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Abstract

This paper reviews and investigates Bennett’s notions of strong
and weak computational depth (also called logical depth) for infinite
binary sequences. Roughly, an infinite binary sequence x is defined to
be weakly useful if every element of a non-negligible set of decidable
sequences is reducible to @ in recursively bounded time. It is shown
that every weakly useful sequence is strongly deep. This result (which
generalizes Bennett’s observation that the halting problem is strongly
deep) implies that every high Turing degree contains strongly deep
sequences. It 1s also shown that, in the sense of Baire category, almost
every infinite binary sequence is weakly deep, but not strongly deep.
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1 Introduction

Algorithmic information theory, as developed by Solomonoff [51],
Kolmogorov [21, 22, 23], Chaitin [9, 10, 11, 12], Martin-L6f [39, 40], Levin
[26, 27, 28, 29, 30, 31, 55], Schnorr [47], Gacs [15], Shen’ [48, 49], and others,
gives a satisfactory, quantitative account of the information content of in-
dividual binary strings (finite) and binary sequences (infinite). However, a
given quantity of information may be organized in various ways, rendering it
more or less useful for various computational purposes. In order to quantify
the degree to which the information in a computational, physical, or bio-
logical object has been organized, Bennett [4, 5] has extended algorithmic
information theory by defining and investigating the computational depth of
binary strings and binary sequences.

Roughly speaking, the computational depth (called “logical depth” by
Bennett [4, 5]) of an object is the amount of time required for an algorithm to
derive the object from its shortest description. (Precise definitions appear
in the sections to follow.) Since this shortest description contains all the
information in the object, the depth thus represents the amount of “compu-
tational work” that has been “added” to this information and “stored in the
organization” of the object. (Depth is closely related to Adleman’s notion
of “potential” [1] and Koppel’s notion of “sophistication” [24, 25].)

One way to investigate the computational usefulness of an object is to
investigate the class of computational problems that can be solved efficiently,
given access to the object. When the object is an infinite binary sequence,
i.e., a sequence x € {0,1}°, this typically amounts to investigating the

class of binary strings y € {0,1}° that are Turing reducible to z in some

recursive time bound s : N — N. This condition, written y §?TIME(S) x,

means that there is an oracle Turing machine M that, on input n € N with
oracle z, computes y[n], the n'? bit of y, in at most s(!) steps, where [ is the
number of bits in the binary representation of n. For example, consider the
diagonal halting problem x € {0,1}*°, whose n'™ bit y[n] is 1 if and only
if M,,, the nt" Turing machine, halts on input n. It is well-known that yx is
useful, in the sense that every recursive sequence (in fact, every recursively
enumerable sequence) y € {0,1}* is Turing reducible to xy in polynomial
time.

An interesting feature of this example is that y, has relatively low in-
formation content. In fact, an n-bit prefix of yx, denoted yx[0.n — 1],
contains only O(logn) bits of algorithmic information [3]. Intuitively, this
is because Yg[0..n — 1] is completely specified by the number of indices



i € {0,...,n—1} such that the i* Turing machine M; halts on input i. Once
this O(log n)-bit number is known, direct simulation of Mg, My,---, M,,_1
on inputs 0,1,...,n — 1, respectively, will eventually determine all n bits of
Xx[0..n — 1].

In contrast, consider a sequence z € {0, 1} that is algorithmically ran-
dom in the equivalent senses of Martin-Lo6f [39], Levin [26], Schnorr [47],
Chaitin [11], Solovay [52], and Shen’ [48, 49]. (See section 4 below for a
precise definition and basic properties of algorithmic randomness.) An n-bit
prefix z[0..n — 1] of an algorithmically random sequence z contains approxi-
mately n bits of algorithmic information [39], so the information content of
z is exponentially greater than that of y;. On the other hand, z is much
less useful than y, in the following sense. While every recursive sequence is
Turing reducible to yx in polynomial time, a recursive sequence y € {0,1}*
is Turing reducible to z in polynomial time if and only if y is in the com-
plexity class BPP [5, 8]. (The class BPP, defined by Gill [17], consists of
those sequences y € {0, 1} such that there is a randomized algorithm that
decides y[n], the ntt bit of y, with error probability less than %, using time
that is at most polynomial in the number of bits in the binary representation
of n.) Since BPP contains only the simplest recursive sequences, this means
that, for the purpose of efficiently deciding recursive sequences, Yy is much
more useful than an algorithmically random sequence z.

Bennett has argued that the computational usefulness of y, derives not
from its algorithmic information content (which is relatively low), but rather
from its computational depth. In support of this thesis, Bennett [5] has
proven that vy is strongly deep, while no algorithmically random sequence
can even be weakly deep. (Precise definitions of these terms appear in sec-
tions 5 and 6 below.)

This paper furthers Bennett’s investigation of the computational depth
of infinite binary sequences. We pay particular, quantitative attention to
interactions between computational depth and time-bounded Turing reduc-
tions.

In order to further investigate the above-discussed notion of the compu-
tational usefulness of a sequence z € {0,1}°, we quantify the size of the set
of recursive sequences that are Turing reducible to  within some recursive
time bound. For this purpose, let REC be the set of all recursive (i.e., decid-

able) sequences, and, for a recursive time bound s : N — N, let DTIME”(s)

be the set of all sequences y € {0,1}° such that y §?TIME(S) z. We are

interested in the size of DTIME”(s)NREC as a subset of REC. To quantify



this, we use a special case of the resource-bounded measure theory of Lutz
[37, 36]. (A detailed description of the relevant special case appears in sec-
tion 3 below.) Intuitively, this theory, a generalization of classical Lebesgue
measure theory, defines a set X of infinite binary sequences to have measure
0 in REC if X N REC is a negligibly small subset of REC.

In this paper, we define a sequence z € {0,1}° to be weakly useful
if there exists a recursive time bound s : N — N such that DTIME?"(s)
does not have measure 0 in REC. Returning to the two examples discussed
earlier, x is weakly useful because everyelement of REC is in DTIMEXX (),
provided that s is superpolynomial, e.g. if s(n) = n!°6™. On the other hand,
if z is algorithmically random, then z is not weakly useful, by the following
two facts.

(i) For every recursive time bound s : N — N there exists a recursive time
bound s : N — N such that, for all algorithmically random sequences

z, DTIME?(s) N REC C DTIME(S) [5, 8, 7.

(ii) For every recursive time bound 5: N — N, DTIME(S) has measure 0

in REC [37].

Our main result, Theorem 5.11 below, establishes that every weakly
useful sequence is strongly deep. This implies that every high Turing degree
contains strongly deep sequences (Corollary 5.15). Since the Turing degree
of xx is one of many high Turing degrees, our main result thus generalizes
Bennett’s result [5] that yx is strongly deep.

More importantly, our main result rigorously confirms Bennett’s intuitive
arguments relating the computational usefulness of v, to its depth. The
fact that the useful sequence Y is strongly deep is no coincidence. FEwvery
sequence that is even weakly useful must be strongly deep.

Bennett [5] also defines the class of weakly deep binary sequences. (As
noted by Bennett, this class has been investigated in other guises by Levin
and V’jugin [28, 31, 32, 53, 54, 55].) A sequence z € {0,1}° is weakly deep
if there do not exist a recursive time bound s : N — N and an algorithmi-
cally random sequence z such that z §?TIME(S) z. Bennett [5] notes that
every strongly deep sequence is weakly deep, but that there exist weakly
deep sequences that are not strongly deep. In section 6 below we strengthen
the separation between these two notions by proving that, in the sense of
Baire category, almost every sequence x € {0,1}° is weakly deep, but not
strongly deep. (A self-contained discussion of Baire category appears in



section 3.) Intuitively, this means that weakly deep sequences are “topolog-
ically abundant.” (They “cannot be avoided” by one player in a two-person
game described in section 3.) In contrast, weakly deep sequences are “prob-
abilistically scarce,” in the sense that, with respect to Lebesgue measure,
almost every sequence z € {0,1}° is algorithmically random [39], hence not
weakly deep.

In order to provide a basis for further investigation of Bennett’s funda-
mental ideas, this paper also includes a self-contained mathematical treat-
ment of the weak and strong computational depth of infinite sequences. In
section 2 we introduce our basic terminology and notation. In section 3
we review fundamental ideas of Baire category and measure that are used
in our work. In section 4 we give a similar review of algorithmic informa-
tion and randomness. Section 5 is the main section of the paper. In this
section, we present the strong computational depth of infinite binary se-
quences in a unified, self-contained framework using a convenient family of
parametrized depth classes, DZ. This framework is used to prove our main
result (Theorem 5.11), that every weakly useful sequence is strongly deep.
In the course of our development, we prove several results, some of which
were already proven by Bennett [5], giving precise, quantitative relationships
among depth, randomness, and recursiveness. We also prove (Theorem 5.16)
that strongly deep sequences are extremely rare, in that they form a meager,
measure 0 subset of {0,1}°°. In section 6 we give a brief discussion of weak
computational depth, including a proof that, in the sense of Baire category,
almost every sequence is weakly deep, but not strongly deep. In section 7
we mention possible directions for further research.

2 Preliminaries

We work primarily in the set {0,1}° of all (infinite, binary) sequences. We
also use the set {0,1}* of all (finite, binary) strings. We write |z| for the
length of a string @, and A for the empty string. The standard enumeration
of {0,1}* is the sequence sg, s1, ..., in which shorter strings precede longer
ones and strings of the same length are ordered lexicographically.

Given a sequence z € {0,1}°° and m,n € N with m < n, we write
z[m..n] for the string consisting of the m'" through " bits of z. In par-
ticular, 2[0..n — 1] is the string consisting of the first n bits of 2. We write
z[n] for z[n..n], the nt" bit of z.



We write [¢] for the Boolean value of a condition ¢, i.e.,

] 1 if pis true
Lol = { 0 if ¢ is false

The characteristic sequence of a set A C N is then the sequence x, € {0,1}>
defined by xa[n] = [n € A] for all n € N.

We say that a condition ¢(n) holds infinitely often (i.o.) if it holds
for infinitely many n € N. We say that a condition ¢(n) holds almost
everywhere (a.e.) if it holds for all but finitely many n € N.

All logarithms in this paper are base-2 logarithms.

Given a function f : N” x {0,1}* — Y and an n-tuple k € N™, we
define the function fr : {0,1}* — Y by fr(z) = f(lg,x) for all € {0,1}*.
This enables us to regard the function f as a “uniform enumeration” of the
functions f.

Although we introduce a very specific Turing machine model to define
algorithmic information, algorithmic probability, and algorithmic depth in
sections 4 and b, we assume that the reader is already familiar with the
general ideas of Turing machine computation, including computation by
oracle Turing machines. (Discussion of such machines may be found in
many texts, e.g., [2, 19, 44, 50].)

Given a recursive time bound s: N — N, we say that an oracle Turing
machine M is s-time-bounded if, given any input n € N and oracle y €
{0,1}*°, M outputs a bit M¥(n) € {0,1} in at most s(I) steps, where [
is the number of bits in the binary representation of n. In this case, if
x € {0,1}> satisfies z[n] = MY(n) for all n € N, then we say that x is

Turing reducible to y in time s via M, and we write x §?TIME(S) y via M.
DTIME(s)

We say that z is Turing reducible to y in time s, and we write z <y Y,

if there is some oracle Turing machine M such that z g?TIME(S)

For y € {0,1}>° and s : N — N, we write

y via M.

DTIMEY(s) = {@ € {0,1}* | & <7 T™MEC) g}

(Note that the time bound here is “sharp”; there is no “big-O.”) The un-
relativized complexity class DTIME(s) is then defined to be DTIME®™ (s),
where 0 is the sequence consisting entirely of 0’s.

A sequence x € {0, 1} is truth-table reducible to a sequence y € {0,1}°°,
and we write z <y ¥, if there exists a recursive time bound s : N — N

DTIME

such that » <; (2) y. (This definition is easily seen to be equivalent to



standard textbook definitions of truth-table reducibility [44, 50].) Given a
set Y C {0,1}*, we write

RECw(Y) = {2€{0,1}*|(FyeY)a <y y}
= J U DTIMEY(s).

recursive s y€Y

We write REC for the set of all recursive (i.e., decidable) sequences z €
{0,1}*°. Note that RECUY C RECy(Y) for all sets ¥ C {0,1}>. A
sequence z € {0,1}° is Turing reducible to a sequence y € {0,1}°°, and we
write & <t y, if there is an oracle Turing machine M such that M¥(n) = z[n]
for every n € N. Two sequences z,y € {0,1}°° are Turing equivalent, and
we write z =1 y, if * <7 y and y <1 2. A Turing degree is an equivalence
class of {0,1}° under the equivalence relation =r.
The complement of a set X C {0,1}*is X°={0,1}> - X.

3 Measure and Category

Three different senses in which a set X of binary sequences may or may not
be “small” are used in this paper. A set X C {0,1}* may have measure
0, in which case it is small “in the sense of Lebesgue measure.” A set
X C {0,1}*° may have measure 0 in REC, in which case X NREC is a small
subset of REC, “in the sense of resource-bounded measure.” Finally, a set
X C{0,1}* may be meager (also known as first category), in which case it
is small “in the sense of Baire category.” This section reviews the basic ideas
from Lebesgue measure, resource-bounded measure, and Baire category that
are involved in our use of these three notions of “smallness.” The interested
reader may consult [6, 18, 36, 37, 43, 45] for further discussion of these
notions, but the material in the present section is sufficient for following the
arguments of this paper.

Resource-bounded measure [36, 37] is a generalization of classical
Lebesgue measure. As such it has classical Lebesgue measure and measure
in REC as special cases. We use this fact to present the notions “measure
0” and “measure 0 in REC” more or less simultaneously.

Consider the random experiment in which a binary sequence z € {0, 1}
is chosen probabilistically, using an independent toss of a fair coin to decide
each bit of . Intuitively, a set X C {0,1}* has (Lebesgue) measure 0—a
condition defined precisely below—if Pr[z € X] = 0, where Pr[z € X] is
the probability that z, the outcome of the coin-tossing experiment, is an



element of X. In this case, we write (X ) = 0 (“X has measure 0”7). We
now develop the necessary definitions.

A string w € {0,1}* is a prefiz of a string or sequence x € {0,1}* U
{0,1}*, and we write w C z, if there exists y € {0,1}*U {0,1}* such that
x = wy. The cylinder generated by a string w € {0, 1}* is

C, = {$ € {071}00 | ng},
i.e., the set of all infinite binary sequences beginning with the string w.

Definition [37]. A density function is a function d : {0,1}* — [0,00)
satisfying
d d(wl
d(w) = M (3.1)

for all w € {0,1}*. The global value of a density function d is d(X). The set
covered by a density function d is

S[d= |J Cu. (3.2)
we{0,1}*
d(w)>1

An n-dimensional density system (n-DS') is a function
d:N"x{0,1}* — [0, 00)
such that, for all ke N", the function dj is a density function. (Recall that
dp(w) = d(k,w) for all k € N” and w € {0,1}*.)
Taken together, parts (3.1) and (3.2) of the above definition imply that
Prfs € S[d]] < d()

in our coin-tossing random experiment. We thus intuitively regard d as a
“detailed verification” that Pr[z € X] < d(\) for all X C S[d]. With this
intuition in mind, we present the central idea of resource-bounded measure
0 sets.

Definition [37]. A null cover of a set X C {0,1}* is a 1-DS d that satisfies
the following two conditions for all £ € N.

(i) X C S[dyl.



(i) di(\) <27F.

Definition [37]. A set X C {0,1}* has (Lebesgue) measure 0, and we write
w(X) =0,if it has a null cover. A set X C {0,1}* has (Lebesque) measure
1, and we write p(X) = 1, if (X)) = 0. In this latter case, we say that X
contains almost every sequence z € {0, 1}°°.

It is a routine exercise to check that this definition is equivalent to “stan-
dard textbook” definitions [6, 18, 43, 45] of measure 0 and measure 1 sets.

The main advantage of the above definition is that it naturally yields
analogous notions of measure in REC and various complexity classes. To
specify the analogous measure in REC, we need to define the computability
of density systems. Since density systems are real-valued, they must be
computed via approximations. For this purpose, it is natural to use the set

D={m2™" | meZneN}

of dyadic rationals. These are real numbers whose standard binary repre-
sentations are finite.

Definition [37]. An n-DS d is computable if there is a total recursive
function d : N**1 x {0,1}* — D such that, for all & € N*, r € N, and
w € {0,1}7,

dy(w) = dp(w)|< 27",

Note that the above definition is uniform, in the sense that it requires
a single total recursive function d to compute approximations for all the
density functions dy (given k, a precision parameter r, and the input to dy

as inputs to d).

Definition [37]. A recursive null cover of a set X C {0,1}* is a null cover
of X that is computable. A set X C {0, 1}* has recursive measure 0, and
we write prec(X) = 0, if X has a recursive null cover. A set X C {0,1}*
has recursive measure 1, and we write fipec(X) = 1, if prec(X¢) = 0. A set
X C {0,1}* has measure 0 in REC, and we write (X | REC) = 0, if
prec(X NREC) = 0. A set X C {0,1}* has measure I in REC, and we
write (X | REC) = 1, if (X | REC) = 0. In this latter case, we say that
X contains almost every recursive sequence x € REC.

Note that the implications



We(X)=0 and U (X)=1
Z N\ Z N\
uw(X)=0 w(X |[REC)=0 w(X)=1 uw(X |REC) =1

all follow immediately from the above definitions. It is easy to see that
every subset of a recursive measure 0 set has recursive measure 0, that every
finite subset of REC has recursive measure 0, and that every finite union
of recursive measure 0 sets has recursive measure 0. In fact, the recursive
measure 0 sets enjoy a stronger closure property, which we now define.

Definition [37]. Let 7, Zy, Z1,... C {0,1}*°. Then Z is a recursive union

of the sets Zy, Z1, ... of measure 0 in REC if Z = |J Z; and there exists a
=0
computable 2-DS d such that, for all ; € N, d; is a recursive null cover of

Z]‘ N REC.

Theorem 3.1 (Lutz [37]). If Z C {0,1}* is a recursive union of sets of
measure 0 in REC, then Z has measure 0 in REC.

On the other hand, the following result shows that not every set has
measure 0 in REC.

Theorem 3.2 (Lutz [37]). No cylinder C,, has measure 0 in REC. In par-
ticular, REC does not have measure 0 in REC.

Taken together, the above facts justify the intuition that, if X has mea-
sure 0 in REC, then X N REC is a negligibly small subset of REC. Further
discussion of this intuition may be found in [37, 43].

Other formulations of measure in RIEC have been investigated by Freid-
zon [14], Mehlhorn [41], and others. The advantage of the formulation here
is that it uniformly yields Lebesgue measure, measure in REC, and measure
in various complexity classes [37]. It is easy to show that, if X has “measure
0 in REC” in the sense of [14], then X has measure 0 in REC in our sense.

We now turn to the fundamentals of Baire category. Baire category gives
a topological notion of smallness, usually defined in terms of “countable
unions of nowhere dense sets” [42, 43, 45]. Here it is more convenient to
define Baire category in terms of certain two-person, infinite games of perfect
information, called Banach-Mazur games.

10



Informally, a Banach-Mazur game is an infinite game in which two play-
ers construct a sequence x € {0, 1}° by taking turns extending a prefix of
x. There is a “payoff set” X C {0, 1} such that Player I wins a play of the
game if x € X and Player II wins otherwise.

More formally, a strategy for a Banach-Mazur game is a function o :
N x {0,1}* — {0, 1}* with the property that wg om(w), ie., wis a proper
prefix of o, (w) for all m € N and w € {0,1}*. A play of a Banach-Mazur
game is an ordered pair (o,7) of strategies. The result of the play (o,7)
is the unique sequence R(o,7) € ﬁ C,,, where the strings wg, w1, ... are

defined by the following recursion.

(i) wo = A.

(ii) For all m € N, wapq1 = 0 (wam ).
(iii) For all m € N, wami2 = Tm(Wamy1)-

Intuitively, Player I uses strategy o, Player II uses strategy 7, and wy is
the prefix of R(o,7) that has been constructed when the two players have
moved a total of k times. For example, if ¢ and 7 are defined by

om(w) = w0m+1,rm(w) = wl,
then
Wy = /\,w1 = 0,w2 = 01,w3: 0100,,

50
R(o,7)=01001000100001000001 - - -.

We write ([ X] for the Banach-Mazur game with payoff set X C {0,1}*.
A winning strategy for Player Iin G[X] is a strategy o such that, for all
strategies 7, R(o,7) € X. A winning strategy for Player II in G[X]is a
strategy 7 such that, for all strategies o, R(o,7) ¢ X.

Definition. A set X C {0,1}* is meager if there exists a winning strat-
egy for Player II in the Banach-Mazur game G[X]. A set X C {0,1}* is
comeager if X is meager. (A meager set is sometimes called a “set of first
category.”)

As an easy example, let FIN be the set of all characteristic sequences of
finite subsets of N, i.e.,

FIN = {z € {0,1}* | 2 has only finitely many 1’s }.

11



Then the strategy 7 defined by 7,,,(w) = wl is a winning strategy for Player
I in G[FIN], so FIN is meager.

The proof that the above definition is equivalent to the “standard text-
book” definition of the meager sets is due to Banach and may be found in
[42] or [43]. It is clear that every subset of a meager set is meager and that
every countable set X C {0,1}° is meager. In fact, it is well-known that
every countable union of meager sets is meager [43]. On the other hand, for
every w € {0, 1}*, the strategy

e O
Um(u):{ w 1fu¢w

10 otherwise

is a winning strategy for Player I in G[C,], so no cylinder is meager. (This
is the Baire Category Theorem [43].) These facts justify the intuition that
meager sets are “topologically small,” or (negligibly) small in the sense of
Baire category. Thus, if a set X C {0,1}* is comeager, we say that its
elements are “topologically abundant,” or that X is large in the sense of
Baire category, or that X contains almost every sequence in the sense of
Baire category.

The proofs of our Baire category results, Theorems 5.16 and 6.2 below,
are easy, given some elementary properties of the Cantor topology on the
set {0,1}°°. For completeness, we review these properties. Further details
may be found in a number of texts, e.g., [20, 42].

A set X C {0,1}* is open, or XY, if it can be expressed as a (countable)
union of cylinders. A set X C {0,1}* is closed, or I1?, if X ¢ is open. For
each positive integer k, a set X C {0,1}* is E%_H if it can be expressed as
a countable union of II{ sets. For each positive integer k, a set X C {0,1}°°
is H%_H if X¢is 224-1- (The “boldface” classes 39 TI9, 329, T1Y, . .. are col-
lectively known as the finite Borel hierarchy. This hierarchy is closely analo-
gous to the “lightface” arithmetical hierarchy £, 119, £9, 119, . . . of recursion
theory [42].)

A finite variation of a sequence z € {0,1}* is a sequence y € {0,1}*
such that y[n] = z[n] for all but finitely many n € N. A set X C {0,1}* is
closed under finite variations if every finite variation of every element of X
is an element of X.

A function f:{0,1}* — {0,1}* is continuous if, for every a € {0,1}>
and n € N, there exists k € N such that f(Cqyp.x-1]) € Cy(a)o.n-1]-

We use the following two facts. For completeness, we sketch proofs.
Further details may be found in standard texts, e.g., [20, 42].

12



Fact 3.3.

1. Let X and Y be disjoint subsets of {0,1}°°. If X is 39, Y # ), and
Y is closed under finite variations, then X is meager.

2. If X ;C& {0,1}* is X9 and closed under finite variations, then X is
meager.

Proof. To prove part 1, assume the hypothesis and fix a sequence z € Y.
Since X is X9, there exist closed sets Xg, Xq,... C {0,1}> such that X =
o0

J Xi. To see that X is meager, it suflices to exhibit a winning strategy

foro Player II in the Banach-Mazur game G[X]. Player II’s strategy uses
z as a source of bits. To specify this strategy, let w; € {0,1}* be the
string constructed by the game play prior to move k of Player II, where
k € N. Let wg//z be the sequence obtained from z by putting wy in place
of the first |wg| bits of z. Since 2 € Y and wy//z is a finite variation of
z, it must be the case that wy//z € Y. In particular, this implies that
wg//z ¢ Xi. Since Xy is closed, it follows that there exists n > |wy| such
that Cy,//2)0.m-1) N Xk = (. Player II’s strategy in move k is to extend
wg to (wg//z)[0..n — 1] for this value of n. The final sequence z € {0,1}*
constructed by the game play is now guaranteed to satisfy @ ¢ Xj. Since
Player II eventually establishes this for every k € N, it follows that = ¢ X.
Hence this is a winning strategy for Player Il in G[X], so X is meager.

To prove part 2, take Y = X° in part 1. O

Fact 3.4. If X C {0,1}* is XY and f : {0,1}* — {0,1}* is continuous,
then the image f(X) is also 39.

Proof. Assume the hypothesis. Then there exist closed sets Yp,Yq,... C
o0

{0,1}°° such that X = |J Y;. Each Y} is a closed subset of the compact
k=0
Hausdorff space {0,1}°°, so each Yj is compact. Since f is continuous, it

follows that each f(Y}) is compact, hence closed. Since f(X) = OLj f(Yk),
k=0
this implies that f(X)is X9. O

We have described three notions of smallness in this section. It should
be noted that no two of them coincide. Although some sets (e.g. finite
sets) are small in all three senses, it is possible for a set to be small in any
one of these senses without being small in the other two. For example, in
section 4 below, we define the set RAND, consisting of all algorithmically
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random sequences. Consider also the set REC of all recursive sequences. It
is well-known [39] that REC N RAND = (), that RAND is meager, and that
RAND has measure 1. (See also Theorems 4.7 and 6.2 below.) Also, since
REC is countable, REC is meager and has measure 0. The following three
things follow easily from these observations.

(a) RAND U REC is meager, but has measure 1 and measure 1 in REC.
(b) REC® has measure 0 in REC but is comeager and has measure 1.
(¢) RANDF® has measure 0, but is comeager and has measure 1 in REC.

As Oxtoby [43] has noted, “There is of course nothing paradoxical in the
fact that a set that is small in one sense may be large in some other sense.”

4 Algorithmic Information and Randomness

In this section we review some fundamentals of algorithmic information the-
ory that are used in this paper. We are especially concerned with self-
delimiting Kolmogorov complexity and algorithmic randomness. The inter-
ested reader is referred to [33, 35] for more details, discussion, and proofs.

Kolmogorov complexity, also called program-size complexity, was discov-
ered independently by Solomonoff [51], Kolmogorov [21], and Chaitin [9].
Self-delimiting Kolmogorov complexity is a technical improvement of the
original formulation that was developed independently, in slightly different
forms, by Levin [26, 27], Schnorr [47], and Chaitin [11]. The advantage of the
self-delimiting version is that it gives precise characterizations of algorithmic
probability and randomness.

Self-delimiting Kolmogorov complexity employs a slightly restricted
model of (deterministic) Turing machine computation. In this model, a
Turing machine M has a program tape, an output tape, and some number
k of worktapes. (For some purposes it is also advantageous to have a special
input tape, but we do not need one here.) Only 0’s, 1’s and blanks can ever
appear on a tape. The program tape and the output tape are infinite to the
right, while the worktapes are infinite in both directions. Fach tape has a
scanning head. The program and output tape heads cannot move left, but
the worktape heads can move left or right. The program tape is read-only,
the output tape is write-only, and the worktapes are read /write. The output
tape head can only write 0’s and 1’s; it cannot write blanks.
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A Turing machine M starts in the initial state with a program = € {0,1}*
on its program tape, the output tape blank, and the worktapes blank. The
leftmost cell of the program tape is blank, with the program tape head
initially scanning this cell. The program =« lies immediately to the right of
this cell. The rest of the program tape is blank. The output tape head
initially scans the leftmost cell of the output tape.

If, after finitely many steps, M halts with the program tape head scan-
ning the last bit of m, then the computation is deemed to be a success, we
write M ()], and the output of the computation is the string M (=) € {0,1}*
that has been written on the output tape. Otherwise, the computation is a
failure, we write M(7)], and there is no output (i.e., we disregard the con-
tents of the output tape). If M(7)|, then time, (1) denotes the number of
steps executed in this computation. If M (7)1, then we write time, (1) = oo.

It should be emphasized that a successful computation must end with
the program tape head scanning the last bit of the program. Since the
program tape head is read-only and cannot move left, this implies that, for
every Turing machine M, the set

PROGy = {7 € {0,1}* | M(7)|}

must be an instantaneous code, i.e., must be a set of nonempty strings, no
one of which is a prefix of another. (It is this feature of the model that the
adjective “self-delimiting” describes.) It follows by Kraft’s inequality (see
[13], for example) that, for all Turing machines M,

S <

r€PROG 3

It is well-known that there are Turing machines U that are universal, in
the sense that, for every Turing machine M, there exists a program prefix
Ty € {0,1}* such that, for all 7 € {0,1}*,

U(rym) = M(x).

(This condition means that M(x)]| if and only if U(7wy7) |, in which case
U(rym) = M(xr).) Furthermore, there are universal Turing machines U
that are efficient, in the sense that, for each Turing machine M there is a
constant ¢ € N (which depends on M) such that, for all 7 € {0,1}*,

timey(mym) < el + timey(7)logtimey (T)).
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Notational Convention. Throughout this paper, U is a fixed, efficient,
universal Turing machine.

The set of programs for a string @ € {0, 1}* relative to a Turing machine
M is
PROGw(2) = {m € {0,1}" | M(7) = =}.
Similarly, given a time bound ¢ : N — N, the set of t-fast programs for x
relative to M is

PROGY,(z) = {r € PROG (=) | timeprs(7) < t(]z])}.

(Note that the time bound here is computed in terms of the output length.)
We write PROG, PROG(z), and PROG!(z) for PROGy, PROGy(), and
PROG} (), respectively.

We define the probability of an instantaneous code I C {0,1}* to be

Pr(l) =Y 27l

wel

Intuitively, if we choose a sequence x € {0,1}° probabilistically, using an
independent toss of a fair coin to decide each bit of z, then Pr([) is the

probability that z € |J C,, i.e., the probability that some element of I is
wel
a prefix of z.

We now come to the central ideas of algorithmic information theory. (See
[33] for a history of the development of these definitions.)

Definition. Let z € {0,1}*, let { : N — N be a time bound, and let M be
a Turing machine.

1. The (self-delimiting) Kolmogorov complexity of x relative to M is
Kp(2) = min {|7r| ‘ T € PROGM(JU)}.

(Here we use the convention that min ) = oc.) The (self-delimiting)
Kolmogorov complexity of x is

K(z)= Ky(x)

The quantity K () is also called the algorithmic entropy, or algorithmic
information content, of x.
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2. The t-time-bounded (self-delimiting) Kolmogorov complezity of x rela-
tive to M is

Ki;(z) = min {|7r| ‘ T € PROGIM(JU)}.

The t-time-bounded ( self-delimiting) Kolmogorov complezity, or t-time-
bounded algorithmic entropy, of z is

3. The algorithmic probability of x relative to M is
m,(2z) = Pr(PROGy(2)).
The algorithmic probability of z is
m(z) = my (2).
4. The t-time-bounded algorithmic probability of x relative to M is
m},;(z) = Pr(PROG),(2)).
The t-time-bounded algorithmic probability of x is
m'(2) = m ().

In general, we omit the adjective “self-delimiting”, since this is the only
type of Kolmogorov complexity in this paper.

We now present some basic properties of Kolmogorov complexity and
algorithmic probability that are used in this paper. The first is obvious,
well-known, and useful.

Lemma 4.1. There is a constant ¢y € N such that, for all z € {0,1}* and
all € PROG(z),
K(z) < K(7) + co.

The next two important theorems express the fundamental relationship
between Kolmogorov complexity and algorithmic probability.

Theorem 4.2 (Levin [26, 27], Chaitin [11]). There is a constant ¢ € N such
that, for all € {0,1}*,

—logm(z) < K(z) < —logm(z) + €.
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A straightforward modification of the proof of Theorem 4.2 yields the
following time-bounded version. (This result also follows immediately from
Lemma 3 of [34].)

Theorem 4.3. Let £ : N — N be recursive.

1. For all z € {0,1}",
—logm'(z) < K'(z).

2. There exist a recursive function ¢; : N — N and a constant ¢; € N
such that, for all z € {0,1}*,

K"(z) < —logm'(z) + ¢;.

In addition to the above facts, we need the following lemma and corollary,
due to Bennett. For the lemma, say that a string # € {0, 1}* computes a

finite instantaneous code [ if U(7) = [@0,...,2,—1] is a binary string that
encodes an enumeration of the elements zg,...,z,_1 of I in some standard
fashion.

Lemma 4.4 (Bennett [5]). There is a constant ¢/ € N such that, for all
7w € {0,1}*, if 7 computes a finite instantaneous code I, then for all « € I,

K(z) < |z +1logPr(I)+ |7| + €.

(Note that —|z| <log Pr(I) < 0, so that the bound becomes tighter as Pr([)
becomes smaller.)

Proof. Let M be a Turing machine that performs as indicated in Figure 1
with program 77, where © computes a finite instantaneous code and 7 €
{0, 1}*. (If the program for M is not of this form, then the computation is
a failure.) Since U is a universal Turing machine, there is a program prefix
Ty € {0, 1}* such that, for all 7 € {0,1}*, U(my7) = M(7). Let

d = |ryl+ 1.

To see that ¢’ has the desired property, let © € {0,1}* compute a finite
instantaneous code I. If I = (), then the lemma is affirmed vacuously, so
assume that I # @. Let zq,...,2,_1 and ko,...,k,_1 be as in Figure 1.
Define real numbers rg < --- < r, by the recursion

—k
ro =0, riy1 =1+ 277,
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begin
simulate U(7) to obtain I (on a worktape) in the form
I= {$0, ey $n_1},

where zq,...,2,_1 are in standard order;
=

for 0 <i<ndo

begin

if i = 0 then w := 0% else w := neat(w,k;),
where k; = |2;| — |[—log Pr([)] and neat(w, k;) is the
immediate lexicographic successor of the string w1ki=lvl;
while 7' C w do
if 7/ = w then output z; and halt
else ©' := 7'b, where b is the
next bit on the program tape
end

end M(77).

Figure 1: The Turing Machine M used in the proof of Lemma 4.4.
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and note that

n—1
r, = Z o—ki _ ZQL—logPr(I)J—|x| < Pr(I)”! ZQ—lxl - 1.
i=0

el el
Define strings 7,...,7,—1 € {0,1}* by
7o = 0%, Tiy1 = next(T;, kiy1),

where the function next is defined as in Figure 1. A routine induction on ¢
shows that each 7; is the standard k;-bit binary representation of the natural
number 7;-2%. (The key point in the induction step is that, for 0 <7 < n—1,
we have r; + 27k = Tigl < Tphoy < 71 < 1,50 715 - ki ok _ . By the
induction hypothesis, this means that 7; does not consist entirely of 1’s, so
Tit1 = next(7;, k1) contains only k; 41 bits.) Moreover, it is easily checked
that, for all 0 < i < n, 7; is the value assigned to w by M during iteration
1 of the for-loop, and that

U(ryrn;) = M(77;) = 24,
whence

K(aci)

|70 T = by + 7w+ =1

|z;| + log Pr(I) + |x| + .

a

Corollary 4.5. For every recursive function ¢ : N — N there exists a
constant ¢* € N such that, for all y € {0,1}* and all 7 € PROG(y),

K (r) < |7 + log m'(y) + K(y) + <.

(Note that —|r| < logm®(y) < 0, so the bound becomes tighter as the
time-bounded algorithmic probability of y becomes smaller.)

Proof. Let t : N — N be recursive. Let M be a Turing machine that,
with program = € {0, 1}, does the following. First M simulates U(x). If
this computation does not succeed, then M(7)l. Otherwise, if U(7) = vy,
then M simulates U(x’) for t(]y|) steps for every string 7’ € {0, 1}y=tlvh),
and uses the result of this simulation to output an (encoded) enumeration
[0, ..., Tn_1] of the finite instantaneous code PROG'(y).
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Since U is a universal Turing machine, there is a program prefix 7, €
{0,1}* such that, for all 7 € {0,1}*, U(7y7) = M(7). Let

= |munl 4+,

where ¢’ is the constant given by Lemma 4.4. For y € {0,1}*, let 7, be a
shortest element of PROG(y). Then, for all y, the string 77, computes
the finite instantaneous code PROG(y). It follows by Lemma 4.4 that, for
all y € {0,1}* and 7 € PROG'(y),

K(r)

IN

|7| + log Pr(PROG!(y)) + |7 ym,| + ¢
7|+ log m'(y) + K(y) + ¢

a

In this paper we are especially interested in the Kolmogorov complexi-
ties of initial segments of infinite binary sequences. In this regard, given a
function ¢ : N — [0,00) and a recursive time bound ¢ : N — N, we define
the classes

Kiol[< g(n)]={2€{0,1}* | K(2[0..n—1]) < g(n) i.0.}
and
K{,[< g(n)] = {w € {0,137 | K'(2[0.n—1]) < g(n) i0.}.

Thus we are using g(n) as a “threshold value” for the Kolmogorov complexity
of the n-bit prefix of a sequence 2 € {0,1}°°. These classes contain those
sequences for which this Kolmogorov complexity is below the threshold value
for infinitely many prefixes.

The following theorem, which is used in proving our main result, says
that almost every recursive sequence has very high time-bounded
Kolmogorov complexity almost everywhere.

Theorem 4.6 (Lutz [37]). For every recursive bound ¢ : N — N and every
real number 0 < a < 1,

(KL, [< an] | REC) = 0.

(In fact, Corollary 4.9 of [37] is stronger than this in several respects.)
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We conclude this section with a brief discussion of the algorithmic ran-
domness of infinite binary sequences. Algorithmic randomness was origi-
nally defined by Martin-Lof [39], using constructive versions of ideas from
measure theory. Subsequently, Levin [26, 27], Schnorr [47], and Chaitin
[11] showed that algorithmic randomness could be characterized in terms
of self-delimiting Kolmogorov complexity. (Indeed, this was an important
motivation for developing the self-delimiting formulation.) For the purposes
of the present paper, it is convenient to use this characterization as the
definition.

Definition. A sequence z € {0, 1} is algorithmically random, and we write
x € RAND, if there is a constant k& € N such that K(z[0..n—1]) > n—Fk a.e.
That is,

RAND = | J Kio[< n - k]".
k=0

The following theorem summarizes some elementary properties of RAND
that are used in this paper.

Theorem 4.7 (Martin-Lof [39]). RAND is a X9, measure 1 subset of
{0, 1}°° that is closed under finite variations and does not contain the char-
acteristic sequence of any recursively enumerable set.

5 Strong Computational Depth

In this section, we investigate Bennett’s notion of strong computational
depth for infinite binary sequences. This notion can be defined in several
equivalent ways. We start with the definition most convenient for our pur-
poses. Subsequently, in Theorem 5.4 below, we prove the equivalence of this
definition with others that have appeared in the literature.

Definition. For ¢,g : N — N and n € N, we define the sets
D{(n) = {z € {0,1}* ‘ (Vr € PROGY(z[0..n — 1]))K (7) < |7| — g(n)}
and

o, = U N o

m=0n=m

{z € {0,1}* ‘ z € Dy(n)a.e.}.
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A sequence z € {0,1}* is strongly deep, and we write z € strDEEP, if for
every recursive time bound ¢ : N — N and every constant ¢ € N, it is the
case that z € DZ.

Intuitively, then, a sequence z € {0,1}° is in Dz(n) if every t-fast pro-
gram 7 for 2[0..n — 1] can be compressed by at least g(n) bits. Note that, if
t(n) < t(n) and g(n) < g(n), then Dtg(n) C D}(n). Thus, if ¢(n) < #(n)a.e.
and g(n) < g(n) a.e., then Dtg C D}. In particular, if g(n) = ¢ and g(n) = ¢
are constant, then we have the situation depicted in Figure 2.

~

Figure 2: The classes DY, Dg, in the case where ¢(n) < #(n) a.e. and ¢ < ¢.

We start by examining the relationship between randomness and strong
depth. We use the following technical lemma.

Lemma 5.1. If z € RAND, then there exist a sequence kg, k1, . . . of natural
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numbers and a sequence mg, 71, . . . of programs satisfying the following three
conditions for all ¢ € N.

(1) Forall n > k;, K(2[0..k; — 1]) — k; < K(2[0..n — 1]) — n.
(2) U(m;) = 2[0..k; — 1] and || = K (2[0..k; — 1]).
(3) kivi >k + timeU(m).

Proof. Let € RAND. Define f : N — Z by f(n) = K(z[0..n—1])—n. For
each i € N, fix the least argument n; > 7 such that f(n;) < f(n) foralln > .
(Since # € RAND, f is bounded below, so n; exists.) Define the sequences
ko, k1,...and mg, 7q,... recursively as follows. Let kg = ng and let 79 be a
minimal program for z[0..ko—1]. Given k; and 7, let kiy1 = ng, {iimey ()41
and let m;1; be a minimal program for 2[0..k;41 — 1]. It is easily verified

that the sequences ko, kq,... and g, 71, ... satisfy conditions (1), (2), and
(3). O

Bennett [5] has noted that no algorithmically random sequence is
strongly deep. We now prove this fact. Moreover, we show that it holds
in a very strong way. Intuitively, we show that every algorithmically ran-
dom sequence lies “very near the top” of the diagram in Figure 2.

Theorem 5.2 (Bennett [5]). RAND N strDEEP = (. In fact, there exist
a recursive function ¢(n) = O(nlogn) and a constant ¢ € N such that

RAND n Dt = 0.

Proof. Let M be a Turing machine that, with program 7y, does the follow-
ing. The machine M simulates U(7), recording timey(m) while doing so.
If the simulated computation succeeds, M then reads and outputs the first
timeg () bits of y (appended to the string U(7) already produced as out-
put) and halts. Note that if |y| = timep/(7), then the computation of M(7y)
succeeds, with M(7y) = U(x)y. Otherwise, the computation of M(7y) is a
failure.

On successful computations, the Turing machine M takes O(|y|) steps
to produce U(m)y. Thus there exist a program prefix 7, and a recursive,
nondecreasing time bound ¢(n) = O(nlogn) such that, for all successful
computations U(7) and all strings y with |y| = temey(7), the following two
conditions hold.

(i) U(rymy) = U(n)y.
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(i) timeu(rumy) < t(|yl).

Let ¢ = |my| 4 co, where ¢q is the constant from Lemma 4.1. We prove that
RAND N D% = §.

Let x € RAND. Fix sequences kg, k1, ...and g, 71,...as in Lemma 5.1.
For each ¢ € N, let n; = k; + timep(w;). Note that the sequence ng,nq,. ..
is strictly increasing. We prove that x € D’ by showing that, for all i € N,

Conditions (i) and (ii) above imply that the following conditions hold
for all + € N.
(iii) U(mymalk;..n; — 1)) = 2[0..n; — 1].
(iv) timep(mymalk,.ng — 1)) < tn; — ki) < t(ny).
Then, for all : € N
Tumix[k;.n; — 1] € PROG!(2[0..n; — 1])
and Lemma 5.1 tells us that

I((w[o..ki — 1]) < K(ac[O..m — 1]) —n; + k;
K(z[0..n; — 1]) — timey (),

whence
K(mymizlki.n; —1]) > K(z[0..n; — 1]) — ¢
> K(z[0..k; — 1]) + timep(7;) — o
= |m|+ni—ki—co
|mix[ki.n; — 1]] — ¢o
= |rymizlki.n; — 1] —c.
Thus = € Di(n;) for all i € N, so z ¢ D'. O

We next show that strong computational depth can be characterized in
several equivalent ways. For this, we need some notation and a lemma. We
first recall Bennett’s definition of the computational depth of finite strings.

Definition [5]. Let w € {0,1}* and ¢ € N. Then the computational depth
of w at significance level ¢ is

depth.(w) = min{t € N | (37 € PROG (w)) |7| < K(7) + c}.
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That is, the depth of a finite string at significance level ¢ is the minimum
time required to compute w from a program that is not compressible by ¢
or more bits.

Our alternate characterizations of strong depth also use the following
classes.

Definition. For ¢,g : N — N and n € N, we define the sets

Di(n) = {z€{0,1}*] K(2[0..n—1]) < K'(2[0..n — 1]) — g(n)},
Di(n) = {z€{0,1}*| m(z[0..n - 1]) > 220" m‘(2[0..n — 1])},

D} U N Dy(n),

m=0n=m

fj ﬁ D! (n).

m=0n=m

Nt
Dg

The following lemma shows that the classes ]A)z and ]52 are, in a quanti-
tative sense, “minor variants” of the classes DZ. This result was proven in
a slightly different form in [5].

Lemma 5.3 (Bennett [5]). If ¢ : N — N is recursive, then there exist
constants ¢g, ¢1,co € N and a recursive function #; : N — N such that the
following six conditions hold for all g : N — N and all » € N.

1. 13;,+c0(n) C Di(n) 4. P;HCO C D}
- Dyt (n) € Dy(n) 5.D% ., C D!
3. Dy, (n) € Di(n) 6. D ., CD!

Proof. It suffices to prove 1, 2, and 3, since 4, 5, and 6 then follow imme-
diately.

1. Let ¢o be as in Lemma 4.1 and assume that z € D},  (n). Let «
be a shortest element of PROG(2[0..n — 1]). Since & € D!, (n), we have
K(m) <|r| = g(n)— ¢co. It follows that

K(z[0..n —1]) K(m)+ co

7| = g(n)
K'(2[0.n - 1]) — g(n),

[VANPAN
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whence z € ﬁz(n)

2. Choose ¢; and t; for ¢ as in Theorem 4.3 and assume that = €
Dzﬂ_q(n). Then K(z[0..n—1]) < K" (2[0..n— 1]) — g(n) — ¢1. It follows by
Theorems 4.2 and 4.3 that

m(w[()n — 1]) Q—K(x[o..n—1])

>
> 2g(n)—|—c1—fx"t1 (z[0..n—1])
> 2900 m(2[0..n — 1]),

whence z € ﬁé(n)
3. Let ¢ be as in Theorem 4.2, choose ¢* for t as in Corollary 4.5, let

¢y = ¢+ ¢*, and assume that z € ]52+c2(n). Then

K(z[0..n —1]) —logm(z[0.n — 1]) + €
H2[0.n—1])—g(n)—ca+ ¢

<
< (
= —logm/(z[0..n — 1]) — g(n) — c*.

—logm

Thus, for all 7 € PROG'(2[0..n — 1]),

K(m) 7| + K(2[0..n — 1]) + log m(2[0..n — 1]) + ¢*

<
< 7l = g(n),

whence z € D (n). O

We now prove the equivalence of several characterizations of strong com-
putational depth.

Theorem 5.4 (Bennett [5]). For « € {0,1}°, the following four conditions
are equivalent.

(1) z is strongly deep.

(2) For every recursive time bound ¢ : N — N and every constant ¢ € N,
depth, (2[0..n — 1]) > t(n) a.e.

3) For every recursive time bound ¢ : N — N and every constant ¢ € N
?
v € DL

(4) For every recursive time bound ¢ : N — N and every constant ¢ € N,
x € DL
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Proof. The equivalence of (1) and (2) follows immediately from the defini-
tions. The equivalence of (1), (3), and (4) follows immediately from Lemma
5.3. O

In [5], Bennett uses condition (2) of Theorem 5.4 above as the definition
of strong computational depth. As noted above, this is trivially equivalent
to condition (1), i.e., to our definition in terms of the classes D’. Bennett
[5] also considers definitions in terms similar to those used in defining the
classes ]32 and ]52 and implicitly proves the equivalence of conditions (1),
(3), and (4). The discussions of depth by Li and Vitanyi in the Handbook of
Theoretical Computer Science [33] and their recent book [35] essentially use
condition (4) as the definition. In any case, a sequence z is strongly deep if,
for every recursive t and constant ¢, almost every prefix z[0..n — 1] is “more
than ¢t deep at significance level ¢,” in the sense that more than #(n) time is
required to derive z[0..n — 1] from any description whose length is within ¢
bits of the minimum possible length.

We next prove a technical lemma on the quantitative relationship be-
tween computational depth and time-bounded Turing reducibility. This can
be regarded as a quantitative, infinitary version of Bennett’s deterministic
slow-growth law [5]. We need two special notations for this lemma. First,
for any function s : N — N, we define the function s* : N — N by

8*(71) _ 25(|—logn-|)—|—1 ]

Second, for any unbounded, nondecreasing function f: N — N, we define
the special-purpose “inverse” function f~! : N — N by

fHn) = max{m | f(m) < n}.

Also, for this lemma, say that a function s : N — N is time-constructible if
there exist a constant ¢, € N and a Turing machine that, given the stan-
dard binary representation w of a natural number n, computes the standard
binary representation of s(n) in at most ¢,-s(|w|) steps. Using standard tech-
niques [2, 19], it is easy to show that, for every recursive function 7 : N — N,
there is a strictly increasing, time-constructible function s : N — N such
that, for all n» € N, r(n) < s(n).

Lemma 5.5. Let s : N — NN be strictly increasing and time-constructible,

with the constant ¢, € N as witness. For each s-time-bounded oracle Turing
machine M, there is a constant ¢;; € N with the following property. Given
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nondecreasing functions ¢, ¢ : N — N, define the functions 7,7,§ : N — N

-
~~
3
S~—
ll

H(s"(n+1))+4s"(n+ 1) +2(n+ egs(l) + 2ns™(n + 1)s(1),
cu(l+7(n)[log7(n)]),
9(s"(n+ 1)) + ear,

where [ is the number of bits in the binary representation of n. For all

z,y €4{0,1}>,if y §?TIME(S) x via M and y € Dtg, then z € DZ.

Proof. Let s and M be as in the statement of the lemma. Let M’ be
a Turing machine that, with program = € {0, 1}*, operates as in Figure 3.
Since U is an efficient universal Turing machine, there exist a program prefix
Ty € {0,1}* and a constant ¢, € N such that, for all 7 € {0,1}*,

U(rypm) = M'(7)
and
timep (mym) < (1 + timepp () logtimeny (m)).
Let M" be a Turing machine that, with program 7* € {0,1}*, simulates
U(n*) and outputs 7 if and only if U(7*) = 7,pm. Since U is universal,
there is a program prefix 7,» € {0,1}* such that, for all 7* € {0,1}*,
U(myp*) = M"(7*). Let

ey = max{eyr, |Tap| + | Tarml} -

Fix mg € N such that (s*)71(m) > 0 for all m > mq.
Now define 7, t, and ¢ as in the statement of the lemma and assume that

z,y € {0,1}* satisfy y §?TIME(S) x via M and y € Dg Fix ng € N such

that y € Dg(n) for all n > ng and let
my = max {mg, s*(ng) +1}.
The following two claims are verified at the end of this proof.

Claim 1. For all m > mg and 7 € {0,1}*, if 7 € PROG*(2[0..m — 1]),

o~

then 7, 7 € PROG!(y[0..n — 1]), where n = (s*)~'(m).
Claim 2. For all m > m; and all 7 € PROG'(2[0..m — 1]),

K(m) < x| = §(n) + cur
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begin
w:= U(m);
ni= () (Jul);
for 0 <¢ < n do
append the bit M“9” () to the output;

Figure 3: The Turing machine M’ used in the proof of Lemma 5.5.

where n = (s*)7(m).

To finish proving the lemma, let m > m; and let 7 € PROG(2[0..m—1]).
Then, by Claim 2 and the monotonicity of g,

K(r) < |xl=g((s")""(m))+ cu
= x| —g(s"((s") " (m) + 1))
< w| = g(m).

Thus € D}(m). Since this holds for all m > my, it follows that z € D},
affirming the lemma. All that remains, then, is to prove the two claims.

To prove Claim 1, assume that m > mg and 7 € PROG!(2[0..m—1]). Let
u = z[0..m—1]and n = (s*)71(m). Since m > mg, we must have s*(n) < m.
Since M is s-time-bounded, this implies that M0 (i) = M*(i) = y[i] for
all 0 <7 < n. (All queries in these computations must be made to bits z[j]
for j < |u|.) Thus

U(rym) = M'(7) = y[0.n —1].

With program m, M’ requires at most {(m) steps to compute u, at most
4m additional steps to compute |u| in binary, at most 2(n + 1)css(l) steps
to compute n, and at most 2nms(l) steps to execute the for-loop. Since
s*(n+1) > m, and t is nondecreasing, it follows that timeyp (1) < 7(n), so

timey (7o) < 1(n).

o~

Thus 7,7 € PROG'(y[0..n — 1]). This proves Claim 1.
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Finally, to prove Claim 2, let m > my, let 7 € PROG(2[0..m — 1)),
and let n = (s*)7'(m). Since m > s*(ng), it must be the case that n =
(s*)71(m) > ng, whence y € Dtg(n). Since m > mg, Claim 1 tells us that

T E PROGA(y[O..n — 1]). Since y € Dg, it follows that
K(mypm) < |mypm| = g(n) = |7| = g(n) + [7ar].
Now let 7* be a shortest element of PROG(7,p 7). Then U(7*) = 7, so

U(rpyne™) = M"(x7) = =,

S0
I((ﬂ') S |7TM//7T*|
= I((ﬂ'M/ﬂ') + |7TM//|
< rl=g(n) + cu-

This proves Claim 2 and completes the proof of Lemma 5.5
O

Using Lemma 5.5, we prove that a strongly deep sequence cannot be
truth-table reducible (equivalently, reducible in recursively bounded time)
to a sequence that is not also strongly deep. This implies the fact, noted by
Bennett [5], that strong depth is invariant under truth-table equivalence.

Theorem 5.6. Let z,y € {0,1}*°. If y < « and y is strongly deep, then z
is strongly deep.

Proof. Assume the hypothesis. To see that z is strongly deep, fix a recursive
function ¢ : N — N and a constant ¢ € N. It suffices to prove that = € DL.

Since y <t x, there exist a strictly increasing time-constructible function
s : N — N and an s-time-bounded oracle Turing machine M such that
Y §?TIME(S) x via M. Choose a constant ¢, for M as in Lemma 5.5 and
define ¢ : N — N by ¢g(n) = ¢ for all n € N. Then, in the notation of
Lemma 5.5, ¢ is recursive and g is constant. Since y is strongly deep, it

follows that y € Dtg. It follows by Lemma 5.5 that x € D. O

We now note that no recursive sequence is strongly deep.

Corollary 5.7 (Bennett [5]). REC NstrDEEP = (.
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Proof. Let 2 € REC; it suffices to show that 2 ¢ sttDEEP. Fix z € RAND.
Then, trivially, & <¢ z. By Theorem 5.2, z € strDEEP, so by Theorem 5.6,
x ¢ sttDEEP. O

Up to this point, this section has largely followed the line of Bennett’s
work. We now build on this work to prove some new results. Qur first such
result says, roughly, that every recursive sequence is either somewhat deep
or somewhat compressible. It is convenient to use the classes ]32 for this
result.

Theorem 5.8. If t : N — N is recursive and 0 < @ < § < 1, then

REC C D!, UK!, [< Bn].
Proof. Assume the hypothesis and let
z € REC — K{ | [< Bn].

It suffices to prove that z € ﬁgn
Since z ¢ K!_ [< fn], we have

K'(2[0.n—1]) > Bn a.e.

Since x is recursive, it follows that there is a constant ¢ € N such that, for
all sufficiently large n,

K(z[0..n —1]) 2logn+ ¢
On — an

K'(2[0..n - 1]) — an,

IN AN A

Dt
whence 2 € D,,,. O

Corollary 5.9. For every recursive function t : N — N and every 0 < v < 1,
the set D!, has measure 1 in REC.

Proof. Let { : N — N be recursive and let 0 < v < a < § < 1. Choose a
recursive function ¢; : N — N and constants ¢1,co € N for ¢ as in Lemma
5.3, so that

Dl

yn+tca+c1 (n) g Dt (n) g nyn(n)

yn+tco

for all n € N. For all sufficiently large n,

Dizln(n) g Di/ln-l—CQ‘I—Cl (n)7
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so it follows that ﬁgln - th.

By Theorem 4.6, Kio.[< Bn] has measure 0 in REC. By Theorem 5.8,
this implies that D, has measure 1 in REC. Since DY, C D! . it follows
that th has measure 1 in REC. O

Corollary 5.10. For every recursive function ¢ : N — N and every constant
¢ € N, D! has measure 1 in REC.

It is instructive to compare RAND with REC in light of Theorem 5.2,
Corollary 5.7, and Corollary 5.10. Neither RAND nor REC contains a
strongly deep sequence. However, referring to Figure 2, Corollary 5.10 says
that REC “reaches arbitrarily close to” strDEEP, in the sense that each
class DY (for ¢ recursive and ¢ constant) contains almost every sequence in
REC. In contrast, if ¢ and ¢ are fixed as in Theorem 5.2, then every element
of RAND lies above (i.e. outside of ) D? in Figure 2. In this sense, intuitively,
REC is much deeper than RAND.

We have now developed enough machinery to examine the computational
depth of computationally useful sequences. We use the following definition.

Definition. A sequence x € {0, 1}* is weakly useful if there is a recursive
time bound s : N — N such that DTIME?"(s) does not have measure 0 in
REC.

That is, z is weakly useful if it can be used to “efficiently” (i.e., in some
recursive time s) solve all the problems in a non-negligible subset of REC.

If « € REC, then for every recursive time bound s, there is a recur-
sive time bound ¢ such that DTIME®(s) C DTIME(t). Since every such
set DTIME(t) has measure 0 in REC by Theorem 4.6, this shows that no
recursive sequence is weakly useful.

The following result, which is the main theorem of this paper, shows
that much more is true.

Theorem 5.11. Every weakly useful sequence is strongly deep.

Proof. Let 2 € {0,1}* be weakly useful. To see that z is strongly deep,
let ¢ : N — N be a recursive time bound, and let ¢ € N. It suffices to prove
that » € DZ.

Since z is weakly useful, there is a recursive time bound s : N — N such
that DTIME?(s) does not have measure 0 in REC. Since every recursive
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function is bounded above by a strictly increasing, time-constructible func-
tion, we can assume without loss of generality that s is strictly increasing
and time-constructible.

Let t(n) = n- (1 + 7(n)[log 7(n)]), where 7 is defined from ¢ and s as

in Lemma 5.5, and let v = % Since t is recursive, Corollary 5.9 tells us
that D! has measure 1 in REC. Since DTIME?(s) does not have measure
0 in REC, it follows that th N DTIME®(s) # 0. Fix a sequence y €

Dgn N DTIME®(s). Then there is an s-time-bounded oracle Turing machine

M such that y §?TIME(S) xz. Fix a constant ¢, for M as in Lemma 5.5.

Define g(n) = ¢ for all n € N and define the functions 7,1, and ¢ from ¢ and
¢ as in Lemma 5.5. Since g and ¢,, are constant, we have t(n) > t(n) a.e.

and yn > g(n) a.e.,soy € D!, C Dg It follows by Lemma 5.5 that € DL
O

Notation. Let yy and yx be the characteristic sequences of the halting
problem and the diagonal halting problem, respectively. That is, the se-
quences X, Xx € {0,1}°° are defined by
xul(i,n)]=1 <& M;(n)halts,
xx[n]=1 & M,(n)halts,

where My, My, ...is a standard enumeration of all deterministic Turing ma-
chines and (,) is a standard pairing function, e.g., (i,n) = (‘*2*") + n.

Corollary 5.12 (Bennett [5]). The sequences xy and yy are strongly deep.

Proof. It is well-known that H and K are polynomial-time complete for
the set of all recursively enumerable subsets of N, so vz and y, are weakly
useful. Thus yy and Yy are strongly deep by Theorem 5.11. O

Note that Theorems 5.2 and 5.11 also provide a new proof of the fact,
noted in the introduction, that no algorithmically random sequence is weakly
useful.

To see that Theorem 5.11 is actually stronger than Corollary 5.12, we
use two known facts concerning high Turing degrees. We first review the
relevant definitions. (More detailed discussion can be found in a standard
recursion theory text, e.g. [50].)

Recall from section 2 that the characteristic sequence of a set A C N is
the sequence x4 € {0,1}°° such that A = {n € N | y4[n] = 1}. A sequence
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x € {0,1}* is recursively enumerable (r.e.) if @ = x4 for some r.e. set
A C N. The diagonal halting problem relative to a sequence x € {0,1}* is
the set

K” = {n € N | M(n) halts},

where M, is the n*P oracle Turing machine in a standard enumeration. The
Jump of a sequence z € {0,1}* is the sequence

jump(a) = s

A sequence z € {0,1}* is high if © <1 xx and jump(z) =1 jump(xx). A
Turing degree is high if it contains a high sequence. It is clear that y, and
its Turing degree are high.

A set X C {0,1}* is uniformly recursive in a sequence z € {0,1}* if
there is a sequence y € {0,1}°° with the following two properties.

(i) y <7 =.

(i) X C {yx | £ € N}, where each y; € {0,1}* is defined by yx[n] =
y[(k,n)] for all n € N. (Here we are using the standard pairing func-
tion (k,n) = (**7%1) 4+ n.)

We use the following two known facts.

Theorem 5.13 (Sacks [46]). There exist r.e. sequences that are high and
not Turing equivalent to yy.

Theorem 5.14 (Martin [38]). A sequence y € {0, 1}* satisfies jump(xx) <T
Jjump(y) if and only if there exists =7 y such that REC is uniformly re-
cursive in z.

Corollary 5.15. Every high Turing degree contains a strongly deep se-
quence.

Proof. The key observation, pointed out to the third author by Stuart
Kurtz, is that every high Turing degree contains a weakly useful sequence.
To see this, let a be a high Turing degree. By Theorem 5.14, there is a
sequence z € a such that REC is uniformly recursive in 2. Then there is a
sequence y <t z such that REC C {y; | £ € N}. Define z € {0,1}* by

B x[% if k is even
AUk = { 554 ik is odd
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Then z =1 z, so z € a. Also, there is a constant ¢ € N such that
REC C {y; | k € N} C DTIME?(¢en? + ¢),

so z is weakly useful. This confirms that every high Turing degree contains a
weakly useful sequence. By Theorem 5.11, the corollary follows immediately.
O

Taken together, Theorem 5.13 and Corollary 5.15 show that Theorem
5.11 does indeed strengthen Bennett’s result, Corollary 5.12.

We conclude this section by proving that strongly deep sequences are
extremely rare, both in the sense of Lebesgue measure and in the sense of
Baire category.

Theorem 5.16. The set strDEEP is meager and has measure 0. In fact, if

t and c are as in Theorem 5.2, then D’ is meager and has measure 0.

Proof. Let ¢ and ¢ be as in Theorem 5.2. Then RAND N D! = §. Since
RAND has measure 1, it follows that D! has measure 0.

For each n € N, the complement of D%(n) can be written as a (finite)
union of cylinders C,,, with each |w| = n. (This is because membership or
nonmembership of a sequence z in D!(n) depends only upon z[0..n — 1].)
Thus, for each n € N, the set Di(n) is closed. It follows that, for each
m € N, the set ﬁ Di(n) is closed, whence the set D! = ﬁ ﬁ Di(n)

m=0n=m
is 9. By Theorems 4.7 and 5.2, RAND is nonempty, closed under finite
variations, and disjoint from D?. It follows by Fact 3.3 that D! is meager.
O

If we combine the proofs of Fact 3.3 and Theorem 5.16 to form a direct
proof of Theorem 5.16, then Player II's strategy in this proof is to play an
appropriate number of “random bits” (bits from a sequence z € RAND)
during each turn. Intuitively, it is only the “shallowness” of these random
bits that is relevant to the argument. For example, let FIN be the set of all
characteristic sequences of finite subsets of N, i.e.,

FIN = {2z € {0,1}*° | z[n] = 0a.e.}

If t and ¢ are as in Theorem 5.2, then it is not difficult to show that FIN N
D! = (. It follows that Player IT could use the sequence 0°° in place of z in
the above strategy. That is, Player II could win by playing an appropriate
number of 0’s, instead of random bits, during each turn.
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6 Weak Computational Depth

In Theorem 5.16, we saw that strongly deep sequences are very rare, both
in the sense of Lebesgue measure and in the sense of Baire category. In
this brief section, we show that the situation is different for weakly deep
sequences. We first recall the definition.

Definition (Bennett [5]). A sequence z € {0,1}* is weakly deep, and we
write * € wkDEEP, if there is no sequence z € RAND such that 2 < z.

We use the notation
REC(RAND) ={2 € {0,1}* | (3z € RAND)z <y z}.

We thus have
wkDEEP = REC(RAND)°.

Since REC U RAND C REC(RAND), it follows immediately that
wkDEEP N REC = wkDEEP N RAND = 0§,

i.e., that no weakly deep sequence can be recursive or algorithmically ran-
dom.

As the terminology suggests, every strongly deep sequence is weakly
deep.

Theorem 6.1 (Bennett [5]). sttDEEP C wkDEEP.

Proof. Assume that z € strDEEP and x <{; y. To see that € wkDEEP,
it suffices to show that ¥y ¢ RAND. But this follows immediately from
Theorems 5.2 and 5.6. O

In particular, Theorems 5.11 and 6.1 imply that weakly deep sequences
exist. It should be noted that Gdcs [16] has proven that, for every sequence
x € {0,1}°°, there exists a sequence z € RAND such that @ <t z. Thus
<7-reducibility cannot be used in place of <i-reducibility in the definition
of wkDEEP.

We have already noted that wkDEEP N RAND = . Since RAND has
Lebesgue measure 1, it follows that wkDEFEP, like strDEEP, has Lebesgue
measure 0. The situation for Baire category is quite different. While
strDEEP is meager by Theorem 5.16, wkDEEP is comeager by the following
result.
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Theorem 6.2. The set wkDEEP is comeager.

Proof. Each <i;-reduction can be interpreted as a continuous function f :
{0,1}* — {0,1}*°. (The condition y = f(2) means that y <y z via the
<g-reduction f.) If we let F be the set of all <ii-reductions, then F is
countable and
RECy(RAND) = [ J f(RAND).
Jer

We noted in section 4 that RAND is 9. It follows by Fact 3.4 that
f(RAND) is XY for every f € F. Since f is countable, this implies that
REC,(RAND) is 2.

It is clear that REC(RAND) is closed under finite variations. Also,
by Corollary 5.12 and Theorem 6.1, RECtt(RAND);Cé {0,1}°°. Thus, by
Fact 3.3, REC(RAND) is meager, whence wkDEEP = REC(RAND)® is

comeager. O

Bennett [5] noted that there exist sequences that are weakly deep, but
not strongly deep. The following corollary shows that such sequences are,
in the sense of Baire category, commonplace.

Corollary 6.3. The set wkDEEP — strDEEP is comeager.

Proof. This follows immediately from Theorems 5.16 and 6.2. O

Thus, in the sense of Baire category, almost every sequence z € {0,1}>
is weakly deep, but not strongly deep.

Corollary 6.4 (Bennett [5]). sttDEEP ;C& wkDEEP.
Proof. This follows immediately from Theorem 6.1 and Corollary 6.2. O

Figure 4 summarizes the relationships among REC, RAND, wkDEEP,
and strDEEP. In the sense of Lebesgue measure, almost every binary se-
quence is in RAND. On the other hand, in the sense of Baire category,
almost every binary sequence is in wkDEEP — strDEEP.
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Figure 4: A classification of binary sequences. RAND has measure 1, while
wkDEEP — strDEEP is comeager.

39




7 Conclusion

We have shown that every weakly useful sequence is strongly deep. This
result generalizes Bennett’s observation that yx is strongly deep, and gives
support to Bennett’s thesis that the computational usefulness of yx is re-
lated to its computational depth. We mention two open questions that are
suggested by this result.

Recall that a sequence z € {0, 1} is weakly useful if there is a recursive
time bound s : N — N such that DTIME"(s) does not have measure 0
in REC. Define a sequence z € {0,1}* to be strongly useful if there is a
recursive time bound s : N — N such that REC C DTIME?®(s). Clearly,
every strongly useful sequence is weakly useful.

Question 7.1. Do there exist sequences that are weakly useful, but not
strongly useful? (We conjecture in the affirmative.)

Our main result implies that every high Turing degree contains a strongly
deep sequence. A well-known generalization of high sequences and degrees
defines a sequence = € {0,1}*° to be high, (n € N) if 2 <1 xx and
Jump™(z) =1 jump™(xx), where jump(™ is the n-fold iteration of the
jump operation. A Turing degree a is then high, if it contains a high,
sequence. (See [50], for example.) If a sequence or degree is high, , then it
is clearly high, ,,. The Turing degree of x is clearly the only high, degree.
It is also clear that a sequence or degree is highy if and only if it is high.
Thus, by Corollary 5.15, every high; Turing degree contains a strongly deep
sequence.

Question 7.2. For n > 1, is it necessarily the case that every high, Turing
degree contains a strongly deep sequence?

Answers to Question 7.1 and 7.2 may well improve our understanding
of computational depth wvis-d-vis computational usefulness. More generally,
further investigation of Bennett’s fundamental notions may yield profound
insights into the role of depth in the organization of computational, physical,
and biological information.
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