� ����
#�
�� �
���

��	� Thomas M� Cover and Joy A� Thomas� Elements of Information The�
ory� John Wiley $ Sons� Inc�� �

��

��
� R� I� Freidzon� Families of recursive predicates of measure zero� trans�
lated in Journal of Soviet Mathematics� ���
����

#
��� �
���

���� P� G�acs� On the symmetry of algorithmic information� Soviet Mathe�
matics Doklady� ����
��� �
�
�

���� P� G�acs� Every sequence is reducible to a random one� Information and
Control� ������#�
�� �
���

���� J� Gill� Computational complexity of probabilistic Turing machines�
SIAM Journal on Computing� �����#�
�� �
���

���� P� R� Halmos� Measure Theory� Springer�Verlag� �
���

��
� J� E� Hopcroft and J� D� Ullman� Introduction to Automata Theory	
Languages	 and Computation� Addison�Wesley� �
�
�

���� J� L� Kelley� General Topology� Van Nostrand� �
���

���� A� N� Kolmogorov� Three approaches to the quantitative de�nition of
%information�� Problems of Information Transmission� ���#�� �
���

���� A� N� Kolmogorov� Logical basis for information theory and probabil�
ity theory� IEEE Transactions on Information Theory� IT��
����#��
�
�
���

��	� A� N� Kolmogorov and V� A� Uspenskii� Algorithms and randomness�
translated in Theory of Probability and its Applications� 	��	�
#
���
�
���

��
� M� Koppel� Complexity� depth� and sophistication� Complex Systems�
������#��
�� �
���

�

���� M� Koppel� Structure� In R� Herken� editor� The Universal Turing
Machine
 A Half�Century Survey� pages
	�#
��� Oxford University
Press� �
���

���� L� A� Levin� On the notion of a random sequence� Soviet Mathematics
Doklady� �
��
�	#�
��� �
�	�

���� L� A� Levin� Laws of information conservation �nongrowth� and as�
pects of the foundation of probability theory� Problems of Information
Transmission� ������#���� �
�
�

���� L� A� Levin� On the principle of conservation of information in intu�
itionistic mathematics� Soviet Mathematics Doklady� ������#���� �
���

��
� L� A� Levin� Uniform tests of randomness� Soviet Mathematics Doklady�
pages 		�#	
�� �
���

�	�� L� A� Levin� Various measures of complexity for �nite objects �ax�
iomatic description�� Soviet Mathematics Doklady� ������#���� �
���

�	�� L� A� Levin� Randomness conservation inequalities� information and in�
dependence in mathematical theories� Information and Control� �����#
	�� �
�
�

�	�� L� A� Levin and V� V� V�jugin� Invariant properties of informational
bulks� Proceedings of the Sixth Symposium on Mathematical Founda�
tions of Computer Science� pages 	�
#	�
� �
���

�		� M� Li and P� M� B� Vit�anyi� Kolmogorov complexity and its applica�
tions� In J� van Leeuwen� editor� Handbook of Theoretical Computer
Science	 Volume A� pages ���#��
� Elsevier� �

��

�	
� M� Li and P� M� B� Vit�anyi� Learning simple concepts under simple
distributions� SIAM Journal on Computing� ���
��#
	�� �

��

�	�� M� Li and P� M� B� Vit�anyi� An Introduction to Kolmogorov Complexity
and its Applications� Springer� �

	�

�	�� J� H� Lutz� Resource�bounded measure� in preparation�

�	�� J� H� Lutz� Almost everywhere high nonuniform complexity� Journal
of Computer and System Sciences�

����#���� �

��

	

�	�� D� A� Martin� Classes of recursively enumerable sets and degrees of
unsolvability� Z� Math� Logik Grundlag� Math�� ����
�#	��� �
���

�	
� P� Martin�L�of� On the de�nition of random sequences� Information and
Control�
����#��
� �
���

�
�� P� Martin�L�of� Complexity oscillations in in�nite binary sequences�
Zeitschrift f�ur Wahrscheinlichkeitstheory und Verwandte Gebiete�
�
����#�	�� �
���

�
�� K� Mehlhorn� The �almost all� theory of subrecursive degrees is decid�
able� In Proceedings of the Second Colloquium on Automata	 Languages	
and Programming� pages 	��#	��� Springer Lecture Notes in Computer
Science� vol� �
� �
�
�

�
�� Y� N� Moschovakis� Descriptive Set Theory� North�Holland� �
���

�
	� J� C� Oxtoby� Measure and Category� Springer�Verlag� �
��� second
edition�

�

� H� Rogers� Jr� Theory of Recursive Functions and E�ective Computabil�
ity� McGraw � Hill� �
���

�
�� H� L� Royden� Real Analysis	 third edition� Macmillan Publishing
Company� �
���

�
�� G� E� Sacks� Degrees of Unsolvability� Princeton University Press� �
���

�
�� C� P� Schnorr� Process complexity and e�ective random tests� Journal
of Computer and System Sciences� ��	��#	��� �
�	�

�
�� A� Kh� Shen�� The frequency approach to de�ning a random sequence�
Semiotika i Informatika� �
��
#
�� �
��� �In Russian���

�

� A� Kh� Shen�� On relations between di�erent algorithmic de�nitions of
randomness� Soviet Mathematics Doklady� 	��	��#	�
� �
�
�

���� R� I� Soare� Recursively Enumerable Sets and Degrees� Springer�Verlag�
�
���

���� R� J� Solomono�� A formal theory of inductive inference� Information
and Control� ���#��� ��
#��
� �
�
�

���� R� M� Solovay� �
��� reported in �����

��	� V� V� V�jugin� On Turing invariant sets� Soviet Mathematics Doklady�
�����
�#��

� �
���

��
� V� V� V�jugin� The algebra of invariant properties of �nite sequences�
Problems of Information Transmission� ����
�#���� �
���

���� A� K� Zvonkin and L� A� Levin� The complexity of �nite objects and the
development of the concepts of information and randomness by means
of the theory of algorithms� Russian Mathematical Surveys� ����	#��
�
�
���

�

