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Abstract

The resource-bounded measures of certain classes of languages are shown to be
invariant under certain changes in the underlying probability measure. Specifically, for
any real number § > 0, any polynomial-time computable sequence 5 = (Bo, P1,...) of
biases f3; € [§,1 — d], and any class C of languages that is closed upwards or downwards
under positive, polynomial-time truth-table resuctions with linear bounds on number
and length of queries, it is shown that the following two conditions are equivalent.

(1) C has p-measure 0 relative to the probability measure given by 3.
(2) C has p-measure 0 relative to the uniform probability measure.

The analogous equivalences are established for measure in E and measure in E». (Breutz-
mann and Lutz [5] established this invariance for classes C that are closed downwards
under slightly more powerful reductions, but nothing was known about invariance for
classes that are closed upwards.) The proof introduces two new techniques, namely, the
contraction of a martingale for one probability measure to a martingale for an induced
probability measure, and a new, improved positive bias reduction of one bias sequence
to another. Consequences for the BPP versus E problem and small span theorems are
derived.

1 Introduction

Until recently, all research on the measure-theoretic structure of complexity classes has
been restricted to the uniform probability measure. This is the probability measure ;1 that
intuitively corresponds to a random experiment in which a language A C {0,1}* is chosen
probabilistically, using an independent toss of a fair coin to decide whether each string
is in A. When effectivized by the methods of resource-bounded measure [15], p induces
measure-theoretic structure on E = DTIME(2!ir®a) Ey = DTIME(2P°ymomial) " and other
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complexity classes. Investigations of this structure by a number of researchers have yielded
many new insights over the past seven years. The recent surveys [3, 16, 6] describe much
of this work.

There are several reasons for extending our investigation of resource-bounded measure
to a wider variety of probability measures. First, such variety is essential in cryptogra-
phy, computational learning, algorithmic information theory, average-case complexity, and
other potential application areas. Second, applications of the probabilistic method [2] often
require use of non-uniform probability measures, and this is likely to hold for the resource-
bounded probabilistic method [18, 16] as well. Third, resource-bounded measure based on
non-uniform probability measures provides new methods for proving results about resource-
bounded measure based on the uniform probability measure [5].

Motivated by such considerations, Breutzmann and Lutz [5] initiated the study of
resource-bounded measure based on an arbitrary (Borel) probability measure v on the
Cantor space C (the set of all languages). (Precise definitions of these and other terms
appear in Appendix A.) Kautz [13] and Lutz [17] have furthered this study in different
directions, and the present paper is another contribution.

The principal focus of the paper [5] is the circumstances under which the v-measure
of a complexity class C is invariant when the probability measure v is replaced by some
other probability measure /. For an arbitrary class C of languages, such invariance can
only occur if v and v/ are fairly close to one another: Extending results of Kakutani [12],
Vovk [24], and Breutzmann and Lutz [5], Kautz [13] has shown that the “square-summable
equivalence” of v and v/ is sufficient to ensure v,(C) = 0 <= 1;,(C) = 0, but very little
more can be said when C is arbitrary.

Fortunately, complexity classes have more structure than arbitrary classes. Most com-
plexity classes of interest, including P, NP, coNP, R, BPP, AM, P/Poly, PH, etc., are closed
downwards under positive, polynomial-time truth-table reductions (Sgosftt—reductions),
and their intersections with E are closed downward under Sgosftt—reductions with linear
bounds on the length of queries (Sgalsir_ltt—reductions). Breutzmann and Lutz [5] proved that
every class C with these closure properties enjoys a substantial amount of invariance in its
measure. Specifically, if C is any such class and ﬁ and ﬁ_" are strongly positive, P-sequences
of biases, then the equivalences

) =0 <= u(C)=0,
WCB) =0 = (| =0, (1)

W(CEy) =0 «— P (CBy) =0



hold, where ug and ,uﬁl are the probability measures corresponding to the bias sequences ﬁ
and (3, respectively.

Our primary concern in the present paper is to extend this bias invariance to classes that
are closed upwards under some type <! of polynomial reductions. We have two reasons
for interest in this question. First and foremost, many recent investigations in complexity
theory focus on the resource-bounded measure of the upper S,}f—span

P, '(4) = {B|A <] B}
of a language A. Such investigations include work on small span theorems [9, 14, 4, 11, 7]
and work on the BPP versus E question [1, 7, 8]. In general, the upper <l-span of a
language is closed upwards, but not downwards, under Sf—reductions.

Our second reason for interest in upward closure conditions is that the above-mentioned
results of Breutzmann and Lutz [5] do not fully establish the invariance of measures of
complexity classes under the indicated changes of bias sequences. For example, if ﬁ is an
arbitrary strongly positive P-sequence of biases, the results of [5] show that

WI(CIE) = 0 u(C|E) = 0,
but they do not show that
1P (CIE) =1 < u(C|E) = 1.

In general, the condition v(C|E) = 1 is equivalent to v(C°|E) = 0, where C¢ is the complement
of C. Since C is closed downwards under <F-reductions if and only if C® is closed upwards
under Sf—reductions, we are again led to consider upward closure conditions.

Our main theorem, the Bias Invariance Theorem, states that, if C is any class of lan-
guages that is closed upwards or downwards under positive, polynomial-time, truth-table
reductions with linear bounds on number and length of queries (git’)lslr_llin_tt—reductions),
and if ﬁ and ﬁ’ are strongly positive P-sequences of biases, then the equivalences (1) above
hold. The proof introduces two new techniques, namely, the contraction of a martingale for
one probability measure to a martingale for an induced probability measure (dual to the
martingale dilation technique introduced in [5]) and a new, improved positive bias reduction

of one bias sequence to another.

We also note three easy consequences of our Bias Invariance Theorem. First, in combina-
tion with work of Allender and Strauss [1] and Buhrman, van Melkebeek, Regan, Sivakumar,
and Strauss [8], it implies that, if there is any strongly positive P-sequence of biases 3 such



that the complete S%—degree for E5 does not have wg—measure 1 in E9, then E ¢ BPP.
Second, in combination with the work of Regan, Sivakumar, and Cai [19], it implies that,
for any reasonable complexity class C, if there exists a strongly positive P-sequence of biases
f such that C has ,ug—measure 1 in E, then E C C ( and similarly for Ep). Third, if <F is any
P.lin B implies A <P B, and if 3 is a strongly

polynomial reducibility such that A <pos—lin—tt
positive P-sequence of biases, then the small span theorem for Sf—reductions holds with

respect to ,ug if and only if it holds with respect to pu. Tantalizingly, this hypothesis places
<P “just beyond” the small span theorem of Buhrman and van Melkebeek [7], which is the
strongest small span theorem proven to date for exponential time.

2 Preliminaries

We write {0, 1}* for the set of all (finite, binary) strings, and we write |z| for the length of
a string . The empty string, A, is the unique string of length 0. The standard enumeration
of {0,1}* is the sequence sy = A, s1 = 0,89 = 1,53 = 00,..., ordered first by length and
then lexicographically. For z,y € {0,1}*, we write z < y if = precedes y in this standard
enumeration. For n € N, {0,1}" denotes the set of all strings of length n, and {0, 1}<"
denotes the set of all strings of length at most n.

If z is a string or an (infinite, binary) sequence, and if 0 < i < j < |z|, then z[i..5] is the
string consisting of the i*" through 5" bits of . In particular, 2[0..i — 1] is the i-bit prefiz
of z. We write x[i] for z[i..i], the i'! bit of . (Note that the leftmost bit of x is z[0], the
0% bit of z.)

If w is a string and z is a string or sequence, then we write w C z if w is a prefix of x,
i.e., if there is a string or sequence y such that z = wy.

The Boolean value of a condition ¢ is [¢] = if ¢ then 1 else 0.

We work in the Cantor space C, consisting of all languages A C {0,1}*. We identify
each language A with its characteristic sequence, which is the infinite binary sequence x4
defined by

xaln] = [sn € A]

for each n € N. Relying on this identification, we also consider C to be the set of all infinite
binary sequences. The complement of a set X of languages is X¢ = C — X.



For each string w € {0, 1}*, the cylinder generated by w is the set

Co={4€C|lwCxa}.

3 Martingale Contraction

Given a positive coin-toss probability measure v, an orderly truth-table reduction (f,g),
and a v/"9)-martingale d (where v(/:9) is the probability measure induced by v and (f,g)),
Breutzmann and Lutz [5] showed how to construct a v-martingale (f, g)"d, called the (f, g)-
dilation of d, such that (f,g)"d succeeds on A whenever d succeeds on F(f ) (A). (See [5] or
Appendix B for notation and terminology involving truth-table reductions.) In this section
we present a dual of this construction. Given v and (f,g) as above and a v-martingale
d, we show how to construct a v(/9)-supermartingale (f, g)_d, called the (f, g)-contraction
of d, such that (f,g)_d succeeds on A whenever d succeeds strongly on every element of

Frg({AD-

The notion of an (f, g)-step, introduced in [5], will also be useful here.

Definition. Let (f,g) be an orderly <i-reduction.

1. An (f,g)-step is a positive integer [ such that F(fyg)(()lfl) # F(fyg)(()l).
2. For k € N, we let step(k) be the least (f,g)-step [ such that [ > k.

3. For v,w € {0,1}*, we write v > w to indicate that w C v and |v| = step(|w| + 1).
(That is, v = w means that v is a proper extension of w to the next step.)

Our construction makes use of a special-purpose inverse of F(f ;) that depends on both
(f,9) and d.

Definition. Let (f,g) be an orderly <i-reduction, let v be a positive probability measure
on C, and let d be a v-martingale. Then the partial function

Flpa 10,1} — {0, 1}

is defined recursively as follows.



(@) F(},lg),d(A) =A

(ii) For w € {0,1}* and b € {0,1}, F(}lg) 4(wb) is the lexicographically first string v >

F(}}g)’d(w) such that F{s ) (v) = wb and, for all v' - F(}’lg)yd(w) such that F; g (v') =

wb, we have d(v) < d(v'). (That is, v minimizes d(v) on the set of all v > F(}lg) (W)
satisfying Fi gy (v) = wb.)

. -1 . . . C /- . -1 C
Note that the function F; g),a 18 strictly monotone (i.e., w 7 w' implies that F(f’g)yd(w) 7

F(}lg) ,(w"), provided that these values exist), whence it extends naturally to a partial

function
F ' ,:C—C.

(£,9),
It is easily verified that F(;,lg), o inverts F{; oy in the sense that, for all z € {0,1}*UC, F(;}g

finds a preimage of F{; 4 (7), i.e.,

),d

-1
Fi1.0)(F 1 0.0 (Fl1,9) () = Fiy,9)(2).
We now define the (f, g)-contraction of a v-martingale d.

Definition. Let (f,g) be an orderly <i-reduction, let v be a positive probability measure
on C, and let d be a v-martingale. Then the (f, g)-contraction of d is the function

(f,9)_d:{0,1}" —{0,1}"

defined as follows.

(i) (f,9)_d(X) = d(X).
(if) For w € {0,1}* and b € {0, 1},
d(F(}’lg), J(wb)) if d(F(}’lg), 4(wb)) is defined

,g)_d(wb) =
(f.9)_d(wb) { 2-(f,9)_d(w)  otherwise.

Theorem 3.1 (Martingale Contraction Theorem). Assume that v is a positive probability
measure on C, (f,g) is an orderly <i-reduction, and d is a v-martingale. Then (f,g)_d is
a v/9)_supermartingale. Moreover, for every language A C {0, 1}*, if F(f1 ({A}) C S,

1.9)
then A € S*®[(f,9)_d].



4 Bias Invariance
In this section we present our main results.

Definition. Let (f,g) be a <g-reduction.

L. (f,g) is positive (briefly, a <pos_tt-reduction) if, for all A,B C {0,1}*, A C B
impliesF s ) (A) C F(;q)(B).

2. (f,g) is polynomial-time computable (briefly, a <[i-reduction) if the functions f and
g are computable in polynomial time.

3. (f,g) is polynomial-time computable with linear-bounded queries (briefly, a Si’lin—

reduction) if (f,g) is a <l-reduction and there is a constant ¢ € N such that, for
all € {0,1}%, Q(1.9)(w) C {0, 1}5eC+aD),

4. (f,g) is polynomial-time computable with a linear number of queries (briefly, a <f .-
reduction) if (f,g) is a <k-reduction and there is a constant ¢ € N such that, for all
z € {0, 1}, |Q(r,¢)(x)| < c(1 + |z]).

P.lin . . . . . P.lin
Of course, a <0 ;-reduction is a <y-reduction with properties 1-3, and a Spos—lin—tt"

reduction is a <ii;-reduction with properties 1-4.

We now present the Positive Bias Reduction Theorem. This strengthens the identically-

.- P,lin
named result of Breutzmann and Lutz [5] by giving a <",
P lin
< )

<pos—ty-reduction. This technical improvement, which is essential for our purposes here,
requires a substantially different construction. Details appear in Appendix D.

-reduction in place of a

Theorem 4.1 (Positive Bias Reduction Theorem). Let ﬁ and ﬂ_” be strongly positive, P-

exact sequences of biases, and let (f,g) be the reduction defined in Appendix D. Then
P,lin

(f,g) is an orderly <pos—lin—g-reduction, and the probability measure induced by ug and

is a coin-toss probability measure % where 8" = G
g p Yy meo,

The following result is our main theorem.



Theorem 4.2 (Bias Invariance Theorem). Assume that ﬁ and 5’ are strongly positive P-
sequences of biases, and let C be a class of languages that is closed upwards or downwards

Pl )
under < ™ -reductions. Then

—pos—lin—tt

ui(C) =0 ul (C)=0.

The “downwards” part of Theorem 4.2 is a technical improvement of the Bias Equiv-
alence Theorem of [5] from Sgélslr_ltt—reductions to Sg(’)lsn_llin_tt—reductions. The proof of this
improvement is simply the proof in [5] with Theorem 4.1 used in place of its predecessor in

[5].

The “upwards” part of Theorem 4.2 is entirely new. The proof of this result is similar to
the proof of the Bias Equivalence Theorem in [5], but now in addition to using our improved
Positive Bias Reduction Theorem, we use the Martingale Contraction Theorem of section
3 in place of the Martingale Dilation Theorem of [5]. We also note that the linear bound
on number of queries in Theorem 4.1 is essential for the “upwards” direction.

If <F is a polynomial reducibility, then a class C is closed upwards under <F-reductions
if and only if C¢ is closed downwards under <F-reductions. We thus have the following
immediate consequence of Theorem 4.2.

Corollary 4.3. Assume that ﬁ and 5’ are strongly positive P-sequences of biases, and let

C be a class of languages that is closed upwards or downwards under gi&g:inim
Then

-reductions.

ug(C) =1 ugl(C) =1.

We now mention some consequences of Theorem 4.2, beginning with a discussion of the
measure of the complete S%—degree for exponential time, and its consequences for the BPP
versus E problem.

For each class D of languages, we use the notations

Hr(D) = {A|Ais <F-hard for D},
Cr(D) = {A]A is <F-complete for D},

and similarly for other reducibilities. The following easy observation shows that every
consequence of 1 (Ct(E2)|E2) # 1 is also a consequence of u(Ct(E)|E) # 1.



Lemma 4.4. u(Cr(E)|E) #1 = u(Cr(E2)|E2) # 1.

Proof. Juedes and Lutz [10] have shown that, if X is a set of languages that is closed
downwards under <F -reductions, then p(X|Ey) = 0 = u(X|E) = 0. Applying this result
with X = H1(E)¢ = H1(Eg) yields the lemma. O

Allender and Strauss [1] have proven that p,(#1(BPP)) = 1. Buhrman, van Melkebeek,
Regan, Sivakumar, and Strauss [8] have noted that this implies that p(Cr(E2)|E2) # 1 =
E ¢ BPP. Combining this argument with Corollary 4.3 yields the following extension.

Corollary 4.5. If there exists a strongly positive P-sequence of biases ﬁ such that
13 (CT(E2)|Eg) # 1, then E Z BPP.

Regan, Sivakumar, and Cai [19] have proven a “most is all” lemma, stating that if C is
any class of languages that is either closed under finite unions and intersections or closed
under symmetric difference, then u(C|E) = 1 = E C C. Combining this with Corollary
4.3 gives the following extended “most is all” result.

Corollary 4.6. Let C be a class of languages that is closed upwards or downwards under
<Plin
—pos—lin—tt

-reductions, and is also closed under either finite unions and intersections or

symmetric difference. If there is any strongly positive, P-sequence of biases ﬁ such that
pP(C|E) =1, then E C C.

Of course, the analagous result holds for E,.

We conclude with a brief discussion of small span theorems. Given a polynomial re-
ducibility <P, the lower <F-span of a language A is
P?"(A) = {B|B Sf A},
and the upper <F-span of A is

P, '(4) = {BJA < B}.

r

We will use the following compact notation.



Definition. Let <P be a polynomial reducibility type, and let v be a probability measure
on C. Then the small span theorem for <F-reductions in the class E over the probability

measure v is the assertion
SST,(<y,E)

stating that, for every A € E, v(P,(A)|E) = 0 or v, (P, 1(4)) = v(P,1(A)|E) = 0. When the
probability measure is u, we omit it from the notation, writing SST(<F, E) for SST,,(<F,E).
Similar assertions for other classes, e.g., SST,(<F,Ey), are defined in the now-obvious
manner.

Juedes and Lutz [9] proved the first small span theorems, SST(<E  E) and SST(<F E,),
and noted that extending either to <} would establish E ¢ BPP. Lindner [14] estab-
lished SST(<Y_,,,E) and SST(<}_,,, E2), and Ambos-Spies, Neis, and Terwijn [4] proved
SST(SE_WE) and SST(SE_H;,EQ) for all fixed k¥ € N. Very recently, Buhrman and van

Melkebeek [7] have taken a major step forward by proving SST(ggP(n) E9) for every func-

—tt?
tion g(n) satisfying g(n) = n°). We note that the Bias Invariance Theorem implies that
small span theorems lying “just beyond” this latter result are somewhat robust with respect
to changes of biases.

. . s P,li .
Theorem 4.7. If <P is a polynomial reducibility such that A Sposn—llin—tt B implies A < B,

then for every strongly positive P-sequence of biases ﬁ,
SSTMB(SE,E) «— SST(<V,B),

and similarly for Eo.

Acknowledgment. The first author thanks Steve Kautz for a very useful discussion.
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Appendix A. Resource-Bounded v-Measure

In this appendix, we present the basic elements of resource-bounded measure based on
an arbitrary probability measure v on C. The material in Appendices A and B is taken,
with permission, from [5].

Definition. A probability measure on C is a function
v:{0,1}* — [0,1]
such that v(\) = 1, and for all w € {0,1}*,
v(w) = v(w0) + v(wl).
Intuitively, v(w) is the probability that A € C,, when we “choose a language A € C
according to the probability measure v.” We sometimes write v(C,,) for v(w).

Examples.

1. The uniform probability measure u is defined by
plw) =271
for all w e {0,1}*.

2. A sequence of biases is a sequence g = (Bo, B1, B2, - ..), where each §; € [0, lj Given
a sequence of biases 3, the [(-coin-toss probability measure (also called the (-product

probability measure) is the probability measure ;1 defined by

lw|-1

Ww) = T (0= B) - (1= wfil) + 6 - whi)

1=0

for all w e {0,1}*.

Intuitively, ,ug (w) is the probability that w C A when the language A C {0,1}* is chosen
probabilistically according to the following random experiment. For each string s; in the
standard enumeration s, s1, s2,... of {0,1}*, we (independently of all other strings) toss a

A-1



special coin, whose probability is ; of coming up heads, in which case s; € A, and 1 — ;
of coming up tails, in which case s; € A.

Definition. A probability measure v on C is positive if, for all w € {0,1}*, v(w) > 0.

Definition. If v is a positive probability measure and u,v € {0,1}*, then the conditional
v-measure of wu given v is

1 ifuCw
v(ulv) = ZE:)) ifvCu
0 otherwise.

Note that v(u|v) is the conditional probability that A € C,, given that A € C,, when
A € C is chosen according to the probability measure v.

Definition. A probability measure v on C is strongly positive if (v is positive and) there is
a constant 0 > 0 such that, for all w € {0,1}* and b € {0,1}, v(wblw) > §.

Definition. A sequence of biases ﬁ = (Bo, B1, B2, - - . ) is strongly positive if there is a constant
d > 0 such that, for alli € N, g; € [§,1 — 0].

We next review the well-known notion of a martingale over a probability measure v.
Computable martingales were used by Schnorr [20, 21, 22, 23] in his investigations of ran-
domness, and have more recently been used by Lutz [15] in the development of resource-
bounded measure.

Definition. Let v be a probability measure on C. Then a v-martingale is a function d :
{0,1}* — [0, 00) such that, for all w € {0,1}*,

d(w)v(w) = d(w0)v(w0) + d(wl)v(wl).
If ﬁ is a sequence of biases, then a wg—martingale is simply called a ﬁ—martingale. A p-

martingale is even more simply called a martingale. (That is, when the probability measure
is not specified, it is assumed to be the uniform probability measure pu.)

A-2



Definition. A v-martingale d succeeds on a language A € C if

limsupd(xa[0..n — 1])

n—-:aoQ

Q.

The success set of a v-martingale d is the set
S®[d] = {A € C | d succeeds on A}.

The strong success set of a v-martingale d is the set

o [d] = {A € C | limsupd(A[0..n — 1]) = oo} .

n—0o0
Definition. Let v be a probability measure on C.

1. A p-v-martingale is a v-martingale that is p-computable.

2. A po-v-martingale is a v-martingale that is pa-computable.

A p—,ug—martingale is called a p—ﬁ—martingale, a p-p-martingale is called a p-martingale,
and similarly for ps.

We now come to the fundamental ideas of resource-bounded r-measure.

Definition. Let v be a probability measure on C, and let X C C.
1. X has p-v-measure 0, and we write v,(X) = 0, if there is a p-v-martingale d such
that X C S*|d].
2. X has p-v-measure 1, and we write v,(X) =1, if 4,(X¢) = 0, where X¢ = C — X.

The conditions v, (X) =0 and v, (X) = 1 are defined analogously.

Definition. Let v be a probability measure on C, and let X C C.

1. X has v-measure 0 in E, and we write v(X|E) =0, if v,(X N E) = 0.

A-3



2. X has v-measure 1 in E, and we write v(X|E) =1, if v(X¢|E) = 0.
3. X has v-measure 0 in Eg, and we write v(X|Ey) = 0, if v, (X NEy) = 0.

4. X has v-measure 1 in Eg, and we write v(X|Eq) = 1, if v(X¢|E3) = 0.

Definition. Let v be a positive probability measure on C, let A C {0,1}*, and let 7 € N.
Then the i*" conditional v-probability along A is

va(i +1]7) = v(xal0..7] | xa[0..i — 1]).

Definition. Two positive probability measures v and v/ on C are summably equivalent, and
we write v = v/, if for every A C {0,1}*,

o0
> fwali+ 1]i) — vy (i + 1])] < oo.
=0

Definition.

1. A P-sequence of biases is a sequence ﬁ = (Bo, b1, P2, ... ) of biases f3; € [0, 1] for which
there is a function

B:NxN-—QnI0,1]
with the following two properties.
(i) For alli,r € N, |B(i,r) — ;] <27".

(ii) There is an algorithm that, for all 7, € N, computes B(z, ) in time polynomial
in |s;| +r (i.e., in time polynomial in log(i 4+ 1) + 7).

2. A P-ezact sequence of biases is a sequence ﬁ = (0o, 1, P2, ...) of (rational) biases
B € QN [0,1] such that the function i — (; is computable in time polynomial in
|4

Definition. If @ and ﬁ are sequences of biases, then & and ﬁ are summably equivalent, and
we write @ = 3, if Y0 |a; — Bi] < oo.

It is clear that & = ﬁ if and only if u® ~ ,ug.
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Lemma A.1 (Breutzmann and Lutz [5]). For every P-sequence of biases [, there is a
P-exact sequence of biases 3’ such that 5~ (.
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Appendix B. Truth-Table Reductions

A truth-table reduction (briefly, a <i;-reduction) is an ordered pair (f, g) of total recursive
functions such that for each = € {0,1}*, there exists n(z) € Z™ such that the following two
conditions hold.

(i) f(=)is (the standard encoding of) an n(xz)-tuple (f1(z),... , fn()(x)) of strings fi(x) €
{0,1}*, which are called the queries of the reduction (f,g) on input . We use the
notation Q¢ (%) = {f1(2),..., fu@) (7)} for the set of such queries.

(ii) g(z) is (the standard encoding of) an n(z)-input, l-output Boolean circuit, called
the truth table of the reduction (f,g) on input z. We identify ¢g(z) with the Boolean
function computed by this circuit, i.e.,

g(z) : {0, 13" — {0,1}.

A truth-table reduction (f, g) induces the function

F(f,g) :C—C

F(f,g)(A) = {*’I; € {0’1}* |g(x) ([[fl(x) € A]][[fn(x)(x) € A]]) = 1}'

If A and B are languages and (f,g) is a <tt-reduction, then (f,g) reduces B to A, and
we write
B Stt A via (fag)a

if B = Fis,4)(A). More generally, if A and B are languages, then B is truth-table reducible
(briefly, <it-reducible) to A, and we write B <i; A, if there exists a <g-reduction (f,g)
such that B <y A via (f,g).

If (f,g) is a <g-reduction, then the function F(; g : C — C defined above induces a
corresponding function

F(f’g) :{0,1}* — {0,1}*UC

defined as follows. (It is standard practice to use the same notation for these two functions,
and no confusion will result from this practice here.) Intuitively, if A € C and w C A,
then Fi; 4y (w) is the largest prefix of F{; 4 (A) such that w answers all queries in this prefix.
Formally, let w € {0,1}*, and let

Ay = {50 <i <|w| and w[i] = 1}.
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If Q(f,9)(7) € {50, .51} for all z € {0,1}*, then

Fip,g)(w) = Fg,6)(Auw)-
Otherwise,
Flyg)(W) = XF; ) (Au)[0-m = 1],

where m is the greatest nonnegative integer such that

m—1

U Q(f,g)(si) - {80,... ,8‘w|_1}

1=0

Now let (f,g) be a <i;-reduction, and let z € {0,1}*. Then the inverse image of the
cylinder C, under the reduction (f,g) is
—1
F(m)(CZ) = {Ae€C|F;,(A) eC.}
= {A e C | z F(fyg)(A)} .

The following well-known fact is easily verified.

Lemma B.1. If v is a probability measure on C and (f,g) is a <¢-reduction, then the
function

59) 40,1} — [0, 1]

A19(2) = u(F L (C.))
is also a probability measure on C.

The probability measure v(/9) of Lemma B.1 is called the probability measure induced
by v and (f,g).

In this paper, we use the following special type of <i;-reduction.

Definition. A <ji-reduction (f,g) is orderly if, for all z,y,u,v € {0,1}*, if x < y, u €
Q(r,9)(x), and v € Q(y,4)(y), then u < v. That is, if x precedes y (in the standard ordering
of {0,1}*), then every query of (f,g) on input z precedes every query of (f,g) on input y.



Appendix C. Proof of Martingale Contraction Theorem

Let w € {0,1}*, and let y = F(}lg)d(w) Note that for any v > y, |v| = step(|y|) and
either F'(v) = w0 or F(v) = wl. Let | = step(Jy|) — |y|. We have

(frg)_dw) = d(y)

= Y d(v)r(vly)
vy
= > dwlly) + Y dw(ly)
F(Z)>:yw0 F(:}})Zywl
> ) mind@)wly) + Y [mind(v)v(vly)
F(Z)>:yw0 F(:}})Zywl
= [(f,9)_dwO0)] Y v(vly) + [(f.9)_dw0)] > v(vly)
vy vy
F(v)=w0 F(v)=wl
= [(f.9_dw0)] > wvlyzly) + [(f,9)_dw0)] Y viyzly)
ze{0,1}! zef{0,1}!
F(yx)=w0 F(yx)=wl

= (f,9)_d@0)rS9) (wOlw) + (f,g)_d(wl)pS9 (wl|w).

The penultimate step follows from the fact that (f,g) is an orderly <;-reduction, and the
last step is Lemma 6.4 of [5]. This shows that (f,g)_d is a v f, g)-supermartingale.

To see that (f,g)_d satisfies the desired success condition, let A, be a language such that
F(}}g)({A}) C Sgqld]. If A & range F(; ), then F(}}g)’ 4(w) is undefined for all sufficiently
long prefixes w of A, whence it is clear that A € S*[(f,g)_d]. If A € range F|; ), then
F(},lg)’d(A[O..n — 1]) is defined for all n and F(}’lg),d(A) € F(}’lg)({A}), S

limsup(f,g)_d(A[0..n —1]) = limsup F(}lg) J(A[0..n —1])

n—o0 n—o0

\Y

lim ian},lg)’ J(A[0..n —1])

n— 00 (

\Y

lim ian},lg)’ J(A)[0.n —1]

n—o00 (
OO7

whence we again have A € S®|[(f,g)_d].
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Appendix D. Proof of Positive Bias Reduction Theorem

Let v be the coin toss distribution specified by biases (g, 1,... € [6,1 — 4], and let
B €[0,1 — 4] and € > 0 be given. We want to construct a formula of the form

a1 by a3 b1
Cp = /\ Ty | A \/ Yky | V /\ T2j, | N \/ Yko | Voo
j1=1 k1=1 ja=1 ka=1 (2)

We suppose that the inputs to this circuit are random and independent, and that Pr(z =
1) = f;,i=0,1,2,..., if z, ranging over all z’s and y’s, appears i'" in the formula above.
Under this hypothesis, we want |Pr(Cs = 1) — '] < € and that the number of inputs to
Cg be at most O(Ig(1/e)).

For example, if a1 = a9 =--- =2 and by = by = --- = 3, we have:
(and
(and
z0 z1)
(or
(or
z2 z3 z4)
(and
(and
z5 z6)
(or
(or
z7 z8 z9)
(and
(and
z10 z11)
(or
(or

z12 z13 z14)))))))

and PI‘(Zl = 1) = ﬁz

In pictures, we’d have



v A
"/ N
A

For real numbers z,y € [0,1], let x ®y denote 1 — (1 —z)(1 —y). Thus, for independent
A and B, Pr(A) @ Pr(B) = Pr(A Vv B). Note that @ is monotonically increasing in its
arguments, that @) _, ) is monotonically increasing in n, and that the empty @, @2:1 Tp,
is 0.

We need to determine the a’s and b’s in Formula (2). The algorithm, on input /3,
Bo, 1, Pa, ... € [0,1 — §], and tolerance e, is as follows:

e If ¢ > 1 return the constant false circuit. Also do the right thing if 8’ is 0 or 1.
Otherwise continue...

e Determine a so that
a+1 a

18 <8 <[5
j=1 j=1

Put A = H?:l Bj.

e Determine b so that

a+b a+b+1
AP B<B <A P B
k=a-+1 k=a+1

Put B = @I, b

e Determine 3" so that ' = A(B®p"), i.e., " = QI(I__AL%. Inductively find a formula Cjgr

of the top-level shape whose probability of acceptance is 8”. Use tolerance €/(A(1 —
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Put
a b

Cg = /\ 15 | A \/ Yk, | V Cgr

a=1 ki=1

Now we analyze the algorithm. First, the formula generated has at most O(lg(1/eo))
inputs, where ¢ is the initial value of e. Note that each recursive call increases the tolerance
€ by at least the factor 1/(A(1 — B)) = 1/(1 — §)**?; it follows that € will grow to be at

least 1 for Y (a; + b;) < 1gl(g1?5)-

Next, the algorithm is correct, i.e., produces a circuit with probability of acceptance in
the range ' £ €. Clearly this is the case if the algorithm returns immediately (when ¢ > 1).
Otherwise, suppose inductively that Cgr has probability 3" +¢/(A(1 — B)). It follows that
Cj3 has acceptance probability in

A(me(meamtm)) = a-en (- mtg)]

= AQ-0=B) (A -5)] = A0 - B) yi—p

= ABapg") te
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