An Observation on Probability versus
Randomness
with Applications to Complexity Classes

Ronald V. Book * Jack H. Lutz |
Department of Mathematics Department of Computer Science
University of California lowa State University
Santa Barbara, CA 93106, USA Ames, Towa 50011, USA

Klaus W. Wagner

Institut fiir Informatik
Universitdt Wiirzburg

W-8700 Wiirzburg, Germany

Abstract

Every class C of languages satisfying a simple topological condition is
shown to have probability one if and only if it contains some language that
is algorithmically random in the sense of Martin-L&f. This result is used to
derive separation properties of algorithmically random oracles and to give
characterizations of the complexity classes P, BPP, AM, and PH in terms
of reducibility to such oracles. These characterizations lead to results like:

P = NP if and only if there exists an algorithmically random set that is
§£ﬁ—hard for NP.
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1 Introduction

Many results in complexity theory involve conditions that are satisfied by “almost
every” oracle. Two of the best-known examples are the following:

(i) For almost every oracle A, P(A) # NP(A) # co—-NP(A) [BGS81].

(ii) For every recursive language B, B € BPP if and only if for almost every
oracle A, B € P(A) [BG81, Amb86].

In such results, the assertion that “almost every oracle A has property 7 means
that 0(A) is true with probability one when the oracle A C {0,1}* is selected
probabilistically by using an independent toss of a fair coin to decide membership
of each string in A.

The class RAND of algorithmically random languages, defined by Martin-Lof
[Mar66] (and in Section 3 below) contains almost every oracle. Thus, for every
property # that is satisfied by almost every oracle, there exists an oracle A € RAND
satisfying 6(A).

In this paper we prove that the converse holds for a wide variety of properties
6. Specifically, in Section 3 below, we prove the following. Assume that the class
of all oracles A satisfying #(A) is a union of recursively closed sets (in the Cantor
topology on the set of all languages) and is closed under finite variation. Then 0(A)
holds for some A € RAND if and only if §( A) holds for almost every oracle A.

To date, most complexity theory results concerning almost every oracle are either
oracle separation results, like (i) above, or characterizations of complexity classes,
like (ii) above. In Section 4 we illustrate the Main Theorem in both of these contexts.
We show how, in many cases, separations for relativized complexity classes for almost
every oracle immediately imply separations for every algorithmically random oracle.
In addition, we show how characterizations of reducibility to some algorithmically
random oracle yield characterizations of complexity classes in terms of reducibility
to almost every oracle.

Applying these results to the facts (i) and (ii) above, we obtain, for example,

(i’) For every A € RAND, P(A) # NP(A) # co—NP(A).
(ii’) For every recursive language B, B € BPP if and only if B € P(RAND).



2 Preliminaries

For the most part our notation is standard, following that used by Balcazar, Diaz,
and Gabarré [BDG88, BDGI0]. We assume that the reader is familiar with the
standard recursive reducibilities and the variants obtained by imposing resource
bounds such as time or space on the algorithms that compute these reducibilities.

A word (string) is an element of {0,1}*. The length of a word w € {0,1}* is
denoted |w].

The power set of a set A is denoted by P(A).

Let ¢4 be the characteristic function of A. The characteristic sequence of a
language A is the infinite sequence ca(wo)ca(x1)ca(xz) ... where {xg, 21, 29,...} =
{0,1}* in a lexicographical order. We freely identify a language with its characteristic
sequence and the class of all languages on the fixed finite alphabet {0,1} with the
set {0, 1}* of all such infinite sequences; the usage is based on context so that there
should be no ambiguity on the part of the reader.

If X is a set of strings (i. e., a language) and C is a set of sequences (i. e., a class

of languages), then X- C denotes the set {w¢ |we X, £ € C }.

For each string w, C,, = {w} - {0,1}* is the basic open set defined by w. An
open set is a (finite or infinite) union of basic open sets, i.e. a set X -{0,1}* where
X C{0,1}*. (This definition gives the usual product topology, also known as the
Cantor topology, on {0,1}“.) A closed set is the complement of an open set. A class
of languages is recursively open if it is of the form X - {0,1}* for some recursively
enumerable set X C {0,1}*. A class of languages is recursively closed if it is the
complement of some recursively open set.

We assume an effective enumeration of the recursively enumerable languages as

Wi, W, ... .

For a class C of languages we write Prob[C] for the probability that A € C when
A is chosen by a random experiment in which an independent toss of a fair coin is
used to decide whether a string is in A. This probability is defined whenever C is
measurable in the usual product topology of {0,1}*. In particular, if C is a countable
union or intersection of (recursively) open or closed sets, then C is measurable, so
Prob[C] is defined. Note that there are only countably many recursively open sets,
so every intersection of recursively open sets is a countable intersection of such
sets, and hence is measurable; similarly every union of recursively closed sets is
measurable.

A class C is closed under finite variation if A € C holds whenever B € C and A
and B have finite symmetric difference. The Kolmogorov 0-1 Law says that every



measurable set C C {0,1}* that is closed under finite variation has either measure
0 or measure 1.

3 Main Result

The definition of a random language is due to Martin-Lof [Mar66]. A class C is called
a constructive null set if there is a total recursive function ¢ with the properties that
for every k,

(i) CC Wy 10,1}, a
(ii) Prob[Wyu - {0,1}¢] < 27k

Hence every constructive null set has measure 0. Let NULL be the union of all
constructive null sets, and let RAND =, {0,1}¥ — NULL be the class of algorith-
mically random languages. Since NULL is a countable union of measure 0 sets we

have Prob[NULL] = 0, and, consequently, Prob[RAND] = 1.

The following lemma is needed for our main result.

Lemma 1 If F is a recursively closed set of languages with Prob[F| =0, then F is
a constructive null set.

Proof Let F be recursively closed with Prob[F] = 0. By definition there exists a
total recursive function ¢ such that {0,1}¥ —F = {¢(0),¢(1),¢(2),...}-{0,1}*. For
J >0, let B; =4 {9(0),¢(1),...,9(y)}. Since B; C B4 for j > 0, the sequence
Prob[B; - {0,1}*] is monotonic increasing and approaches Prob[{0,1}* —F] = 1
with growing j. Hence the function f is total recursive when it is defined by f(k) =4
the least j such that Prob[B; - {0,1}*] > 1—27". For each k, let my be the length of
the longest string in Bj(y), and let C, be the set of all strings of length m;, which have
prefixes in By). Hence Cp-{0,1}* = By -{0,1}* and Prob[C}, - {0,1}%] > 1— 2"“
Obviously, there exists a total recursive functlon h such that Wi,y = {0, 1} —
Hence Prob[Wy - {0,1}¥] < 27%. Since {0,1}* — F 2 By - {0,1}* we have
F C Wy - {0, 1} for each k. Hence F is a constructive null set O

Now we come to the main result.

Theorem 2 Let C be a union of recursively closed sets that is closed under finite
variation. Then

Prob[C] =1 < CNRAND # 0.



Proof Since Prob[RAND] = 1 it is immediate that Prob[C] = 1 implies C N
RAND # ). To see the converse, assume that Prob[C] < 1. As a union of
recursively closed sets, C is measurable. Since C is closed under finite variations,
the Kolmogorov 0-1 Law yields Prob[C] = 0. By Lemma 1, each of the recursively
closed sets whose union is C is a constructive null set. Hence C C NULL, and

consequently C N RAND = (). O

The following dual of Theorem 2 is also useful.

Corollary 3 Let C be an intersection of recursively open sets that is closed under
finite variation. Then

Prob[C] =1 < RAND C C.

Proof Since Prob[RAND] = 1 it is clear that RAND C C implies Prob[C] = 1.
To see the converse, assume RAND ¢ C. Hence {0,1}* — C N RAND # §,
{0,1}¥ —C is a union of recursively closed sets, and {0, 1}* — C is closed under finite
variations. By Theorem 2 we obtain Prob[{0,1}* — C] =1 and hence Prob[C] = 0.
O

4 Applications

We illustrate the power of the Main Theorem and its corollary with applications of
two types, namely, oracle separations and characterizations of complexity classes.

Since we are concerned with the use of oracles, we consider complexity classes
that can be specified so as to “relativize.” But we want to do this in a general
setting and so we introduce a few definitions.

We assume a fixed enumeration My, My, M,, ... of nondeterministic oracle
Turing machines.

A relativized class is a function C : P({0,1}*) — P(P({0,1}*)). A recursive
presentation of a relativized class C of languages is a total recursive function f :
N — N such that for every language A and every ¢ > 0, Mf(i) halts on every
computation and C(A) = {L(Mf(i)) | i € N}. A relativized class is recursively
presentable if it has a recursive presentation.

A reducibility is a relativized class. A bounded reducibility is a relativized class
that is recursively presentable. If R is a reducibility, then we use the notation



A < B toindicate that A € R(B). In addition we write R™1(A) for {B | A <% B}.
Typical bounded reducibilities include <P - <P = <P <BFP - <EN - <logspace ot The
relations <,,, and <7 are reducibilities that are not bounded. In many contexts it
is useful to restrict attention to reducibilities that are reflexive and transitive, but
we do not need such restrictions here.

If R is a reducibility and C is a set of languages, then a language A is <R-
complete for C if A € C C R(A). A relativized class C is recursively presentable
with an <R-complete language if there exist a recursive presentation f of C and a
constant ¢ € N such that for every language A, L(Mf(c)) is <P-complete for C(A).
If R is a reducibility and C is a set of languages, write R(C) for Uscc R(A). A
relativized class C is closed under a reducibility R if R(C(A)) C C(A) for every
language A.

While the next result is quite general, it does apply to a number of specific
situations that are of interest in complexity theory.

Theorem 4 Let C and D be relativized complexity classes and let R be a reducibil-
ity. Suppose that each of the following holds:

i) C is recursively presentable with an <®-complete language.
yp p guag
(ii) D is recursively presentable and is closed under R.

(iii) C and D are invariant under finite variations of the oracle.
Then the following statements hold.

(a) C(A) € D(A) for almost every A if and only if C(A) € D(A) for every
A€ RAND.

(b) C(A) € D(A) for almost every A if and only if C(A) C D(A) for some
A€ RAND.

Proof (a): Let SEP = {A | C(A) € D(A)}. By Corollary 3 it suffices to show
that SEP is a countable intersection of recursively open sets and that SEP is closed
under finite variation. The latter is immediate by (iii).

Let f, g be recursive presentations of C, D respectively, and fix ¢ € N such that,
for all A € {0,1}~, L(Mf(c)) is <M-complete for C(A). Since D is closed under R, we
have C(A) € D(A) & L(Mf(c)) ¢ D(A). For each j let SEP; = {A | L(Mﬁj)) +*



L(Mf(c))}. Then SEP = ;5o SEP;, so it suffices to show that each SEP; is a

recursively open set of languages.

Fix j. Define a partial recursive function h : {0,1}* x {0,1}* — {0,1}* as
follows. For z,z € {0,1}*, if M;(O;;(x) and Mj?:))(x) differ and need only the initial
part z of 20, then h(z,2) = z. Otherwise, let h(z,2) be undefined. For every A

AeSEP; < dz (Mﬁj)(x) and Mf(c)(x) differ )
& do dz (Mﬁj)(x) and Mf(c)(x) differ
and need only the initial part z of A)
& do dz (MZ(O;; () and Mjf?:)(x) differ

g
and need only the initial part z of 20, and A € C.)

& dz (z € range(h) and A € C.,)
& A erange(h) - {0,1}~.
Since range(h) is an r.e. set, the set A is recursively open.

(b): Statement (a) yields that C(A) C D(A) for some A € RAND if and only if
Prob[{A # C(A) C D(A)}] > 0. By the Kolmogorov 0-1 Law the latter is equivalent
to Prob[{A #£ C(A) CD(A)}] = 1. 0

JFrom Theorem 4 and known probability one oracle separations, it follows im-
mediately that every algorithmically random set A satisfies

e P(A) £ NP(A) # co-NP(A) [BGS1],
e BH(A) has infinitely many levels [Cai87],
o PH(A) % PSPACE(A) [Cai89)],

etc. Similarly, if with probability one, the relativized polynomial-time hierarchy has
infinitely many levels, then this separation is achieved relative to every algorithmi-
cally random set.

Next we wish to develop characterizations of complexity classes in terms of
RAND via Theorem 2. For this we need the following lemma

Lemma 5 IfR is a bounded reducibility then the inverse-image R™'(B) of a recur-
sive B is a union of recursively closed sets.

Proof Let g be a recursive representation of R. For each 57 > 0 let Rj_l(B) =
{A: L(Mﬁj)) = B}. Then R™(B) = U;»o R;'(B), so it suffices to show that the

7



complement COM; of Rj_l(B) is recursively open for every j > 0. This is shown
exactly as for SEP; in the proof of Theorem 4 where we have to replace Mf(c)(:]c)
by the characteristic function cp(z). O

Note that the above proof shows: The inverse-image of a recursive set B C
{0,1}¥ with respect to the recursive operator L(M;()j)) is a recursively closed set.
Since {B} is a recursively closed set, this is a special case of the fact: The inverse-
image of a recursively closed set with respect to a recursive operator is a recursively
closed set. Since recursive operators are continous mappings in the Cantor topology
on {0, 1}* this is the “recursive analogue” of the well known fact from topology that
the inverse-image of a closed set with respect to a continous mapping is a closed set
(in fact, continous mappings are defined in this way in general topology).

For each relativized class C, let ALMOST—C = {A | Prob[{B: A€ CP}] =1}.

Let further REC denote the class of recursive languages.

Theorem 6 If R is a bounded reducibility that is invariant under finite variations
of the oracle, then ALMOST—-R = RLIRAND) N REC.

Proof ;From a result of Sacks (see [Rog67], p.272), we have A € ALMOST—-R
if and only if Prob[R™*(A)] =1 and A € REC. By Theorem 2 and Lemma 5, the
latter condition is equivalent to R™*(A) N RAND # () and A € REC, which in
turn is equivalent to A € RLIRAND) N REC. O

Now we turn to characterizations of complexity classes. For the sake of brevity,
we give just four applications, characterizing the classes P, BPP, AM, and PH in
terms of reducibilities to algorithmically random languages.

Theorem 7 (a) P = P,,(RAND)NREC = P,,(RAND) N REC
= Plogn_7(RAND) N REC.

(b) BPP = P,,(RAND) N REC = P;(RAND) N REC.
(¢) AM = NP;(RAND) N REC.
(d) PH = PH(RAND) N REC.

Proof These follow immediately from Theorem 6 and the known facts that P =
ALMOST-P,, [Ambg6], P = ALMOST—-P,;, = ALMOST—-P,,,,_r [TB91],



BPP = ALMOST—P; [BGS1, Amb86], BPP = ALMOST—P,, [Amb86, TB91],
AM = ALMOST—NP; [NW88], and PH = ALMOST—PH [NW88]. O

Note that BPP = P7(RAND) N REC has already been proved in [Ben88].

The class RAND is considered to be the class of those languages having the
greatest possible information content. It is well known that there is a constant ¢
such that for all languages A and all n, the Kolmogorov complexity of the finite
language A<, = {# € A | |z| < n} is not greater than 2"*' + ¢. (Recall that the
Kolmogorov complexity of the finite language A<, is the Kolmogorov complexity of
its characteristic string, that is, the prefix of length 2"*! — 1 of the characteristic
sequence of A.) Martin-Lof [Mar71] proved that every language A in RAND has
nearly maximal information content in the sense that the Kolmogorov complexity of
A, is strictly greater than 2"+ — 2n for all but finitely many n. However, Theorem
8 below shows that in the given context, the power of oracles with such a great
information content is similar to those with very small information content.

Recall that a set S is sparse if there exists a polynomial ¢ such that #5<, < ¢(n)
for all n. Sparse sets S are considered to be sets with small information content
since the Kolmogorov complexity of Sc, is not greater than n° + ¢ for a suitable
constant ¢ > 0.

Theorem 8 The following are equivalent.

a

There exists a sparse set that is <} -hard for NP.

(

(b
(c
(d

)
)
) There exists an algorithmically random set that is <i,,-hard for NP.
) Every sparse set is <i,,-hard for NP.

)

(e) Every algorithmically random set is <},,-hard for NP.

Proof The equivalence of (a) and (b) is proved in [OW91]. Further, (a) < (d), (a)
& (e), and (e) = (c) are obvious. Finally, (¢) = (a) is an immediate consequence

of Theorem 7(a). O

Theorem 8 remains true for P versus PSPACE via a result from [OL91], and
similar statements are true for NP versus PH and PH versus PSPACE (cf. [KL82],
[BBS86] and [L.S86]).



The similarity between the results for sparse sets and algorithmically random
sets, resp., in Theorem 8 is striking. When the sets having the greatest possible
information content, algorithmically random sets, and when the sets having very
small information content, sparse sets, serve as oracle sets, the conclusions are the
same. One can interpret this result as indicating that the information in algorith-
mically random sets is encoded in such a way that little of it is computationally
useful from the standpoint of structural complexity theory, since one may as well
use a sparse set. This suggests that a theory that relates the information content of
oracle sets to the computational power of reducibilities needs to be developed; the
results presented here should be viewed as only first steps.

We conclude with the following open question which is suggested by Theorem
7. If C is a relativizable class of languages, under what conditions is it the case
that CCRAND) N REC = BP - C 7 This equation is known to be true for C =
P, C = NP, and C = PH by the results stated above. If C is a relativizable
class of languages, under what conditions is it the case that BP - C = C 7 It is
known to be true for C = PH. It is clear that BP - PSPACE = PSPACE. Is
PSPACE(RAND) N REC equal to PSPACE (the queries of a PSPACE oracle
machine are poly-length bounded) 7
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