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Abstract

The main theorem of this paper is that� for every real number � � �

�e�g�� � � ������ only a measure � subset of the languages decidable

in exponential time are �P
n��tt�reducible to languages that are not

exponentially dense� Thus every �P
n��tt�hard language for E is expo�

nentially dense� This strengthens Watanabe	s ��
� result� that every

�P
O�logn��tt�hard language for E is exponentially dense� The com�

binatorial technique used here� the sequentially most frequent query

selection� also gives a new� simpler proof of Watanabe	s result�
The main theorem also has implications for the structure of NP

under strong hypotheses� Ogiwara and Watanabe ������ have shown

that the hypothesis P �� NP implies that every �P
btt�hard language for

NP is non�sparse �i�e�� not polynomially sparse�� Their technique does

not appear to allow signi�cant relaxation of either the query bound or

the sparseness criterion� It is shown here that a stronger hypothesis

namely� that NP does not have measure � in exponential timeimplies

the stronger conclusion that� for every real � � �� every �P
n��tt�hard

language for NP is exponentially dense� Evidence is presented that

this stronger hypothesis is reasonable�

The proof of the main theorem uses a new� very general weak

stochasticity theorem� ensuring that almost every language in E is

statistically unpredictable by feasible deterministic algorithms� even

with linear nonuniform advice�



� Introduction

How dense must a language A � f�� �g� be in order to be hard for a complex�
ity class C	 The ongoing investigation of this question� especially important
when C 
 NP� has yielded several signi�cant results �� ��� ��� ��� ��� ��� ��
over the past �� years�
Any formalization of this question must specify the class C and give precise

meanings to �hard� and �how dense�� The results of this paper concern the
classes E 
 DTIME��linear�� E� 
 DTIME��

polynomial�� and all subclasses C of
these classes� though we are particularly interested in the case C 
 NP�
We will consider the polynomial�time reducibilities �P

m �many�one re�
ducibility�� �P

T �Turing reducibility�� �
P
btt �bounded truth�table reducibility��

and �P
q�tt �truth�table reducibility with q�n� queries on inputs of length

n� where q � N � Z
��� If �P

r is any of these reducibilities� we say that
a language A is �P

r �hard for a class C of languages if C � Pr�A�� where
Pr�A� 
 fB � f�� �g�jB �P

r Ag�
Two criteria for �how dense� a language A is have been widely used� A

language A is �polynomially� sparse� and we write A � SPARSE� if there is a
polynomial p such that jA�nj � p�n� for all n � N� where A�n 
 A�f�� �g�n�
A language A is �exponentially� dense� and we write A � DENSE� if there is
a real number � � � such that jA�nj � �

n� for all su�ciently large n � N� It
is clear that no sparse language is dense�
For any of the above choices of the reducibility �P

r � all known �
P
r �hard

languages for NP are dense� E�orts to explain this observation �and similar
observations for other classes and reducibilities� have yielded many results�
�See ��� for a thorough survey�� We mention four such results that are par�
ticularly relevant to the work presented here�
Let DENSEc denote the complement of DENSE� i�e�� the set of all lan�

guages A such that� for all � � �� there exist in�nitely many n such that
jA�nj � �n

�

� For each reducibility �P
r and set S of languages� we write

Pr�S� 

�
A�S

Pr�A��

The �rst result on the density of hard languages was the following�

�



Theorem ���� �Meyer ������ Every �P
m�hard language for E �or any larger

class� is dense� That is�
E �� Pm�DENSE

c��

�

Theorem ��� was subsequently improved to truth�table reducibility with
O�logn� queries�

Theorem ���� �Watanabe ��� ����� Every �P
O�log n��tt�hard language for E

is dense� That is�
E �� PO�log n��tt�DENSE

c��

�

Regarding NP� Berman and Hartmanis �� conjectured that no sparse lan�
guage is �P

m�hard for NP� unless P 
 NP� This conjecture was subsequently
proven correct�

Theorem ���� �Mahaney ������ If P �
 NP� then no sparse language is
�P

m�hard for NP� That is�

P �
 NP 
� NP �� Pm�SPARSE��

�

Theorem �� has recently been extended to truth�table reducibility with
a bounded number of queries�

Theorem ���� �Ogiwara and Watanabe ������ If P �
 NP� then no sparse
language is �P

btt�hard for NP� That is�

P �
 NP 
� NP �� Pbtt�SPARSE��

�

The Main Theorem of this paper� Theorem ���� extends Theorems ���
and ��� above by showing that� for every real � � � �e�g�� � 
 ������ only
a measure � subset of the languages in E are �P

n��tt�reducible to non�dense
languages� �Measure � subset� here refers to the resource�bounded measure

�



theory of Lutz ���� ��� �also explained in section  below�� In the notation
of this theory� our Main Theorem says that� for every real � � ��

��Pn��tt�DENSE
c�jE� 
 �� �����

This means that Pn��tt�DENSE
c��E is a negligibly small subset of E ���� ����

In particular� our Main Theorem implies that

E �� Pn��tt�DENSE
c�� �����

i�e�� that every �P
n��tt�hard language for E is dense� This strengthens Theo�

rem ��� above by extending the truth table reducibility from O�logn� queries
to n� queries �� � ��� It is also worth noting that the combinatorial tech�
nique used to prove ����� and ������the sequentially most frequent query
selection�is simpler than Watanabe�s direct proof of Theorem ���� This
is not surprising� once one considers that our proof of ����� via ����� is a
resource�bounded instance of the probabilistic method ��� ��� ��� �� ��� ���
which exploits the fact that it is often easier to prove the abundance of ob�
jects of a given type than to construct a speci�c object of that type�
Our proof of ����� also shows that� for every real � � ��

��Pn��tt�DENSE
c� j E�� 
 �� ����

Much of our interest in the Main Theorem concerns the class NP and
Theorems �� and ��� above� As already noted� for all reducibilities �P

r

discussed in this paper� all known �P
r �hard languages for NP are dense� One

is thus led to ask whether there is a reasonable hypothesis � such that we
can prove results of the form

� 
� NP �� Pr�DENSE
c�� �����

for various choices of the reducibility �P
r � �Such a result is much stronger

than the corresponding result

� 
� NP �� Pr�SPARSE��

because there is an enormous gap between polynomial and �n
�

growth rates��
Ogiwara and Watanabe�s proof of Theorem ��� does not appear to allow

signi�cant relaxation of either the query bound or the sparseness criterion�





In fact� it appears to be beyond current understanding to prove results of
the form ����� if � is �P �
 NP�� Karp and Lipton ���� have proven that

�p
� �
 �

p
� 
� NP �� P�SPARSE��

That is� the stronger hypothesis �p
� �
 �

p
� gives a stronger conclusion than

those of Theorems �� and ���� However� Karp and Lipton�s proof does not
appear to allow relaxation of the sparseness criterion� and results of the form
����� do not appear to be achievable at this time if � is taken to be ��p

� �
 �
p
���

To make progress on matters of this type� Lutz has proposed investigation
of the measure�theoretic hypotheses ��NP j E�� �
 � and ��NP j E� �
 ��
These expressions say that NP does not have measure � in E� ��NP is not a
negligible subset of E��� and that NP does not have measure � in E ��NP�E
is not a negligible subset of E��� respectively� We now explain the meaning
of these hypotheses� Both are best understood in terms of their negations�
The condition ��NP j E�� 
 � means that there exist a �xed polynomial q�

a �xed positive quantity c� of capital �money�� and a �xed betting strategy
�algorithm� � with the following properties� Given any language A� the
strategy � bets on the membership or nonmembership of the successive strings
	� �� �� ��� ��� ��� � � � in A� Before the betting begins� � has capital �money�
c�� When betting on a string w � f�� �g�� the strategy � is given as input
the string consisting of the successive bits ��v � A�� for all strings v that
precede w in the standard ordering of f�� �g�� On this input� the strategy
� computes� in � �q�jwj� steps� a fraction r � �	�� �� of its current capital to
bet that w � A� If ��s capital prior to this bet is c� then ��s capital after
the bet is c�� � r� if w � A� and c��	 r� if w �� A� �That is� the betting is
fair�� Finally� the strategy � is successful� in the sense that� for all A � NP�
��s capital diverges to �
 as the betting progresses through the successive
strings w � f�� �g��
Thus� the condition ��NP j E�� 
 � asserts the existence of a �xed �q�n��

time�bounded algorithm for betting successfully on membership of strings in
all languages in NP� If NP � DTIME��r�n�� for some �xed polynomial r� it
is easy to devise such a strategy� so ��NP j E�� 
 �� Conversely� if ��NP j
E�� 
 �� then NP is �nearly contained in some �xed DTIME��

q�n���� in the
sense that there is a �xed �q�n��time�bounded algorithm � for successfully
betting on all languages in NP�
There does not appear to be any a priori reason for believing that such

a strategy � exists� i�e�� there does not appear to be any a priori reason

�



for believing that ��NP j E�� 
 �� Similarly� there does not appear to
be any a priori reason for believing that ��NP j E� 
 �� The hypotheses
��NP j E�� �
 � and ��NP j E� �
 � are thus reasonable relative to our current
knowledge� �The hypothesis that the polynomial�time hierarchy separates
into in�nitely many levels enjoys a similar status� It may be false� but if it is
false� then a very remarkable algorithm exists�� In fact� Lutz has conjectured
that the conditions ��NP j E�� �
 � and ��NP j E� �
 � may be true�
At this time� we are unable to prove or disprove the widely�believed con�

jectures P �
 NP� NP �
 E�� and E �� NP� This� together with the known
implications

��NP j E�� �
 � 
� P �
 NP�

��NP j E� �
 � 
� P �
 NP�

��NP j E�� 
 � 
� NP �
 E��

��NP j E� 
 � 
� E �� NP�

means that we are currently unable to prove or disprove the statements
��NP j E�� �
 � and ��NP j E� �
 ��
Thus� at present� we are interested in the conditions ��NP j E�� �
 � and

��NP j E� �
 �� not as conjectures� but rather as scienti�c hypotheses� which
may have more explanatory power than traditional complexity�theoretic hy�
potheses such as P �
 NP or the separation of the polynomial�time hierarchy�
Until such time as a mathematical proof or refutation is available� the reason�
ableness �or unreasonableness� of such hypotheses can be illuminated only
by investigation of their consequences� Such investigation may indicate� for
example� that the consequences of ��NP j E�� �
 � form� en masse� a credible
state of a�airs� thereby increasing the reasonableness of this hypothesis� On
the other hand� such investigation may uncover implausible consequences of
��NP j E�� �
 �� or even a proof that ��NP j E�� 
 �� Either outcome would
contribute to our understanding of NP�
Our Main Theorem implies that� for all � � ��

��NP j E�� �
 � 
� NP �� Pn��tt�DENSE
c� �����

and
��NP j E� �
 � 
� NP �� Pn��tt�DENSE

c�� �����

�This is Theorem ��� below�� That is� each of the hypotheses ��NP j E�� �
 �
and ��NP j E� �
 � implies that every �P

n��tt�hard language for NP is dense�

�



This conclusion� which is credible and consistent with all observations to date�
is not known to follow from P �
 NP or other traditional complexity�theoretic
hypotheses�
Recent investigation has also shown that the hypotheses ��NP j E�� �
 �

and ��NP j E� �
 � imply that NP contains P�bi�immune languages ����
and that every �P

m�hard language for NP has an exponentially dense� expo�
nentially hard complexity core ���� Taken together� such results appear to
indicate that these are reasonable hypotheses which may have considerable
explanatory power�
The proof of our Main Theorem is based on a very general result on the

�weak stochasticity� of languages in E and E�� This result� proven in section
 below� is a useful tool that is of independent interest� as we now explain�
When proving results of the form

��XjC� 
 ��

where C is a complexity class� it often simpli�es matters to have available
some general�purpose randomness properties of languages in C� The term
�general�purpose randomness property� here is heuristic� meaning a set Z of
languages with the following two properties�

�i� Almost every language in C has the property �of membership in� Z�
�This condition� written ��ZjC� 
 �� means that ��ZcjC� 
 �� where
Zc is the complement of Z��

�ii� It is often the case that� when one wants to prove a result of the form
��XjC� 
 �� it is easier to prove that X � Z 
 ��

For example� in ESPACE
DSPACE��linear�� it is known ���� ��� that almost
every language has very high space�bounded Kolmogorov complexity� A va�
riety of sets X have been shown to have measure � in ESPACE� simply by
proving that every element of X has low space�bounded Kolmogorov com�
plexity ���� ��� ��� ���� Thus high space�bounded Kolmogorov complexity is
a �general�purpose randomness property� of languages in ESPACE�
In section  below� after reviewing some fundamentals of measure in com�

plexity classes� we prove the Weak Stochasticity Theorem� stating that almost
every language in E� and almost every language in E�� is �weakly stochas�
tic�� i�e�� is statistically unpredictable by feasible deterministic algorithms�

�



even with linear nonuniform advice� �See section  for precise de�nitions��
In section �� then� we give a simple combinatorial proof that no language in
Pn��tt�DENSE

c� is weakly stochastic� thereby proving the Main Theorem�
It appears that weak stochasticity is� in the above sense� a general�purpose
randomness property of languages in E and E� that will be useful in future
investigations�

� Preliminaries

In this paper� ��
�� denotes the Boolean value of the condition 
� i�e��

��
�� 


�
� if 

� if not 


All languages here are sets of binary strings� i�e�� sets A � f�� �g�� We
identify each language A with its characteristic sequence �A � f�� �g� de�
�ned by

�A 
 ��s� � A����s� � A����s� � A������

where s� 
 	� s� 
 �� s� 
 �� s� 
 ��� ��� is the standard enumeration
of f�� �g�� Relying on this identi�cation� the set f�� �g�� consisting of all
in�nite binary sequences� will be regarded as the set of all languages�
If w � f�� �g� and x � f�� �g� � f�� �g�� we say that w is a pre�x of x�

and write w v x� if x 
 wy for some y � f�� �g� � f�� �g�� The cylinder
generated by a string w � f�� �g� is

Cw 
 fx � f�� �g� j w v xg�

Note that Cw is a set of languages� Note also that C� 
 f�� �g�� where 	
denotes the empty string�
As noted in section �� we work with the exponential time complexity

classes E 
 DTIME��linear� and E� 
 DTIME��
polynomial�� It is well�known

that P � E � E�� that P � NP � E�� and that NP �
 E�
We let D 
 fm��n j m � Z� n � Ng be the set of dyadic rationals� We

also �x a one�to�one pairing function h� i from f�� �g�  f�� �g� onto f�� �g�

such that the pairing function and its associated projections� hx� yi �� x and
hx� yi �� y� are computable in polynomial time�

�



Several functions in this paper are of the form d � Nkf�� �g� � Y � where
Y is D or ���
�� the set of nonnegative real numbers� Formally� in order
to have uniform criteria for their computational complexities� we regard all
such functions as having domain f�� �g�� and codomain f�� �g� if Y 
 D�
For example� a function d � N�  f�� �g� � D is formally interpreted as a
function �d � f�� �g� � f�� �g�� Under this interpretation� d�i� j� w� 
 r means
that �d�h�i� h�j� wii� 
 u� where u is a suitable binary encoding of the dyadic
rational r�
For a function d � N  X � Y and k � N� we de�ne the function

dk � X � Y by dk�x� 
 d�k� x� 
 d�h�k� xi�� We then regard d as a �uniform
enumeration� of the functions d�� d�� d�� ���� For a function d � N

n X � Y
�n � ��� we write dk�l 
 �dk�l� etc�
For a function � � f�� �g� � f�� �g� and n � N� we write �n for the n�fold

composition of � with itself�
Our proof of the Weak Stochasticity Theorem uses the following form of

the Cherno� bound�

Lemma ������� ��� If X�� ���� XN are independent ����valued random vari�
ables with the uniform distribution� S 
 X� � �����XN � and � � �� then

Pr�jS 	
N

�
j �

�N

�
� � �e�

��N
� �

In particular� taking � 
 �
j��
� where j � N�

Pr�jS 	
N

�
j �

N

j � �
� � �e

� N

��j���� �

Proof� See ���� �

� Measure and Weak Stochasticity

In this section� after reviewing some fundamentals of measure in exponential
time complexity classes� we prove the Weak Stochasticity Theorem� This
theorem will be useful in the proof of our main result in section �� We also
expect it to be useful in future investigations of the measure structure of E
and E��

�



Resource�bounded measure ���� ��� is a very general theory whose special
cases include classical Lebesgue measure� the measure structure of the class
REC of all recursive languages� and measure in various complexity classes� In
this paper we are interested only in measure in E and E�� so our discussion
of measure is speci�c to these classes� The interested reader may consult
section  of ���� for more discussion and examples�
Throughout this section� we identify every language A � f�� �g� with its

characteristic sequence �A � f�� �g
�� de�ned as in section ��

A constructor is a function � � f�� �g� � f�� �g� such that x �
�� ��x� for

all x � f�� �g�� The result of a constructor � �i�e�� the language constructed
by �� is the unique language R��� such that �n�	� v R��� for all n � N�
�Recall that this means that each string �n�	� is a pre�x of the characteristic
sequence of R����� Intuitively� � constructs R��� by starting with 	 and then
iteratively generating successively longer pre�xes of R���� Given a set  of
functions from f�� �g� into f�� �g�� we write R� � for the set of all languages
R��� such that � �  and � is a constructor�
We �rst note that the exponential time complexity classes E and E� can

be characterized in terms of constructors�

Notation� The classes p� 
 p and p�� both consisting of functions f �
f�� �g� � f�� �g�� are de�ned as follows�

p� 
 p 
 ff jf is computable is polynomial timeg

p� 
 ff jf is computable is n�log n�
O���

timeg

Lemma �������

�� R�p� 
 E�

�� R�p�� 
 E��

Using Lemma ��� the measure structures of E and E� are now developed
in terms of the classes pi� for i 
 �� ��

De�nition� A density function is a function d � f�� �g� � ���
� satisfying

d�w� �
d�w�� � d�w��

�
����

�



for all w � f�� �g�� The global value of a density function d is d�	�� The set
covered by a density function d is

S�d� 

�

w�f���g�

d�w���

Cw� ����

�Recall that Cw 
 fx � f�� �g� j w v xg is the cylinder generated by w�� A
density function d covers a set X � f�� �g� if X � S�d��

For all density functions in this paper� equality actually holds in ����
above� but this is not required�
Consider the random experiment in which a sequence x � f�� �g� is

chosen by using an independent toss of a fair coin to decide each bit of
x� Taken together� parts ���� and ���� of the above de�nition imply that
Pr�x � S�d�� � d�	� in this experiment� Intuitively� we regard a density
function d as a �detailed veri�cation� that Pr�x � X� � d�	� for all sets
X � S�d��
More generally� we will be interested in �uniform systems� of density

functions that are computable within some resource bound�

De�nition� An n�dimensional density system �n�DS� is a function

d � Nn  f�� �g� � ���
�

such that d�k is a density function for every
k � N

n� It is sometimes convenient
to regard a density function as a ��DS�

De�nition� A computation of an n�DS d is a function bd � Nn��f�� �g� � D

such that ��� bd�k�r�w�	 d�k�w�
��� � ��r

for all k � N
n� r � N� and w � f�� �g�� For i 
 �� �� a pi�computation of an

n�DS d is a computation bd of d such that bd � pi� An n�DS d is pi�computable
if there exists a pi�computation bd of d�
If d is an n�DS such that d � Nn  f�� �g� � D and d � pi� then d

is trivially pi�computable� This fortunate circumstance� in which there is
no need to compute approximations� occurs frequently in practice� �Such

��



applications typically do involve approximations� but these are �hidden� by
invoking fundamental theorems whose proofs involve approximations��
We now come to the key idea of resource�bounded measure theory�

De�nition� A null cover of a set X � f�� �g� is a ��DS d such that� for all
k � N� dk covers X with global value dk�	� � ��k� For i 
 �� �� a pi�null
cover of X is a null cover of X that is pi�computable�

In other words� a null cover of X is a uniform system of density functions
that cover X with rapidly vanishing global value� It is easy to show that a
set X � f�� �g� has classical Lebesgue measure � �i�e�� probability � in the
above coin�tossing experiment� if and only if there exists a null cover of X�

De�nition� A set X has pi�measure �� and we write �pi�X� 
 �� if there
exists a pi�null cover of X� A set X has pi�measure �� and we write �pi�X� 

�� if �pi�X

c� 
 ��

Thus a set X has pi�measure � if pi provides su�cient computational
resources to compute uniformly good approximations to a system of density
functions that cover X with rapidly vanishing global value�
We now turn to the internal measure structures of E 
 R�p�� and E� 


R�p���

De�nition� A set X has measure � in R�pi�� and we write ��X j R�pi�� 
 ��
if �pi�X � R�pi�� 
 �� A set X has measure � in R�pi�� and we write
��X j R�pi�� 
 �� if ��Xc j R�pi�� 
 �� If ��X j R�pi�� 
 �� we say that
almost every language in R�pi� is in X�

The following lemma is obvious but useful�

Lemma ���� For every set X � f�� �g��

�p�X� 
 � 
� �p��X� 
 � 
� Pr�x � X� 
 �
� �

��XjE� 
 � ��XjE�� 
 ��

where the probability Pr�x � X� is computed according to the random ex�
periment in which a sequence x � f�� �g� is chosen probabilistically� using
an independent toss of a fair coin to decide each bit of x�

��



Thus a proof that a set X has p�measure � gives information about the
size of X in E� in E�� and in f�� �g��
It was noted in Lemma �� that �p�X� 
 � implies �p��X� 
 �� In fact�

more is true�

Lemma ���� ���� Let Z be the union of all sets X such that �p�X� 
 ��
Then �p��Z� 
 ��Z j E�� 
 ��

Lemma � is also called the Abundance Theorem� because it implies that
almost every language A � E� is p�random� i�e�� has the property that the
singleton set fAg does not have p�measure �� The proof of Lemma � makes
essential use of the fact that p� contains a universal function for p� It is not
the case that �p�Z� 
 ��
It is shown in ���� that these de�nitions endow E and E� with internal

measure structure� Speci�cally� for i 
 �� �� if I is either the collection Ipi
of all pi�measure � sets or the collection IR�pi� of all sets of measure � in
R�pi�� then I is a �pi�ideal�� i�e�� is closed under subsets� �nite unions� and
�pi�unions� �countable unions that can be generated with the resources of
pi�� More importantly� the Measure Conservation Theorem of ���� says that
the ideal IR�pi� is a proper ideal� i�e�� that E does not have measure � in E
and E� does not have measure � in E�� Taken together� these facts justify
the intuition that� if ��XjE� 
 �� then X � E is a negligibly small subset of
E �and similarly for E���
Our proof of the Weak Stochasticity Theorem does not directly use the

above de�nitions� Instead we use a su�cient condition� proved in ����� for a
set to have measure �� To state this condition we need a polynomial notion
of convergence for in�nite series� All our series here consist of nonnegative

terms� A modulus for a series
�P
n��

an is a function m � N� N such that

�X
n�m�j�

an � �
�j

for all j � N� A series is p�convergent if it has a modulus that is a polynomial�
A sequence

�X
k��

aj�k �j 
 �� �� �� � � ��

��



of series is uniformly p�convergent if there exists a polynomial m � N� � N

such that� for each j � N� mj is a modulus for the series
�P
k��

aj�k� We will

use the following su�cient condition for uniform p�convergence� �This well�
known lemma is easily veri�ed by routine calculus��

Lemma ���� Let aj�k � ���
� for all j� k � N� If there exist a real � � � and
a polynomial g � N� N such that aj�k � e�k

�

for all j� k � N with k � g�j��
then the series

�X
k��

aj�k �j 
 �� �� �� � � ��

are uniformly p�convergent� �

The proof of the Weak Stochasticity Theorem is greatly simpli�ed by
using the following special case �for p� of a uniform� resource�bounded gen�
eralization of the classical �rst Borel�Cantelli lemma�

Lemma ��������� If d is a p�computable ��DS such that the series

�X
k��

dj�k�	� �j 
 �� �� �� � � ��

are uniformly p�convergent� then

�p

�� ��
j��

��
t��

��
k�t

S�dj�k�

�A 
 ��
�

If we write Sj 

�T
t��

�S
k�t

S�dj�k� and S 

�S
j��

Sj� then Lemma �� gives a

su�cient condition for concluding that S has p�measure �� Note that each Sj
consists of those languages A that are in in�nitely many of the sets S�dj�k��
We now formulate our notion of weak stochasticity� For this we need

a few de�nitions� Our notion of advice classes is standard ����� An advice
function is a function h � N� f�� �g�� Given a function q � N� N� we write
ADV�q� for the set of all advice functions h such that jh�n�j � q�n� for all
n � N� Given a language A � f�� �g� and an advice function h� we de�ne
the language A�h ��A with advice h�� by

A�h 
 fx � f�� �g� j hx� h�jxj�i � Ag�

�



Given functions t� q � N� N� we de�ne the advice class

DTIME�t��ADV�q� 
 fA�h j A � DTIME�t�� h � ADV�q�g�

De�nition� Let t� q� � � N � N and let A � f�� �g�� Then A is weakly
�t� q� ���stochastic if� for all B � DTIME�t��ADV�q� and all C � DTIME�t�
such that jC�nj � ��n� for all su�ciently large n�

lim
n��

j�A�B� � C�nj

jC�nj


�

�
�

Intuitively� B and C together form a �prediction scheme� in which B
tries to guess the behavior of A on the set C� A is weakly �t� q� ���stochastic
if no such scheme is better in the limit than guessing by random tosses of a
fair coin�
Our use of the term �stochastic� follows Kolmogorov�s terminology ����

��� for properties de�ned in terms of limiting frequencies of failure of predic�
tion schemes� The adverb �weakly� distinguishes our notion from a stronger
stochasticity property considered in ����� but weak stochasticity is a powerful
and convenient tool�
The following lemma captures the main technical content of the Weak

Stochasticity Theorem�

Lemma ���� Fix c � N and � � � � R and let

WSc�� 
 fA � f�� �g�jA is weakly ��cn� cn� ��n��stochasticg�

Then �p�WSc��� 
 ��

Proof� Assume the hypothesis� Let U � DTIME���c���n� be a language that
is universal for DTIME��cn� DTIME��cn� in the following sense� For each
i � N� let

Ci 
 fx � f�� �g�jh�i� �xi � Ug�

Di 
 fx � f�� �g�jh�i� �xi � Ug�

Then DTIME��cn�DTIME��cn� 
 f�Ci� Di�ji � Ng�
For all i� j� k � N� de�ne the set Yi�j�k of languages as follows� If k is not

a power of �� then Yi�j�k 
 �� Otherwise� if k 
 �n� where n � N� then

Yi�j�k 

�

z�f���g�cn

Yi�j�k�z�

��



where each

Yi�j�k�z 


�
A � f�� �g�

��� j�Ci��nj � �
�n

and

����� j�A� �Di�z�� � �Ci��nj

j�Ci��nj
	
�

�

����� � �

j � �

�
�

It is immediate from the de�nition of weak stochasticity that the complement
WSc

c�� of WSc�� satis�es

WSc
c�� �

��
i��

��
j��

��
m��

��
k�m

Yi�j�k�

It follows by Lemma �� that it su�ces to exhibit a p�computable �DS d
with the following two properties�

�I� The series
�P
k��

di�j�k�	�� for i� j � N� are uniformly p�convergent�

�II� For all i� j� k � N� Yi�j�k � S�di�j�k��

De�ne the function d � N�  f�� �g� � ���
� as follows� If k is not a
power of �� then di�j�k�w� 
 �� Otherwise� if k 
 �

n� where n � N� then

di�j�k�w� 

X

z�f���g�cn

Pr�Yi�j�k�zjCw��

where the conditional probabilities Pr�Yi�j�k�zjCw� 
 Pr�A � Yi�j�k�zjA � Cw�
are computed according to the random experiment in which the language
A � f�� �g� is chosen probabilistically� using an independent toss of a fair
coin to decide membership of each string in A�
It follows immediately from the de�nition of conditional probability that

d is a �DS� Since U � DTIME���c���n� and c is �xed� we can use binomial
coe�cients to �exactly� compute di�j�k�w� in time polynomial in i�j�k�jwj�
Thus d is p�computable�
To see that d has property �I�� note �rst that the Cherno� bound� Lemma

���� tells us that� for all i� j� k � N and z � f�� �g�cn �writing k 
 �n and
N 
 k� 
 ��n��

Pr�Yi�j�k�z� � �e
� N

��j���� �

��



whence

di�j�k�	� 

X

z�f���g�cn

Pr�Yi�j�k�z�

� �cn�� � �e
� N

��j����

� e
cn��� N

��j���� �

Let a 

l
�
�

m
� let � 
 �

�
� and �x k� � N such that

k�� � k� � c log k � �

for all k � k�� De�ne g � N� N by

g�j� 
 �a�j � ���a � k��

Then g is a polynomial and� for all i� j� n � N �writing k 
 �n and N 
 k� 

k����

k � g�j� 
�

�	
	�
N 
 k��k��

� ��a�j � ���a�
��
�k� � c log k � ��

� ��j � ����k� � cn� ��


� di�j�k�	� � e�k
�

�

Thus di�j�k�	� � e�k
�

for all i� j� k � N such that k � g�j�� Since � � �� it
follows by Lemma �� that �I� holds�
Finally� to see that �II� holds� �x i� j� k � N� If k is not a power of �� then

�II� is trivially a�rmed� so assume that k 
 �n� where n � N� Let A � Yi�j�k�
Fix z � f�� �g�cn such that A � Yi�j�k�z and let w be the ��n�� 	 ���bit
characteristic string of A�n� Then

di�j�k�w� � Pr�Yi�j�k�zjCw� 
 ��

so A � Cw � S�di�j�k�� This completes the proof of Lemma ��� �

��



We now have the main result of this section�

Theorem ��� �Weak Stochasticity Theorem��

��� For all c � N and � � �� almost every language A � E is weakly
��cn� cn� ��n��stochastic�

��� Almost every language A � E� is� for all c � N and � � �� weakly
��cn� cn� ��n��stochastic�

Proof� Part ��� follows immediately from Lemma �� via Lemma ��� Part
��� follows from Lemma �� via Lemmas � and ��� �

� The Density of Hard Languages

In this section we prove our main result� that for every real � � �� the
set Pn��tt�DENSE

c� has measure � in E and in E�� We then derive some
consequences of this result� Some terminology and notation will be useful�
Given a query�counting function q � N � Z

�� a q�query function is a
function f with domain f�� �g� such that� for all x � f�� �g��

f�x� 
 �f��x�� ���� fq�jxj��x�� � �f�� �g
��q�jxj��

Each fi�x� is called a query of f on input x� A q�truth table function is a
function g with domain f�� �g� such that� for each x � f�� �g�� g�x� is the
encoding of a q�jxj��input� ��output Boolean circuit� We write g�x��w� for
the output of this circuit on input w � f�� �gq�jxj�� A �P

q�tt�reduction is an
ordered pair �f� g� such that f is a q�query function� g is a q�truth table
function� and f and g are computable in polynomial time�
Let A�B � f�� �g�� A �P

q�tt�reduction of A to B is a �P
q�tt�reduction

�f� g� such that� for all x � f�� �g��

��x � A�� 
 g�x����f��x� � B�������fq�jxj��x� � B����

�Recall that ��
�� denotes the Boolean value of the condition 
�� In this case
we say that A �P

q�ttB via g� We say that A is �
P
q�tt�reducible to B� and write

A �P
q�ttB� if there exists �f� g� such that A �P

q�ttB via �f� g��
The proof of our main result makes essential use of the following con�

struction�

��



Given an n��query function f and n � N� the sequentially most frequent
query selection �smfq selection� for f on inputs of length n is the sequence

�S�� Q�� y��� �S�� Q�� y��� ���� �Sn�� Qn�� yn��

de�ned as follows� Each Sk � f�� �gn� Each Qk is an jSkj  n� matrix of
strings� with each string in Qk colored either green or red� The rows of Qk

are indexed lexicographically by the elements of Sk� For x � Sk� row x of Qk

is the sequence f��x�� ���� fn��x� of queries of f on input x� If Qk contains at
least one green string� then yk is the green string occurring in the greatest
number of rows of Qk� �Ties are broken lexicographically�� If Qk is entirely
red� then yk 
 � ��top�� i�e�� unde�ned�� The sets Sk and the coloring are
speci�ed recursively� We set S� 
 f�� �gn and color all strings in Q� green�
Assume that Sk� Qk� and yk have been de�ned� where � � k � n�� If yk 
 ��
then �Sk��� Qk��� yk��� 
 �Sk� Qk� yk�� If yk �
 �� then Sk�� is the set of all
x � Sk such that yk appears in row x of Qk� The strings in Qk�� are then
colored exactly as they were in Qk� except that all yk�s are now colored red�
This completes the de�nition of the smfq selection�
For � � k � n�� it is clear that every row of Qk contains at least k red

strings� In particular� the matrix Qn� is entirely red�
Our main results follow from the following lemma� Recall that WSc�� is

the set of all weakly ��cn� cn� ��n��stochastic languages�

Lemma ���� For every real � � �� Pn��tt�DENSE
c� �WS�� �

�

 ��

Proof� Let � � � and assume that A �P
n��tt L via �f� g�� where L �� DENSE�

It su�ces to show that A �� WS�� �
�
� Fix a polynomial p such that jfi�x�j �

p�jxj� for all x � f�� �g� and � � i � jxj�� Let � 
 ���
�
and �x n� � N such

that the following conditions hold for all n � n��

�i� n � � � n�����

�ii� n�� 	 n� � ��

Let
K 
 fn � N

���n � n� and jL�p�n�j � �
n�g�

Note that K is in�nite because L is not dense�

��



De�ne languages B� C� D and an advice function h � N � f�� �g� as
follows� For all n � n�� C�n 
 D�n 
 f�� �gn and h�n� 
 	� For all n � n��
C�n� D�n� and h�n� are de�ned from the smfq selection for f on inputs of
length n as follows� Let k 
 k�n� be the greatest integer such that � � k � n�

and jSkj � �n�kn
��
� �Note that k exists because jS�j 
 �n�� We then de�ne

C�n 
 Sk�
h�n� 
 ��y� � L�������yk�� � L���

and we let D�n be the set of all coded pairs hx� zi such that x � Sk� z �
f�� �gk� and g�x��b����bn�� 
 �� where each

bi 


�
z�j� if fi�x� 
 yj� � � j � k�
� if fi�x� �� fy�� ���� yk��g �

Finally� we let B 
 D�h� Intuitively here� B tries to predict A on C� Specif�
ically� for each n � n� and each x � C�n 
 Sk� the bit ��x � B�� is a �guessed
value� of the bit ��x � A��� The actual value� given by the reduction �f� g� to
L� is

��x � A�� 
 g�x����wi � L�������wn� � L����

where w�� ���� wn� are the entries in row x of the matrix Qk� The guessed
value ��x � B�� 
 g�x��b����bn�� uses the advice function h to get the correct
bit bi 
 ��wi � L�� when the string wi is red in Qk� and guesses that wi �� L
when the string wi is green in Qk�
It is easy to see that C�D � DTIME���n� andB � DTIME���n��ADV�n��

�The bound n is generous here�� Also� by condition �i� in our choice of n��

jC�nj � �
n�n�n�� � �

n
�

for all n � n�� whence jC�nj � �
n
� for all n � N�

We now show that B does a good job of predicting A on C�n� for all
n � K� Let n � K� We have two cases�

�I� If k 
 k�n� 
 n�� then all strings in Qk are red� so all the guesses made
by B are correct� so

j�A�B� � C�nj 
 ��

��



�II� If k 
 k�n� � n�� let r be the number of rows in Qk� i�e�� r 
 jSkj 

jC�nj� By our choice of k� we have

jSk��j � �
n��k���n�� � ��n

��

r�

That is� no green string appears in more than ��n
��
r of the rows of Qk�

Moreover� since jL�p�n�j � �
n�� there are at most �n

�

green strings w in

Qk such that w � L� Thus there are at most �n
�

���n
��
r 
 �n

��n��r rows
of Qk in which B makes an incorrect guess that a green string is not in
L! the guesses made by B are correct in all other rows" By condition
�ii� in our choice of n�� then� B is incorrect in at most

�
�
r rows of Qk�

That is�

j�A�B� � C�nj �
�

�
r�

In either case� �I� or �II�� we have

j�A�B� � C�nj �
�

�
jC�nj�

Since this holds for all n � K� and since K is in�nite�

j�A�B� � C�nj

jC�nj
��
�

�
�

Thus B and C testify that A is not weakly ���n� n� �
n
� ��stochastic� i�e�� that

A �� WS�� �
�
� �

Our main results are now easily derived� We start with the fact that
most languages decidable in exponential time are not �P

n��tt�reducible to
non�dense languages�

Theorem ��� �Main Theorem�� For every real number � � ��

��Pn��tt�DENSE
c� j E� 
 ��Pn��tt�DENSE

c� j E�� 
 ��

Proof� This follows immediately from Theorem �� and Lemma ���� �

The Main Theorem yields the following separation result�

��



Theorem ���� For every real � � ��

E �� Pn��tt�DENSE
c��

That is� every Pn��tt�hard language for E is dense�

Proof� By the Measure Conservation Theorem ����� ��E j E� �
 �� so this
follows immediately from Theorem ���� �

Note that Theorem �� strengthens Theorem ��� by extending the number
of queries from O�logn� to n�� where � � � �e�g�� � 
 ������
It is worthwhile to examine the roles played by various methods� Theorem

���� a measure�theoretic result concerning the quantitative structure of E and
E�� yields the qualitative separation result Theorem ��� From a technical
standpoint� this proof of Theorem �� has the following three components�

�i� The sequentially most frequent query selection �Lemma ����� This is
used to prove that every language in Pn��tt�DENSE

c� is predictable�
i�e�� fails to be weakly stochastic �with suitable parameters��

�ii� The Weak Stochasticity Theorem �Theorem ���� This shows that only
a measure � subset of the languages in E are predictable�

�iii� The Measure Conservation Theorem ����� This shows that E is not a
measure � subset of itself�

Of these three components� �ii� and �iii� are general theorems concerning
measure in E� Only component �i� is speci�c to the issue of the densities of
Pn��tt�hard languages� That is� given the general principles �ii� and �iii�� the
proof of Theorem �� is just the sequentially most frequent query selection�
i�e�� the proof of Lemma ���� The latter proof is combinatorially much simpler
thanWatanabe�s direct proof of Theorem ���� This is not surprising� once it is
noted that our proof of Theorem �� is an application of �a resource�bounded
generalization of� the probabilistic method ��� ��� ��� �� ��� ��� which exploits
the fact that it is often easier to establish the abundance of objects of a given
type than to construct a speci�c object of that type� Much of our proof of
Theorem �� is �hidden� in the power of this method �i�e�� in the proofs of
the Measure Conservation and Weak Stochasticity Theorems�� freeing us to
apply the sequentially most frequent query selection to the problem at hand�

��



An important feature of this general method is that it is uniformly con�
structive in the following sense� Taken together� the proofs of the Measure
Conservation and Weak Stochasticity Theorems give a straightforward� �au�
tomatic� construction of a language A � E � WS�� �

�
� By Lemma ���� it

follows immediately that A � EnPn��tt�DENSE
c�� Thus one can apply this

complexity�theoretic version of the probabilistic method with complete as�
surance that the resulting existence proof will automatically translate into a
construction�
The primary objective of resource�bounded measure theory is to give a

detailed account of the quantitative structure of E� E�� and other complexity
classes� The derivation of qualitative separation results� such as Theorems ��
and ���� is only a by�product of this quantitative objective� �By analogy� the
value of classical Lebesgue measure and probability far surpasses their role
as tools for existence proofs�� In the case of E� for example� the quantitative
content of Theorem ��� is that the set Pn��tt�DENSE

c� � E is a negligibly
small subset of E�
As noted in the introduction to this paper� we are interested in the con�

sequences of the hypothesis that NP is not a negligibly small subset of ex�
ponential time� In this regard� our main theorem yields the following result�

Theorem ���� If ��NPjE� �
 � or ��NPjE�� �
 �� then for all � � �� every
�P

n��tt�hard language for NP is dense� i�e�� NP �� Pn��tt�DENSE
c��

Proof� If NP has a �P
n��tt�hard language H that is not dense then The�

orem ��� tells us that ��NPjE� 
 ��Pn��tt�H�jE� 
 � and ��NPjE�� 

��Pn��tt�H�jE�� 
 �� �

Note that the hypothesis and conclusion of Theorem ��� are both stronger
than their counterparts in Ogiwara and Watanabe�s result that

P �
 NP� NP �� Pbtt�SPARSE��

Note also that our proof of Theorem ��� actually shows that

NP �WS�� �
�
�
 � 
� NP �� Pn��tt�DENSE

c��

In fact� this implication and Theorem ��� both hold with NP replaced by
PH� PP� PSPACE� or any other class�

��



� Conclusion

The density criterion in Theorem ��� cannot be improved� since for every
� � � there is a language A � E that is �P

m�hard for E� and satis�es jA�nj �
�n

�

for all n� It is an open question whether the query bound n� can be
signi�cantly relaxed� A construction of Wilson ��� shows that there is an
oracle B such that EB � PBO�n��tt�SPARSE�� so progress in this direction will
require nonrelativizable techniques�
There are several open questions involving special reducibilities� We men�

tion just one example� Very recently� Arvind� K#obler� and Mundhenk ��� have
proven that

P �
 NP 
� NP �� Pbtt�Pctt�SPARSE���

where Pctt refers to polynomial�time conjunctive reducibility� �This strength�
ens Theorem ����� Does the class Pbtt�Pctt�DENSE

c�� have measure � in E	
As noted in the introduction� all known �P

T�hard languages for NP are
dense� i�e�� our experience suggests that NP �� P�DENSEc�� This suggests
two open questions� �See Figure ��� Karp and Lipton ���� have shown that

�p
� �
 �

p
� 
� NP �� P�SPARSE��

Theorem ��� of the present paper shows that

��NP j E�� �
 � 
� NP �� Pn��tt�DENSE
c�

for � � �� The �rst question� posed by Selman ���� is whether the strong
hypothesis ���p

�n�
p
� j E�� �
 � can be used to combine these ideas to get a

conclusion that NP �� P�DENSEc�� The second� more fundamental� ques�
tion is suggested by the �rst� A well�known downward separation princi�
ple ���� says that� if the polynomial time hierarchy separates at some level�
then it separates at all lower levels� Thus� for example� �p

� �
 �
p
� implies

that P �
 NP� Is there a �downward measure separation principle�� stating
that ���p

k��n�
p
k�� j E�� �
 � 
� ���p

kn�
p
k j E�� �
 �	 In particular� does

���p
�n�

p
� j E�� �
 � imply that ��NP j E�� �
 �	

The hypothesis that ��NPjE�� �
 �� i�e�� that NP is not a negligibly small
subset of E�� has recently been shown to have a number of credible conse�
quences� If ��NPjE�� �
 �� then NP contains p�random languages ����! NP
contains E�bi�immune languages ����! every �P

m�hard language for NP has
an exponentially dense� exponentially hard complexity core ���! and now� by

�



Figure �� Insert the MSDH�diagram�ps output here
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Theorem �� above� every �P
n��tt�hard language for NP �� � �� is exponen�

tially dense� Further investigation of the consequences and reasonableness
of ��NPjE�� �
 � and related strong� measure�theoretic hypotheses is clearly
indicated�
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