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Abstract

Classical Hausdorff dimension (sometimes called fractal dimension) was recently effectivized
using gales (betting strategies that generalize martingales), thereby endowing various complexity
classes with dimension structure and also defining the constructive dimensions of individual
binary (infinite) sequences. In this paper we use gales computed by multi-account finite-state
gamblers to develop the finite-state dimensions of sets of binary sequences and individual binary
sequences. The theorem of Eggleston (1949) relating Hausdorff dimension to entropy is shown
to hold for finite-state dimension, both in the space of all sequences and in the space of all
rational sequences (binary expansions of rational numbers). Every rational sequence has finite-
state dimension 0, but every rational number in [0, 1] is the finite-state dimension of a sequence
in the low-level complexity class ACp. Our main theorem shows that the finite-state dimension
of a sequence is precisely the infimum of all compression ratios achievable on the sequence by
information-lossless finite-state compressors.
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1 Introduction

Hausdorff dimension, best known as a powerful tool of fractal geometry, has been known for over
fifty years to be closely related to information. For example, Eggleston [5] proved that in the space
of all infinite binary sequences, if we let FREQ(«a) be the set of sequences in which 1 appears with
asymptotic frequency a (0 < a < 1), then the Hausdorff dimension of FREQ(«) is precisely H(a),
the binary entropy of a. More recent investigations of Ryabko [16, 17, 18], Staiger [21, 22], and
Cai and Hartmanis [3] have explored relationships between Hausdorff dimension and Kolmogorov
complexity (algorithmic information).

Hausdorff dimension was originally defined topologically, using open covers by balls of diminishing
radii [8, 6]. Very recently, Lutz [14] proved a new characterization of Hausdorff dimension in terms
of gales, which are betting strategies that generalize martingales. Lutz used this characterization
to effectivize Hausdorff dimension, thereby defining dimension in complexity classes [14] and the
constructive dimensions of individual sequences [15].

In this paper we extend the effectivization of dimension all the way to the level of finite-state com-
putation. We define a multi-account finite-state gambler to be a finite-state gambler that maintains
its capital in a portfolio of k separate accounts, so that capital in one account is shielded from losses
in other accounts. (Finite-state gamblers with only one account have been investigated by Schnorr
and Stimm [20] and Feder [7].) We use gales induced by multi-account finite-state gamblers to define
the finite-state dimension dimpg(X) of each set X C C, where C is the Cantor space, consisting
of all infinite binary sequences. This definition is the natural finite-state effectivization of the gale
characterization of classical Hausdorff dimension. In general, dimpg(X) is a real number satisfying

where dimg(X) is the Hausdorff dimension of X. Like Hausdorff dimension, finite-state dimension
has the stability property that

dimpg (X U Y) = max {dlmFS (X), dimpg (Y)}
forall X,Y C C.

We show that finite-state dimension endows Q, the set of all binary expansions of rational numbers in
[0, 1], with internal dimension structure. We show that the above-mentioned theorem of Eggleston [5]
(see also [1]) holds for finite-state dimension in both Q and C. In particular, Q itself has finite-state
dimension 1.

For an individual sequence S € C, we define the finite-state dimension of S to be dimpg(S) =
dimpg({S}). Each element of Q has finite-state dimension 0, while every sequence that is normal in
the sense of Borel [2] has finite-state dimension 1. We show that every rational in [0, 1] is the finite-
state dimension of a sequence of very low complexity, namely, a sequence in the logspace-uniform
version of the complexity class ACy.

Our main theorem relates finite-state dimension to compressibility by information-lossless finite-
state compressors, which were introduced by Huffman [9] and have been extensively investigated.
(E.g., see [11] or [12].) Specifically, given such a compressor C and a sequence S € C, let pc(S)
denote the limit infimum of all compression ratios achieved by C on prefixes of S, and let ppg(S)
denote the infimum of all such pc(S). Our main theorem says that dimpg(S) is precisely prs(S).
Thus, with respect to finite-state computation, dimension and density of information are one and
the same for individual sequences.



If pLz(S) is the limit infimum of all compression ratios achieved by (any variant of) the Lempel-Ziv
compression algorithm [25] on prefixes of a sequence S € C, then it is well known that prz(S) <
prs(S) [24]. Thus our main theorem implies that prz(S) < dimpg(S). However, this inequality
may be proper. For example, Lathrop and Strauss [13] have shown that for every € > 0 there is a
sequence S that is normal, whence dimpg(S) = 1, but satisfies pr.z(S) < e.

We also investigate the role of multiple accounts in our model of finite-state gambling. Multiple
accounts are necessary and sufficient for the associated class of gales to be closed under nonnegative,
rational, linear combinations. However, we show that the restriction to single-account finite-state
gamblers does not alter the finite-state dimension of any set of sequences. In our proof, the single-
account gamblers have far more states than their multi-account counterparts, suggesting a possible
tradeoff between accounts and states. It is an open question whether this tradeoff is real or merely
a feature of our proof.

2 Preliminaries

We write 7Z for the set of all integers, N for the set of all nonnegative integers, Z T for the set of all
positive integers, and Q for the set of all rational numbers. We work in the set {0, 1}" of all (finite,
binary) strings and in the Cantor space C of all (infinite, binary) sequences. We write |w| for the
length of a string w € {0,1}". (We also write |X| for the cardinality of a finite set X, relying on
context to avoid confusion.) The empty string is denoted A. For S € C and 4,j € N, we write S[i..j]
for the string consisting of the i*" through j*" bits of S, with the understanding that S[i..j] = X if
i > j. We write S[i] for S[i..i] (the i*® bit of S), stipulating that S[0] is the leftmost bit of S. For
w € {0,1}" and S € C, we write w C S if w is a prefix of S, i.e., if w = S[0..|w| — 1].

A sequence C € C is normal [2], and we write S € NORM, if for every w € {0,1}",

1
tim —|{i<n ‘ Sli-i + |w| — 1] = w}‘ = o~ lul,

n—oo N,

That is, S is normal if every string w has asymptotic frequency 2! in S.

We use the logspace-uniform version of the bounded-depth circuit complexity class ACy [10]. This
class consists of all sets L C {0,1}" for which there exist a logspace Turing machine M and a
constant d € Z* such that the following conditions hold for all n € N.

(i) M(0™)is astandard encoding of a Boolean circuit v, : {0,1}™ — {0, 1} consisting of unbounded
fan-in AND and OR gates and NOT gates that are applied only to inputs. All gates are allowed
unbounded fan-out.

(ii) The depth of v, is at most d.

(iii) For all w € {0,1}", w € L iff v,,(w) = 1.

Note that the logspace bound on the Turing machine includes the output and thus implies that there
is a polynomial g such that each v, has at most g(n) gates. Using the standard enumeration sg = A,
51 =0, 8 =1, 83 =00, ...0f {0,1}", we say that a sequence S € C is in ACy provided that the
corresponding set Lg = {s,|S[n] = 1} is in ACy.



3 Finite-State Dimension

This section develops finite-state dimension and its fundamental properties. We first review the gale
characterization of classical Hausdorff dimension, which motivates our development.

Definition. [14] Let s € [0, 0)

1. An s-gale is a function d : {0,1}" — [0, 00) that satisfies the condition
d(w) =27 [d(w0) + d(w1)] (%)
for all w € {0,1}".

2. A martingale is a 1-gale.

Intuitively, an s-gale is a strategy for betting on the successive bits of a sequence S € C. For each
prefix w of S, d(w) is the capital (amount of money) that d has after betting on the bits w of S.
When betting on the next bit b of a prefix wb of S (assuming that b is equally likely to be 0 or 1),
condition (x) tells us that the expected value of d(wb) — the capital that d expects to have after this
bet — is (d(w0) + d(w1))/2 = 25 1d(w). If s = 1, this expected value is exactly d(w) — the capital
that d has before the bet — so the payoffs are “fair.” If s < 1, this expected value is less than d(w),
so the payoffs are “less than fair.” Similarly, of s > 1, the payoffs are “more than fair.”

The following generalization of the Kraft inequality and its corollaries will be useful.

Lemma 3.1. [14] Let s € [0,00). If d is an s-gale and B C {0,1}" is a prefix set, then for all
w € {0,1}",

Z 271 d(wu) < d(w).

ueEB

Corollary 3.2. [14] Let d be an s-gale, where s € [0,00). Then for all w € {0,1}",1 € N, and
0 < a € R, there are fewer than % strings u € {0, 1} for which d(wu) > a26~Dld(w).

Corollary 3.3. [14] If d is an s-gale, where s € [0,00), then for all w,u € {0,1}",
d(wu) < 2°1%d(w).

Of course the objective of an s-gale is to win a lot of money.

Definition. Let d be an s-gale, where s € [0, 00).

1. We say that d succeeds on a sequence S € C if
limsup d(S [0..n — 1]) = co.

n—o0

2. The success set of d is
S*d] = {S eC ‘ d succeeds on S} .



Observation 3.4. Let s,s' € [0,00). For every s-gale d, the function d’ : {0,1}" — [0,00) defined
by d'(w) = 205" =9)wld(w) is an s’-gale. If s < ', then S*°[d] C S*®°[d'].

Notation. For X C C,G(X) is the set of all s € [0,00) such that there is an s-gale d for which
X C S*l[d].

It was shown in [14] that the following definition is equivalent to the classical definition of Hausdorff
dimension in C.

Definition. The Hausdorff dimension of a set X C C is

dimp(X) = inf G(X).

In order to define finite-state dimension, we restrict attention to s-gales that are specified by finite-
state devices. These devices place bets, which we require to be rational.

Definition. A binary bet is a rational number r such that 0 < r < 1. We let B denote the set of all
binary bets, i.e., B=QnN0,1].

Intuitively, if a gambler whose current capital is ¢ € [0, 00) places a binary bet 7 € B on a (perhaps
unknown) bit b € {0,1}, then the gambler is betting the fraction r of its capital that b = 1 and
is betting the remainder of its capital that b = 0. If the payoffs are fair, then after this bet the
gambler’s capital will be

2rc ifb=1

2¢[(1=b)(1 =7) +br] = {2(1 —r)ec ifb=0.

We now introduce the model of finite-state gambling that is used to develop finite-state dimension.
Intuitively, a finite-state gambler is a finite-state device that places k separate binary bets on each
of the successive bits of its input sequence. These bets correspond to k separate accounts into which
the gambler’s capital is divided.

Definition. If k is a positive integer, then a k-account finite-state gambler (k-account FSG) is a
5-tuple

G= (Q,& 3, ‘JOa60) ;

where

e () is a nonempty, finite set of states,

d:Q x{0,1} — Q is the transition function,

5; Q — BF is the betting function,

qo € Q is the initial state, and

¢ =(co1,-.-,Cok), the initial capital vector, is a sequence of nonnegative rational numbers.

A finite state gambler (FSG) is a k-account FSG for some positive integer k.



Note that we require & > 0. No-account gamblers are not worthy of discussion.

The case k = 1, where there is only one account, is the model of finite-state gambling that has been
considered (in essentially equivalent form) by Schnorr and Stimm [20], Feder [7], and others. In this
case we do not regard & as a vector, but simply as a nonnegative rational number ¢, which is the
initial capital of G.

If k > 1, it is convenient to regard the betting function 5: Q — B* as a vector 5 = (B1,-.-,0k) of
component betting functions §; : Q — B, so that

-

B(q) = (B1(q),-- -, Br(q))

foreach ¢ € Q. If k =1, we write 3 for ﬁ

As usual with finite-state transition structures, we extend § to the transition function
5 :Q x{0,1} = Q
defined by the recursion
(¢, ) = ¢,
6" (g, wb) = 6(6%(¢, w), b)
for all ¢ € Q, w € {0,1}", and b € {0,1}; we write & for §*; and we use the abbreviation 6(w) =
6(qo, w).

Intuitively, if a k-account FSG G = (Q, 9, E, o, o) is in state ¢ € ) and its current capital vector is
é=(c1,...,c) € (QN[0,00))*, then for each of its accounts i € {1,...,k}, it places the binary bet
Bi(q) € B. If the payoffs are fair, then after this bet G' will be in state d(g,b) and its i*" account
will have capital

2¢;[(1 = b)(1 — Bi(q)) + bBi(q)]

Z,Bi(q)ci ifo=1
2(1 = Bi(@)ei i b=0.

This suggests the following definition.

Definition. Let G = (Q, 9, /3", o, Co) be a k-account finite-state gambler.

1. For each 1 < i < k, the i*" martingale of G is the function
da,i: {0,1}" — [0, 00)
defined by the recursion

da,i(N) = co,is
da,i(wb) = 2dg,;(w)[(1 — b)(1 — Bi(6(w))) + bB:i(d(w))]

for all w € {0,1}" and b € {0,1}.

2. The total martingale (or simply the martingale) of G is the function

k
dg =Y da..
i=1



It is clear by inspection that dg 1,...,dqg k, and dg are all martingales for every k-account FSG G.

A X

Example 3.5. The diagram

,0)

denotes the 1—account FSG G = (Q,&,ﬂ,O, 1), where @ = {0,1}, §(0,0) = §(
(1

5(1,1) =1, 8(0) = %, and B(1) = &. It is easy to verify that dg(\) = 1, dg
and dg(110) = 22,

=0,
4, do(11) = 3,

Example 3.6. The diagram

@

denotes the 2-account FSG G = (Q, 4, 5,0, (,1)), where @ = {0}, 6(0,0) =46(0,1) =0, $:(0) = £,

and 35(0) = % Although the two components of B make “opposite” bets, these do not “cancel”

each other. For example, note that dg(00) = dg(11) = L > 1 = dg(0) = dg(1). This is because the
separation of accounts causes the effect of a component bet 3;(¢) to be proportional to the current
capital in the i*? account.

Many of the k-account FSGs that we consider have the form G = (Q,4, 5, do,C), where ¢ =

(£:%>---»3)- In this case we omit ¢ from the notation and diagram, referring simply to the k-

account FSG G = (Q, 6, B’, do). Note that such a gambler always has initial capital dg(\) = 1.

Lemma 3.7. If Gy is a kj-account FSG with n; states and G5 is a ks-account FSG with ns states,
then there is a (k1 + ko)-account FSG G with nins states such that dg = dg, + dg,.

Proof. We use a product construction. Assume the hypothesis, with
G; = (Qj:(sjaﬁjanaaj)

for j € {1,2}, where 3; = (Bjas---Bjk;), € = (¢j1,---,¢jk;), and we assume without loss of
generality that Q1 N Q2 = (). Define the (k1 + k2)-account FSG

G = (Q767 gﬂ q07€0)7

whose components are defined as follows.



(i) @ =Q1 xQa.
(ll) For ql € Ql) q” € QZ) and b € {07 1})
3((¢',¢"),b) = (01(d’, ), 02(q", ).
(iii) For 1 <i <k + ko, ¢ € Q1 and ¢" € Qo,

B,i(q") if i <k

Billd'd") = {ﬂz,ikl(q") if i > k.

(iv) g0 = (q1,q2).
(V) FOYlSiSk1+k2,

C1,i if 4 S kl
Co,i = ip -
C2,i—k: if 1> k.

A routine induction shows that for all 1 < i < k; + ko and all w € {0,1}",

dGhi(w) ifi <kt
dGz,ifkl (U)) if 7 > k.

dg.i(w) = {

It follows that for all w € {0,1}",

k1+ko

k k
da(w) = Y dai(w) = Z de, i(w) + Z dery.i(w)
i=1 i=1 i=1
= dg, (w) + dg, (w),
whence dg = dg, + dg,.- O
By Observation 3.4, an FSG G defines not only the martingale dg, but also an s-gale for every s.
Definition. For s € [0,00), the s-gale of an FSG G is the function
ds) : {0,1}" = [0, 00)

defined by
g (w) = 2007V1"Vdg (w)

for all w € {0,1}".
In particular, note that dg) =dg.
Definition.
1. For s € [0,00), a finite-state s-gale is an s-gale d for which there exists an FSG G such that
d$) = d.

2. A finite-state martingale is a finite-state 1-gale.



We now use finite-state gales to define finite-state dimension.

Notation. For X C C, Gps(X) is the set of all s € [0,00) such that there is a finite-state s-gale d
for which X C S*[d].

Observation 3.8. Let X,Y C C and s, s’ € [0, 00).

CIfs' > s € Grg(X), then s’ € Grg(X).
- (1,00) € Gps(X) C (0,00).

- Grs(X) C G(X).

. If X CY, then Gps(Y) C Grs(X).

[

Proof. Part 1 follows from Observation 3.4. Parts 3 and 4 are obvious, as is the second inclusion
in part 2. For the first inclusion in part 2, let s € (1,00). Then the s-gale d(w) = 25Dl testifies
that s € Gps(C) C Grs(X). O

Recalling that the Hausdorff dimension of a set X C C is dimg(X) = inf G(X), it is natural to
define the finite-state dimension as follows.

Definition. The finite-state dimension of a set X C C is
dimFs (X) = inf ng (X) .

Parts 1 and 2 of Observation 3.8 tell us that Grs(X) is always of the form (s*, 00), where 0 < s* < 1,
or of the form [s*,00), where 0 < s* < 1. In either case, the number s* is the finite-state dimension
of X.

Observation 3.8 has the following immediate consequences.
Observation 3.9. Let X,Y C C.

1. 0 < dimg(X) < dimpg(X) < 1.
2. If X CY, then dimps(X) < dimpg(Y).

An important property of Hausdorff dimension is its stability, which is the term used by Falconer
[6] for the fact that dimp (X UY) is always the maximum of dimg(X) and dimg(Y’). We now show
that finite-state dimension has this property.

Theorem 3.10. For all X,Y C C,
dimpg (X U Y) = max {dlmps (X), dimpg (Y)} .
Thus for all Xy,...,X, CC,

n
dimpg (U Xl> = 1[3{2.<Xn dimpg (Xl)

i=1



Proof. Let X,Y € C. By Observation 3.9 it suffices to show that
dimpg (X U Y) < max {dlmps (X), dimpg (Y)} .
For this, let s > max {dimpg(X), dimpg(Y")}; it suffices to show that dimps(X UY") < s.
By our choice of s, there exist finite-state gamblers Gx and Gy such that
xcsx[af)], ves=[a].

By Lemma 3.7, there is a finite-state gambler G such that dg = dg, +dg, . It follows immediately
that d(Gs) = d(cfl + d(cfz,, whence

xXuy cse g |use [de)] =5 [d].
This implies that dimpg(X UY) < s. ad
We conclude this section with an easy technical lemma.

Definition. A 1-account FSG G = (Q, 9, 3, qo) is nonvanishing if 0 < B(g) < 1 for all ¢ € Q.

Lemma 3.11. For every 1-account FSG G and every € > 0, there is a nonvanishing 1-account FSG
G’ such that for all w € {0,1}%, dg/(w) > 2~ 1"ldg(w).

Proof. Let G = (Q, 4,3, q0) be a l-account FSG, and let ¢ > 0. For each q € @,
1-27(1-8(q) =27 Blg) =1-27°>0,
so we can fix a rational 3'(g) such that
27B(q) < B'(q) <1—=2"(1-B(q))-
Then 0 < 3'(q) < 1 for each q € @, so the 1-account FSG
G'=(Q,9,8' q)

is nonvanishing. Also, for all ¢ € Q,

B'(q) > 27B(q)
and
1-3"(q) >27°(1 - B(q)),
so for all w € {0,1}%, dg (w) > 2=I*ldg (w). O

4 Accounts versus States

We have allowed our finite state gamblers to have multiple accounts. When discussing the finite-state
dimensions of individual sequences, as in sections 6 and 7, the multiplicity of accounts obviously
contributes nothing. On the other hand, our proof of Theorem 3.10 makes explicit use of the multi-
account feature. In this section we discuss the necessity and desirability of multiple accounts.



If G is a 1-account FSG and s € [0, 00), then we call dg) a l-account finite state s-gale, and we call
da a l-account finite-state martingale.

We begin our discussion by noting that finite-state gales (with multiple accounts) are closed under
nonnegative, rational, linear combinations.

Observation 4.1. Let s € [0,00). Ifdy,...,d} are finite-state s-gales and a4, . . ., ar are nonnegative
rationals, then ayd; + - - - + apdy, is a finite-state s-gale.

Proof. The case s = 1 follows easily from Lemma 3.7. The general case then follows by Observa-
tion 3.4 g

We next show that 1-account finite-state gales do not enjoy this closure property. Our demonstration
uses the following finiteness criterion.

Observation 4.2. For every 1-account finite-state martingale d, the set
d(wl)
—=|d 0
Gy a0 >}
is finite.

Proof. Let G = (Q, 6, 3, qo,c¢) be a l-account FSG. Then the definition of dg tells us that for all
w € {0,1}",

dG (wl)
d 1) = .
6(w) > 0= Bo(w) = Go7s
Since the domain of 3 is the finite set (), the observation follows immediately. a

Observation 4.3. If G is the 2-account FSG of Example 3.6, then dg is not a 1-account finite-state
martingale.

Proof. For all w € {0,1}", we have

|w]
1/2
dafw) = 5 (§> [2#00) 4 g0,

where # (b, w) is the number of times the bit b appears in the string w. In particular, for all n € N,
we have

de(0") = % <§>n (2" +1)
and L 7\t
w0 =3(3) @ +2,
SO

da(0"1) 22" +2
de(0n) ~ 32041

10



Since the set

22" 42
{5 T N}
is infinite, it follows by Observation 4.2 that dg is not a l-account finite-state martingale. O

Observation 4.3 tells us that multi-account FSGs cannot always be exactly simulated by 1-account
FSGs. In contrast with Observation 4.1, it also gives us the following.

Observation 4.4. For all s € [0,00), there exist 1-account finite-state s-gales d; and ds such that
dy + ds is not a l-account finite-state s-gale.

Proof. Let G be the 2-account FSG of Example 3.6. For i € {1,2}, let d; = d(cf)l Then d; and

d» are l-account finite-state s-gales, but d; + dy = dg) is not a l-account finite-state s-gale by
Observation 4.3. O

We have designed our FSG model so that the associated gales are closed under nonnegative, rational,
linear combinations because this is such a useful closure property. By Observation 4.4, multiple
accounts are required for this closure property to hold.

Notwithstanding the usefulness of the above closure property, the question remains whether mul-
tiple accounts are strictly necessary for a theory of finite-state dimension. That is, if we define
G1—acct—rs(X) to be the set of all s € [0,00) such that there is a 1-account finite-state s-gale d for
which X C S°°[d], and we define

diml—acct—FS(X) = inf G1 _acct—Fs (X),
is there any set X C C for which
dimpg (X) < dimq_acct_FS (X)?

The next result shows that multiple accounts are not strictly necessary if we are willing to accept a
large blowup in the number of states.

Theorem 4.5. For each n-state, k-account FSG G and each € € (0, 1), if we let m = Fif—k-l and
N =n(2™ — 1), then there is an N-state, 1-account FSG G’ such that for all s € [0, 1],

S®[dS)] € §=[dSH).

Proof. Let G = (Q, 9, 3, o, Co) be an n-state, k-account FSG, and let € € (0,1). Let ¢ = 25:1 Co,j-
If k=1 or ¢ = 0 the theorem holds trivially, so assume that k& > 2 and ¢ > 0. To simplify notation,
let dj = dg,; foreach 1 < j <k, and let d =dg.

For each ¢ € Q, let G, = (Q, 4, /3", g). That is, let G, be the FSG obtained from G by changing the
initial state to ¢ and the initial capital vector to (%, %, ceey %) For each ¢ € Q and 1 < j < k, let
dg,j = da,.j, and let d;, = dg,. (We consistently use ¢ as a state and j as an account index, so no
confusion will arise between d, and d;.) Note that for all w,u € {0,1}" and 1 < j <k, if ¢ = §(w),
then

1d;(wu)

g, (u) = 7 d; (w) )

11



where we stipulate that this fraction is 0 if d;j(w) = 0. This implies that for all w,u € {0,1}", if
g = 6(w), then

dy(u) =

=

k
Z d;(wu) (41)
= dj(w)
with the same stipulation.

Let m = Fﬁf—k—l, and define the 1-account FSG G' = (Q', 4", 8’, ¢{,) whose components are specified
as follows.

(i) Q@ =@ x{0,1}<™.
(i) For q € Q, v € {0,1}<™ and b € {0,1},

(q, ub) if lul<m -1

6/((q,u),b) = {(6(q,ub),/\) if |u| =m—1.

(iii) For ¢ € Q and u € {0,1}<™,

(iv) g0 = (o, A).

Intuitively, the states of G’ are arranged in n trees, one for each state of G. The tree for ¢ simulates
the martingale d, (which is not necessarily the martingale of any 1-account FSG) for m steps before
passing control to the root of another tree. It is clear that G’ is an N-state, 1-account FSG, where
N =n(2™—1). Let d' =dg.

We now show that if |w]| is a multiple of m, |u| < m, and ¢ = 6(w), then
d'(wu) = d'(w)d, (u). (4.2)

We use induction on the string w. It holds trivially if w = A\. Assume that (4.2) holds for u, where
|u| <m —1, and let b € {0,1}. Then the definition of d’ and the induction hypothesis tell us that

d'(wub) = 2d' (wu) [(1 = b)(1 = B'(q, u)) + bB'(q, u)]
= 2d'(w)d (u) [(1 = D)(L = B'(g,w)) + bB'(g,u)].

If d,(u) = 0, this immediately tells us that d'(wub) = 0 = d’(w)d, (ub), whence (4.2) holds for ub. If
d,(uw) > 0, it tells us that

) = 2wy o [ (1 -0 (1 - S0 ) 4 )]

— d'(w) [(1 = b)(2d,(u) — d(ul)) + bd, (ul)]
= d'(w)d, (ub),

whence (4.2) again holds for ub. This completes the verification of (4.2).
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For all w € {0,1}", if we write w = wow; - - - w;, where |w;| = m for all 0 < i <[ and |w;| < m, then

(4.2) tells us inductively that

[
d’(w) = H dlh (wi)7
i=0

where ¢; = d(wp - - - w;—1) for all 0 < i <. If w; = X here, then (4.3) and (4.1) tell us that

This shows that for all w € {0, 1}", if |w| = Im, then

1
d' (w) > md(w)a
whence our choice of m tells us that

dl(1+e) (U)) — 2elmdl(w)

1
elm
>2 Wd(w)

We have now shown that for all w € {0,1}", if |w| is a multiple of m, then

a0 (w) >

ol

d(w).

(4.3)

(4.4)

Now let s € [0,1]. To complete the proof it suffices to show that S®[d(®)] C S>°[d'(**+9)]. For this,
let A € S®[d®)]. To see that A € S®[d'**t9)], let r be an arbitrarily large positive integer. Since
A € §°[d®)], there exists  C A such that d'®)(z) > 2™cr. Let w be the longest prefix of  whose
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length is a multiple of m, and let i = |z| — |w|. Then w C A, and (4.4) tells us that

dl(s+e) (U)) — 2(sfl)|w|dl(1+e) (U))
> Loe=niulgqy)
—c
> Loe—niwi-ige
C
= Lotniwl-iga—slel gs) ()
C
1 .
— _27zsd(s)
“ivdl) (2)

> 2m—isr
r.

>

Since r is arbitrary here, this shows that 4 € S®[d'(*+9)]. a0

Corollary 4.6. For all X C C,

dim; _acct—FS (X) = dimpg (X)

Proof. Let X C C and € € (0,1). It is clear that dimq_acct—rs(X) > dimpg(X), so it suffices to
show that dim; _,cct—rs(X) < dimpg(X) + 2e.

Let s = dimps(X)+e€. Then there is an FSG G such that X C S [dg)]. By Theorem 4.5, then, there
is a 1-account FSG G' such that X C S"O[dg)] C S‘X’[d(Gst)]. This implies that dim; _acet—rs(X) <
S+€:dimF5(X)+2€. O

We have now shown that the finite-state dimension of a set is not affected by whether or not multiple
accounts are allowed in the definition. However, if we use Theorem 4.5 to replace a k-account FSG
by a l-account FSG, then we are going from n states to roughly n - k* states. If we are trying to
approximate the dimension to within r bits of accuracy, then e will be roughly 27", so our 1-account
FSG will have roughly n - k" states.

At the time of this writing, we do not know whether such a large blowup in the number of states is
necessary. If so, then the multi-account FSG model is quantitatively more powerful than the single-
account FSG model, regardless of the qualitative identity in Corollary 4.6. If not, then we might be
able to dispense with the multi-account feature. In any case, the following question appears to be
significant.

Question 4.7. Given an n-state, k-account FSG G, s € [0, 1], and € € (0,1), how many states are
required for a 1-account FSG G’ satisfying 5°[d\)] € §°°[d\59)]?

5 Rational Sequences

This section shows how to use finite-state dimension to define a natural notion of dimension in the
set of all binary expansions of rational numbers.

14



Definition. Let n € Z1T and S € C.

1. S is eventually periodic with period n, and we write S € Q,, if there exist € {0,1}" and
y € {0,1}" such that for all k € N, zy* C S. In this case we write S = zy™.

2. S is eventually periodic, and we write S € Q, if there exists n € ZT such that S € Q,,.

Note that for all m,n € Z*, Q, C Qun,. Note also that Q = U ,Q,, is precisely the set of all
binary expansions of elements of QN[0, 1]. For this reason, the elements of Q are also called rational
sequences.

We now define dimension in the set of rational sequences.
Definition. For X C C, the dimension of X in Q is

We shall see that this definition endows Q with internal dimension structure. The following prop-
erties of dimension in Q are clear from the definition and Theorem 3.10.

Observation 5.1. Let X,Y C C.

1. 0 < dim(X|Q) < dimpg(X) < 1.
2. If XN QCYNQ, then dim(X|Q) < dim(Y|Q).
3. dim(X UY|Q) = max {dim(X|Q),dim(Y|Q)}.

We next show that, for fixed n, the set of all sequences with period at most n has dimension 0 in Q.

Lemma 5.2. For all n € Z™,

Proof. Let n € Z*. For each r € Nand y € {0,1}", let X,.,, be the set of all S € C such that there
exists € {0,1}" such that |z| =r mod n and for all k € N, zy* C S. Then

n—1
Qn = U U Xr,ya
r=0ye{0,1}"

and this is a finite union, so it suffices by Theorem 3.10 to show that each dimps(X,,,) = 0. For
this, fix 0 <r < n and y € {0,1}", and let s be such that 0 < s < 1 and 2% € Q. It suffices to show
that dimps(Xny) S S.

Define the l-account, (r + n)-state gambler

G = (Qa(saﬁa _T)a
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where

Q:{qEZ‘—r§q<n},

5(g,b) = g+1 ifg<n-1
0= 0 ifg=n—-1,

ifg<O
—273 ifg>0andylg] =0
-3 ifg>0andylg] =1

Blq) =

[N R TS

For example, if n = 3, r = 2, and y = 101, then G has the structure

Suppose that S € X, ,. Then there exist z € {0,1}" and j € N such that |z| = jn + r and

for all k € N, ay* C S. Let u,v € {0,1}" be such that + = wv and |u| = 7, and let ¢ = 5,
a= (s —1)r + jn(s +log(1 —272)). Since G does not bet on the first r bits of S, we have

d(Gf) (u) = o(s—1)r

Since 272 > 1 >1—27% and |v| = jn, we then have
A (x) 2 g (w) - 2211 — 27F)

— 2(s—l)r+sjn(1 _ 2—§)jn
= 2%,

It follows that for all k& € N,

d§) (ay*) = d (@) - 270 (27 )k

> 2a+ek.
Since € > 0, k is arbitrary, and zy* T S, it follows that dg) succeeds on S. This shows that
Xpy € 5% [d)], whenee dimps (Xy,,) < s. O

Notation. For n € Z*, let Q<,, = Uj_; Qu-
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Corollary 5.3. For alln € Z™,

d1m(Q§n|Q) = dlmFS(QSn) =0.

Proof. This follows immediately from Lemma 5.2 and Theorem 3.10 g

Corollary 5.4. If X C C and X N Q is finite, then dim(X|Q) = 0.

In contrast with Lemma 5.2, and with the fact that every countable set of sequences has classical
Hausdorff dimension 0, a set of sequences may have positive dimension in Q. In fact, we show that
the theorem of Eggleston [5] mentioned in the first paragraph of the present paper holds in Q.

Define the frequency of a nonempty string w € {0,1}" to be the ratio
#(1, w)

|w]

freq(w) =

)

where #(b, w) denotes the number of occurrences of the bit b in w. For each S € C and n € Z™, let
freqg(n) = freq(S[0..n — 1]).
For each « € [0, 1], define the sets

FREQ(a) = {S eC ‘ r}i_)rr;ofreqs(n) = a},

FREQ(L a) = {S € C | limsupfreqg(n) < a}.

n—o0

Note that if § = ay™ € Q, then § € FREQ(a), where a = £(:0) ¢ .

The following theorem uses the binary entropy function

H :[0,1] — [0,1]

H(z) :xlogl—k(l—m)logl L
z

(The values of #(0) and H(1) are both 0, so that # is continuous on [0, 1].) The proof of the theorem
uses the weighted binary entropy function

h:(0,1)? = [0, 00)

1 1
h(z,y) = zlog — + (1 — z) log T
Y

This function is continuous on (0,1)2. For fixed z € (0,1), h(z,y) takes its minimum value H(z) at
y = x and strictly increases as y moves away from z.

Theorem 5.5. For all « € QN [0,1],

dim(FREQ(«) | Q) = dimps(FREQ(a)) = H(a).
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Proof. By Observation 5.1 it suffices to show that

dimps (FREQ(a)) < H(a) < dim(FREQ(a) | Q). (5.1)

We prove that the first inequality holds for & € QN [0,1]. The proof that it holds for « € QN [1,1]
is analogous. Let a € Q N0, %], and let s > H(a). To prove the first inequality in (5.1), it suffices
to show that

dimps(FREQ()) < s. (5.2)

Let € = 577;(“). If o =0, fix § € QN (0, 3) such that H(d) <e. If @ >0, fix § € QN (0,1) such
that [« — §,a + 6]? C (0,1)? and for all (z,y) € [@ — 6, + ]2, h(z,y) < H(a) + €. Let

a ifa>0
6_{5 ifa =0,

and let G be the 1-account, 1-state FSG

0,1
Note that for all w € {0,1}",
dg(w) = 211 # (1 — )#Ow), (5.3)
To prove (5.2), it suffices to show that
FREQ(a) C S[d). (5.4)

To see this, let S € FREQ(«), and let w,, = S[0..n — 1] for all n € N. Then there exists ng € N such
that for all n > ng, #(1,w,) < (a4 §)n. Since 1 — 8 > B, it follows by (5.3) and our choice of ¢
that for all n > ny,

dG(wn) > 2n6(a+6)n(1 _ B)n—(a—i-&)n
- (Qlfh(aﬂiﬁ))n

(21—H(a)—e)n ’

v

whence n
dg) (wn) > 2(sfl)n (2177‘[(&)76) — 9.

Thus S € S oo[dg)], confirming (5.4) and thereby completing the proof of the first inequality in (5.1).

The second inequality in (5.1) is trivial for a € {0,1}, so let « € QN (0,1), let s < H(a), and let
G =(Q,0,0,q) be a 1l-account FSG. By Corollary 4.6, it suffices to show that

FREQ(a) N Q ¢ S[d\]. (5.5)
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Since « is rational, we can write o = %, where n > 2 is chosen large enough that
n(H(a) —s) > 2logn. (5.6)
(Note that 0 < k < n because a € (0,1). ) Let
B ={uec{0,1}" | #(1,u) =k}.

Using the well-known bound e (%)n <nl<en (%)n, it is easy to see that

n 1
Bl = QnH(a)
7= (1) > e m

4

_22”H(CY) > QnH(a)72 logn
en

v

)

whence (5.6) tells us that
|B| > 2°". (5.7)
Corollary 3.2 tells us that for each w € {0, 1}", there are fewer than 2°™ strings u € {0,1}" for which

d(Gs) (wu) > d(cf) (w). It follows by (5.7) that for each w € {0,1}" there exists a string u(w) € B such
that d(Gf) (wu(w)) < dg) (w). For each i € N, define strings x; € {0,1}" and u; € B by the recursion

xo = A, u; =u(T;), Tip1 = T;u.
Since @ is finite, there exist 4, j € N such that i < j and §(z;) = d(z;). Let
T=x, Y=upcuj—1, S =ay>.

Since freq(u) = « for all u € B, we have freq(y) = «a, whence S € FREQ(a) N Q. On the other
hand, our choice of the strings u; and our construction of S ensure that

d¥(8[0..in — 1)) < 1

for all ¢ € N. It follows by Corollary 3.3 that for all m € N, if we write m = gn + r, where ¢, € N
and r < n, then

di (S[0..m — 1]) < 2 (S[0..qn — 1))
S 27‘8
< 2™,

Since n is constant here, this implies that S ¢ Sw[dg)], confirming (5.5) and concluding the proof
of the second inequality in (5.1). O

Corollary 5.6. For all « € [0, 1],

dim(FREQ(< @) | Q) = dimps(FREQ(< a)) = H(a).

Proof. The proof of the first inequality in (5.1) actually shows that for all o' € QN [0, 3],

dimps (FREQ(< o)) < H(a'). (5.8)

19



Given an arbitrary @ € [0,1] and € > 0, choose oy € QN [0,0] and as € QN [, 1] such that
H(ar) > H(a) — € and H(az) < H(a) + €. Theorem 5.5 and monotonicity tell us that

H(a) — e < H(an) < dim(FREQ(< a1) |Q)
< dim(FREQ(< o) | Q).

Similarly, (5.8) and monotonicity tell us that

dimpg(FREQ(< @) < dimps(FREQ(< as))
< H(as) < H(a) + e

Since € may be arbitrarily small here, it follows that
dimgs (FREQ(< a)) < H(a) < dim(FREQ(< a) | Q).

The corollary follows immediately from this. O

Finally, we note that the set of all rational sequences has finite-state dimension 1.
Corollary 5.7. dim(Q | Q) = dimps(Q) = 1.

Proof. Taking o = § in Theorem 5.5 and using monotonicity, we have dim(Q | Q) >
dim(FREQ(3) | Q) = #(3) = 1. The corollary follows immediately. O

6 Individual Sequences

It is natural to define the finite-state dimension of an individual sequence as follows.

Definition. The finite-state dimension of a sequence S € C is

dlmps(S) = dlmFs({S})

It is clear that dimpg(S) = dim;_acet—rs({S}), i.e., it suffices to consider single-account FSGs when
working with individual sequences.

We know the finite-state dimensions of normal sequences from the next result of Schnorr and Stimm
[20] on 1-account FSGs. For each martingale d, let X (d) be the set of all S € C such that either

(i) dis eventually constant on S, i.e., d(S[0..n]) = d(S [0..n — 1]) for all sufficiently large n, or
(ii) d decays exponentially on S, i.e., there exists a € (0,1) such that d(S[0..n — 1]) < a™ for all
sufficiently large n.
Recall from section 2 that NORM is the set of all normal sequences.

Theorem 6.1. (Schnorr and Stimm [20]). If G is a 1-account FSG, then NORM C X (dg).

20



By Theorem 6.1, every normal sequence has finite-state dimension 1. On the other hand, by Corol-
lary 5.7, every rational sequence has finite-state dimension 0. The following theorem says that every
rational number r € [0, 1] is the finite-state dimension of a reasonably simple sequence.

Theorem 6.2. For every r € QN [0, 1] there exists S € ACy such that dimpg(S) = r.

The rest of this section is a proof of Theorem 6.2. The case r = 1 is given by Theorem 6.1 and the
following known result.

Theorem 6.3. (Strauss [23]). There is a normal sequence in ACy.
We use the following simple construction to obtain Theorem 6.2 from Theorem 6.3.

Construction 6.4. Given a rational number r € [0, 1], define the r-dilution function g, : C — C as

follows. Write 7 = % in lowest terms, i.e.,a € N, b € Z, and gcd(a,b) = 1. Given S € Cand i € N,

let w; be the i*" block of a bits of S, i.e., w; = S|ai ..a(i+ 1) —1]. (Note that w; = X if r = 0.) Then

gr(S) = w0* w0 ..

Lemma 6.5. For all r e QN [0,1] and S € C,

dimps(g-(S)) = r - dimps(S).

Proof. ¢1(S) = S and go(S) = 0% for all S € C, so these cases are obvious. Fix r € QN (0,1),

S € C. Let a,b € N such that r = § in lowest terms.

To see that dimps(g-(S)) < r - dimps(S), let s > s > dimpg(S). It suffices to show that
dimps(g,-(S)) < r-s’. By our choice of s, there is a l-account FSG G = (Q,9, 5, qo) such that

S € §=[d)].

We define the 1-account FSG
G'=(Q,0, 8 )

whose components are as follows.
(i) Q"'=Q x{0,1,...,b—1}.
(i) fi<a-1,(¢g,%) € Q, and z € {0,1},
0'((g,4),x) = (8(g, =), (i + 1))
(iii) fa<i<b-1,(gq,i) € Q',and z € {0,1},
¢'((q,1),2) = (g, (i + 1) mod b).



(v) fa<i<b-1,(g,i) € Q,
B'(q,i) = 0.

(vi) g5 = (90,0)-

If for each 4, w; = Slai ..a(i + 1) — 1], then

de (woobfawlobfa . wi,l()b*a) — dG(’wO L. wi71)2(b7a)i‘

Since S € Soo[d(Gf)]’ da(wg - - wi—1) > 9(1=s)ia 41 therefore
degr (wOOb_awlob_“ Ce wi,10b_“) > 2(b—as)i

and
dg:r) (wOOb—awlob—a . _wi_lob—a) > 2(s’r—1)bi2(b—as)i — 2(3'—s)ai_

Since s' > s, ¢,-(S) € S‘X’[dg,’r)] and dimps(g-(5)) <r-s'.

To see that dimps(g-(S)) > r - dimps(S), let s’ < s < dimpg(S). It suffices to show that
dimps(g-(S)) > r-s'. Let G = (Q,6,5,q0) be a l-account FSG. It suffices to show that g,.(S) &

Sdl ™).
We define the 1-account FSG
G'=(Q" 95, q)

whose components are as follows.

i) @ =@ x{0,1,...,a—1}.

(i) fi<a-1,(¢,9) € Q, and z € {0,1},

8'((g,4), x) = (6(g, ), +1).
(iii) If (¢,a—1) € Q', and z € {0, 1},
¢'((g,a = 1),2) = (6(¢,20°7),0).

(iv) For all (¢,i) € @',
B'(q,i) = B(a)-

(vi) g5 = (40,0)-
If for each i, w; = Slai ..a(i + 1) — 1], then

da (’w() K wi_l) > dG(wOOb_“wlob_“ .- -wi_10b_“)2_(b_“)i.

By our choice of s, S & S‘x’[dg,)], and since s’ < s, dg/ (wo - -wi—1) < 2(1=s")ia therefore
dG(wOOb—awlob—a . 'wi—lob_a) < 2(b—a)i2(1—s')ia — 2(b—s'a)i — 2(1—s’r)bi_

So for each n € N, dg(gr(S)[0..n — 1]) < 20-577+b and therefore g,(S) & S‘X’[d(cflr)] and
dimps(g,-(S)) > r - s'.
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Lemma 6.6. For all r € QN 0, 1], g,(ACp) C ACy.

Proof. ¢1(S) = S and go(S) = 0% for all S € C, so these cases are obvious. Fix r € QN (0,1).
Let a,b € N such that r = ¢ in lowest terms. Let S € ACo. Let {C} | k € N} be a family of ACy
circuits for S. We define a family of circuits that recognizes g, (S).

For each input  with |z| = m, a circuit will compute n such that z = s,,, then compute i = [n/b],
compute M =b-i+ a, compare n with M. If n > M then output 0. Otherwise use a circuit from
Cm—c to Cp, to decide y = s,,_(3_4); (Where c is a suitable constant for which |s,_(y—q);| > m —¢).

Since multiplication and division by a constant, as well as comparison and addition, can all be
performed in ACy, g,-(S) € ACo. O

Proof of Theorem 6.2. Let 7 € QN[0,1]. By Theorem 6.3 there is a sequence S’ € NORMNAC,.
Then dimpsg(S’) = 1 by Theorem 6.1. Let S = ¢,(S’). Then dimpg(S) = r by Lemma 6.5, and
S € ACy by Lemma 6.6. O

7 Dimension and Compression

In this section we characterize the finite-state dimensions of individual sequences in terms of finite-
state compressibility. We first recall the definition of an information-lossless finite-state compressor.
(This idea is due to Huffman [9]. Further exposition may be found in [11] or [12].)

Definition. A finite-state compressor (FSC) is a 4-tuple

C= (Q)(s:’/)QO))

where

e () is a nonempty, finite set of states,
e 0:Q x{0,1} — @ is the transition function,
e v:Q x{0,1} — {0,1}" is the output function, and

® ¢o € @ is the initial state.

For ¢ € Q and w € {0,1}", we define the output from state ¢ on input w to be the string v(q, w)
defined by the recursion

v(g,\) = A,
v(gq, wb) = v(q,w)r(0(q,w),b)

for all w € {0,1}" and b € {0,1}. We then define the output of C on input w € {0,1}" to be the
string
C(w) = v(qo, w).
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Definition. An FSC C = (Q, 0, v, qo) is information-lossless (IL) if the function
{0,1}" = {0,1}" x Q
w = (C(w), §(w))

is one-to-one. An information-lossless finite-state compressor (ILFSC) is an FSC that is IL.

That is, an ILFSC is an FSC whose input can be reconstructed from the output and final state
reached on that input.

Example 7.1. (Scheinwald [19]). The diagram
1/11

0/0
1/10001

1/1001

0/0
1/101

denotes the FSC C = (Q, d,v,0), where Q = {0,1,2,3} and for all ¢ € Q we have §(¢,0) = (¢ + 1)
mod 4, 6(q,1) =0, v(q,0) = X if ¢ <2, v(3,0) =0, and v(g,1) = 10?1. It can be seen that C is IL.
For example, if C(w) = 00101 and §(w) = 3, it must be the case that w = 0000000001000.

Intuitively, an FSC C compresses a string w if |C(w)] is significantly less than |w|. Of course, if C
is IL, then not all strings can be compressed. Our interest here is in the degree (if any) to which the
prefixes of a given sequence S € C can be compressed by an ILFSC.

Definition. If C' is an FSC and S € C, then the compression ratio of C on S is

pc(S) = lim inf M

n—00 n

Definition. The finite-state compression ratio of a sequence S € C is

prs(S) = inf {pc(S)|C is an ILFSC}.

The following theorem says that finite-state dimension and finite-state compressibility are one and
the same for individual sequences.
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Theorem 7.2. For all S € C,
dimFs(S) = st(S).

The rest of this section is devoted to proving Theorem 7.2. We first examine a particular method
of constructing finite-state gamblers from a finite-state compressor.

Construction 7.3. Given an FSC C = (Q,4,v,qo) and k € Z*, we define the 1-account FSG
G=G(C,k) =(Q",9, 6, q)

whose components are as follows.

(i) @' =@ x{0,1,...,k—1}.
(ii) For all (g,i) € Q" and b € {0,1},

8'((g,1),b) = (6(q,b), (i + 1) mod k).

(iii) For all (¢,%) € @', ,
(¢,1{0,1}* ")

e =

where o(q, A) =3, ca 2—lv(a.u)l
(iv) g5 = (40,0).
Lemma 7.4. In Construction 7.3, if |w| is a multiple of k and u € {0, 1}9“, then

~Jul
) — e, 2 0wa), {0,137
st o), {0,135 o)

Proof. We use induction on the string u. If u = A the lemma is clear. Assume that it holds for u,
where u € {0,1}*, and let b € {0,1}. Then

o (8(wu),b{0, 1}F71=1y
o(d(wu), {0,1}*71*))

— 9l—Iv(3(wu),b)| o (5(wub), {0, 1111y
o(6(wu), {0, l}k—|u\)

da(wub) = 2

da(wu)

da(wu),

so by the induction hypothesis the lemma holds for ub. a

Lemma 7.5. In Construction 7.3, if w = wowy -+ - wy—1, where each w; € {0, l}k, then
glw|—1C(w)|

1 o(6(wo - --w; 1),{0,1}")

dg(w) =
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Proof. We use induction on n. For n = 0, the identity is clear. Assume that it holds for n. Let
w' = wow, - - w, where each w; € {O,I}k, and let w = wowy -+ wp—1. Then Lemma 7.4 with
u = wy, tells us that

9lwn|=|v(d(w),wn)l

o(8(w), {0,1}")

whence the identity holds for w’ by the induction hypothesis. O

dG (w') = dG (w),

Lemma 7.6. In Construction 7.3, if C' is IL and |w| is a multiple of k, then

|w

dg (w) > 2lwl=1Cw) =5 Mg [QI1+1)

Proof. Assume the hypothesis. Let [ = [log|Q|], and for each ¢ € Q, let #q € {0, l}l be an [-bit
encoding of ¢. Since C is IL, for each z € {0,1}", the function g, : {0,1}" — {0,1}" defined by

g:(w) = 0’1#5(zw)u(5(z), w)

for all w € {0,1}" is one-to-one. Also, the range of g, is an instantaneous code, so the Kraft
inequality tells us that for all z € {0,1}",

Yo 2 D OEwWI— N gl <
we{0,1}* wef{0,1}*

whence
Z 9= Iv(8(z)w)| < 921+1
we{0,1}*

This implies that for all z € {0,1}",
o(6(2),{0,1}") < 22+1.

It follows by Lemma 7.5 that
dg(w) > 9lw|—|C(w)| -1k (2t+1)

Lemma 7.7. In Construction 7.3, if C'is IL, then for all w € {0,1}",
de(w) > 2lwI=1CwW) =5 @)~ (km+2141)

where | = [log|Q|] and m = max {|v(¢q,0)| | ¢ € Q}.

Proof. Assume the hypothesis, let [ and m be as given, and let w € {0,1}". Fix 0 < j < k such
that |w| + j is divisible by k. By Lemma 7.6, we have

da(w) > 27jdg(’u}0j)
S 9—iHw0? |- C (w0 )| - 222l (214.1)
— olwl—-|C(wo?)|— ek (241)— £ (2041)

> 9lw| =10 (w)| =Lk (2041) = (km+2141)
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We next examine a method of constructing information-lossless finite-state compressors from a non-
vanishing 1-account finite-state gambler.

Construction 7.8. Let G = (Q,4,53,q) be a nonvanishing 1-account FSG, and let k € ZT. For
each ¢ € @, let G, = (Q, 0,5, q), and define p, : {0, 1}k — [0,1] by pg(w) = Q’kdgq (w). Since G is
nonvanishing and each dg, is a martingale with dg, (\) = 1, each of the functions p, is a positive

probability measure on {0, l}k. Foreach ¢ € @, let ©, : {0, l}k — {0, 1} be the Shannon-Fano-Elias
code (see, for example [4]) given by the probability measure p,. Then

|@q(w)| = llI(w)a
where

l,(w) =1+ {log Wm

for all ¢ € @ and w € {0, l}k, and each of the sets range(0,) is an instantaneous code. We define
the FSC
C=0C(G,k)=(Q,d,V q)

whose components are as follows.

©) Q' =Q x{0,1}°"
(ii) For all (¢,w) € Q" and b € {0,1},

(g, wb) if lwl<k-1

¥((q,w),b) = {(6(q,wb),)\) if Jw| =k 1.

(iii) For all (¢,w) € @' and b € {0, 1},

V(g w),b) =

A if lwl<k-1
Og4(wb) if |lw| =k — 1.

(iv) g5 = (g0, A)-
Since each range(©,) is an instantaneous code, it is easy to see that the FSC C' = C(G, k) is IL.

Lemma 7.9. In Construction 7.8, if |w| is a multiple of k, then

Cw) < (1+7) ] - logda(w).

Proof. Let w = wowy, - - - wy—1, where each w; € {0, l}k. Foreach 0 <i < mn,let ¢; = §(wo + - wi—1)-
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Then

i
L

Cw)] = 3y (w)

(1 o )

2k
S 2\ 2Hle g

2

-
Il
<)

S
—

Il
g

.
[}

3
—

Il
<)

n—1

= (k+2)n —log [] da,, (w;)
i=0
= (k +2)n — logdg(w)

— (143 ol ~togdo(w),

Lemma 7.10. In Construction 7.8, for all w € {0,1}",

Cw) < (1+7) ] - logda(w).

Proof. Let w = w'z, where |w| is a multiple of k and |z| = j < k. Then Lemma 7.9 tells us that

Clw)] = ()
< (1+3) W'l - logda(w)
< (14 7) ')~ og(2 o)
::<1+%>|wy—bg¢xw)—%;
< (143) lul - g daw).

We now use Constructions 7.3 and 7.8 to prove the main result of this section.
Proof of Theorem 7.2. Let S € C. For each n € N, let w, = S[0..n —1].

To see that dimps(S) < prs(S), let s > s’ > prs(S). It suffices to show that dimpg(S) < s. By our
choice of s, there is an ILFSC C' = (Q, 0, v, qo) for which the set

I:{nENMC@mﬂ<§n}

is infinite. Let [ = [log|Q|], and fix k¥ € Z* such that 2t < s — ¢'. Let G = G(C,k) be as in
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Construction 7.3. Then by Lemma 7.7, for all n € I we have
d(GS) (wn) > 2sn—|C(w)|—%(2l+1)—(km+2l+1)

> 9ls— 12Uy (km2041)

Since s — s’ — 2lT+1 > 0, this implies that S € Soo[d(Gs)]. Thus dimps(S) < s

To see that prs(S) < dimps(S) let s > s' > s"” > dimpg(S). It suffices to show that prs(S) < s. By
our choice of s”, there is a 1-account FSG G such that the set

J = {n eN ‘ d(GS”)(wn) > 1}

is infinite. By Lemma 3.11, there is a nonvanishing 1-account FSG G’ such that dg (w) > 26" =s)lwl
de(w) for all w € {0,1}". Fix k > -2, and let C = C(G', k) be as in Construction 7.8. Then
Lemma 7.10 tells us that for all n € J,

n)| < > n — logdgr (wy,)

<(1+=+5 -5 >n—logdg(wn)

&
(1
<2+s'>n—logd ) (wy)
(

2+,
A s
< sn.

Thus prs(S) < s. O

It is worthwhile to examine the number of states used in the proof of Theorem 7.2. Consider first
the proof that dimps(S) < prs(S). If the compressor C' has n states and we want the gambler G
to approximate ppg(S) to within r bits of accuracy, then s — s’ is ©(277), so k is ©(2" logn), so G
has ©(2"nlogn) states. This increase in the number of states is modest because, roughly speaking,
only O(r + loglogn) more hardware is required to implement G than to implement C.

Conversely, consider the proof that prs(S) < dimpg(S). If the gambler G has n states and we want
the compressor C to approximate dimpg(S) to within r bits of accuracy, then s — s’ is ©(27"), so k
is ©(2"), so C has ©(n-2F) = ©(n-2?") states. This is a very large increase in the number of states.
At the time of this writing, we do not know whether such a large increase is necessary or merely an
artifact of the present proof. That is, the following question is open.

Question 7.11. Given an n-state, l-account FSG G, s € [0,1], and € € (0,1), how many states are
required for an ILFSC C such that pc(S) < s + € for all S € §°[d\))]?

Theorem 7.2 tells us that finite-state dimension of a sequence S can be defined using either FSGs
or ILFSCs. Question 7.11 asks whether FSGs are significantly more succinct than ILFSCs for this
purpose.
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8 Conclusion

We have used finite-state gamblers to effectivize the gale characterization of classical Hausdorff
dimension, thereby defining finite-state dimension in the Cantor space C and in the space Q of all
rational binary sequences. We have shown that Eggleston’s classical theorem on limiting frequencies
holds for finite-state dimension in both Q and C. We have shown that the finite-state dimensions
of individual sequences can be equivalently defined using either 1-account finite-state gamblers or
information-lossless finite-state compressors, but our proof suggests that far more states may be
required in the latter model. Similarly, we have shown that the finite-state dimensions of sets of
sequences can be equivalently defined using either multi-account finite-state gamblers or 1-account
finite-state gamblers, but our proof suggests that far more states may be needed in the latter model.
It is to be hoped that the quantitative relationships among these three finite-state models will be
clarified in the near future.

In any case, finite-state dimension is a real-time effectivization of a powerful tool of fractal geometry.
As such it should prove to be a useful tool for improving our understanding of real-time information
processing.
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