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Abstract

The resource�bounded measures of certain classes of languages are shown to be
invariant under certain changes in the underlying probability measure� Speci�cally� for
any real number � � �� any polynomial�time computable sequence �� � ���� ��� � � � � of
biases �i � ��� 	� �
� and any class C of languages that is closed upwards or downwards

under positive� polynomial�time truth�table resuctions with linear bounds on number
and length of queries� it is shown that the following two conditions are equivalent�

�	� C has p�measure � relative to the probability measure given by ���

��� C has p�measure � relative to the uniform probability measure�

The analogous equivalences are established for measure in E and measure in E�� �Breutz�
mann and Lutz ��
 established this invariance for classes C that are closed downwards
under slightly more powerful reductions� but nothing was known about invariance for
classes that are closed upwards�� The proof introduces two new techniques� namely� the
contraction of a martingale for one probability measure to a martingale for an induced
probability measure� and a new� improved positive bias reduction of one bias sequence
to another� Consequences for the BPP versus E problem and small span theorems are
derived�

� Introduction

Until recently� all research on the measure�theoretic structure of complexity classes has
been restricted to the uniform probability measure� This is the probability measure � that
intuitively corresponds to a random experiment in which a language A � f�� �g� is chosen
probabilistically� using an independent toss of a fair coin to decide whether each string
is in A� When e�ectivized by the methods of resource�bounded measure 
���� � induces
measure�theoretic structure on E � DTIME�
linear�� E� � DTIME�
polynomial�� and other
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complexity classes� Investigations of this structure by a number of researchers have yielded
many new insights over the past seven years� The recent surveys 
	� ��� �� describe much
of this work�

There are several reasons for extending our investigation of resource�bounded measure
to a wider variety of probability measures� First� such variety is essential in cryptogra�
phy� computational learning� algorithmic information theory� average�case complexity� and
other potential application areas� Second� applications of the probabilistic method 

� often
require use of non�uniform probability measures� and this is likely to hold for the resource�
bounded probabilistic method 
��� ��� as well� Third� resource�bounded measure based on
non�uniform probability measures provides new methods for proving results about resource�
bounded measure based on the uniform probability measure 
���

Motivated by such considerations� Breutzmann and Lutz 
�� initiated the study of
resource�bounded measure based on an arbitrary �Borel� probability measure � on the
Cantor space C �the set of all languages�� �Precise de�nitions of these and other terms
appear in Appendix A�� Kautz 
�	� and Lutz 
��� have furthered this study in di�erent
directions� and the present paper is another contribution�

The principal focus of the paper 
�� is the circumstances under which the ��measure
of a complexity class C is invariant when the probability measure � is replaced by some
other probability measure � �� For an arbitrary class C of languages� such invariance can
only occur if � and � � are fairly close to one another� Extending results of Kakutani 
�
��
Vovk 

��� and Breutzmann and Lutz 
��� Kautz 
�	� has shown that the �square�summable
equivalence� of � and � � is su�cient to ensure �p�C� � � �� � �p�C� � �� but very little
more can be said when C is arbitrary�

Fortunately� complexity classes have more structure than arbitrary classes� Most com�
plexity classes of interest� including P� NP� coNP� R� BPP� AM� P�Poly� PH� etc�� are closed
downwards under positive� polynomial�time truth�table reductions ��P

pos�tt�reductions��

and their intersections with E are closed downward under �P
pos�tt�reductions with linear

bounds on the length of queries ��P�lin
pos�tt�reductions�� Breutzmann and Lutz 
�� proved that

every class C with these closure properties enjoys a substantial amount of invariance in its
measure� Speci�cally� if C is any such class and �� and ��� are strongly positive� P�sequences
of biases� then the equivalences

�
��
p�C� � � �� �

���

p �C� � ��

�
���CjE� � � �� �

���

�CjE� � �� ���

�
���CjE�� � � �� �

���

�CjE�� � �






hold� where �
�� and �

���

are the probability measures corresponding to the bias sequences ��
and ���� respectively�

Our primary concern in the present paper is to extend this bias invariance to classes that
are closed upwards under some type �P

r of polynomial reductions� We have two reasons
for interest in this question� First and foremost� many recent investigations in complexity
theory focus on the resource�bounded measure of the upper �P

r �span

P��r �A� � fBjA �P
r Bg

of a language A� Such investigations include work on small span theorems 
�� ��� �� ��� ��
and work on the BPP versus E question 
�� �� ��� In general� the upper �P

r �span of a
language is closed upwards� but not downwards� under �P

r �reductions�

Our second reason for interest in upward closure conditions is that the above�mentioned
results of Breutzmann and Lutz 
�� do not fully establish the invariance of measures of
complexity classes under the indicated changes of bias sequences� For example� if �� is an
arbitrary strongly positive P�sequence of biases� the results of 
�� show that

�
���CjE� � � �� ��CjE� � ��

but they do not show that

�
���CjE� � � �� ��CjE� � ��

In general� the condition ��CjE� � � is equivalent to ��CcjE� � �� where Cc is the complement
of C� Since C is closed downwards under �P

r �reductions if and only if Cc is closed upwards
under �P

r �reductions� we are again led to consider upward closure conditions�

Our main theorem� the Bias Invariance Theorem� states that� if C is any class of lan�
guages that is closed upwards or downwards under positive� polynomial�time� truth�table
reductions with linear bounds on number and length of queries ��P�lin

pos�lin�tt�reductions��

and if �� and ��� are strongly positive P�sequences of biases� then the equivalences ��� above
hold� The proof introduces two new techniques� namely� the contraction of a martingale for
one probability measure to a martingale for an induced probability measure �dual to the
martingale dilation technique introduced in 
��� and a new� improved positive bias reduction

of one bias sequence to another�

We also note three easy consequences of our Bias Invariance Theorem� First� in combina�
tion with work of Allender and Strauss 
�� and Buhrman� van Melkebeek� Regan� Sivakumar�
and Strauss 
��� it implies that� if there is any strongly positive P�sequence of biases �� such

	



that the complete �P
T�degree for E� does not have �

���measure � in E�� then E �� BPP�
Second� in combination with the work of Regan� Sivakumar� and Cai 
���� it implies that�
for any reasonable complexity class C� if there exists a strongly positive P�sequence of biases
�� such that C has �

���measure � in E� then E � C � and similarly for E��� Third� if �P
r is any

polynomial reducibility such that A �P�lin
pos�lin�tt B implies A �P

r B� and if �� is a strongly

positive P�sequence of biases� then the small span theorem for �P
r �reductions holds with

respect to �
�� if and only if it holds with respect to �� Tantalizingly� this hypothesis places

�P
r �just beyond� the small span theorem of Buhrman and van Melkebeek 
��� which is the

strongest small span theorem proven to date for exponential time�

� Preliminaries

We write f�� �g� for the set of all ��nite� binary� strings� and we write jxj for the length of
a string x� The empty string� �� is the unique string of length �� The standard enumeration

of f�� �g� is the sequence s� � �� s� � �� s� � �� s� � ��� � � � � ordered �rst by length and
then lexicographically� For x� y � f�� �g�� we write x � y if x precedes y in this standard
enumeration� For n � N� f�� �gn denotes the set of all strings of length n� and f�� �g�n

denotes the set of all strings of length at most n�

If x is a string or an �in�nite� binary� sequence� and if � � i � j � jxj� then x
i��j� is the
string consisting of the ith through jth bits of x� In particular� x
���i � �� is the i�bit pre�x
of x� We write x
i� for x
i��i�� the ith bit of x� �Note that the leftmost bit of x is x
��� the
�th bit of x��

If w is a string and x is a string or sequence� then we write w v x if w is a pre�x of x�
i�e�� if there is a string or sequence y such that x � wy�

The Boolean value of a condition � is 

��� � if � then � else ��

We work in the Cantor space C� consisting of all languages A � f�� �g�� We identify
each language A with its characteristic sequence� which is the in�nite binary sequence 	A
de�ned by

	A
n� � 

sn � A��

for each n � N� Relying on this identi�cation� we also consider C to be the set of all in�nite
binary sequences� The complement of a set X of languages is Xc � C�X�

�



For each string w � f�� �g�� the cylinder generated by w is the set

Cw � fA � C j w v 	Ag �

� Martingale Contraction

Given a positive coin�toss probability measure �� an orderly truth�table reduction �f� g��
and a ��f�g��martingale d �where ��f�g� is the probability measure induced by � and �f� g���
Breutzmann and Lutz 
�� showed how to construct a ��martingale �f� g�bd� called the �f� g��
dilation of d� such that �f� g�bd succeeds on A whenever d succeeds on F�f�g��A�� �See 
�� or
Appendix B for notation and terminology involving truth�table reductions�� In this section
we present a dual of this construction� Given � and �f� g� as above and a ��martingale
d� we show how to construct a ��f�g��supermartingale �f� g� bd� called the �f� g��contraction
of d� such that �f� g� bd succeeds on A whenever d succeeds strongly on every element of
F��
�f�g��fAg��

The notion of an �f� g��step� introduced in 
��� will also be useful here�

De�nition� Let �f� g� be an orderly �tt�reduction�

�� An �f� g��step is a positive integer l such that F�f�g���
l��� �� F�f�g���

l��


� For k � N� we let step�k� be the least �f� g��step l such that l � k�

	� For v� w � f�� �g�� we write v � w to indicate that w v v and jvj � step�jwj � ���
�That is� v � w means that v is a proper extension of w to the next step��

Our construction makes use of a special�purpose inverse of F�f�g� that depends on both
�f� g� and d�

De�nition� Let �f� g� be an orderly �tt�reduction� let � be a positive probability measure
on C� and let d be a ��martingale� Then the partial function

F��
�f�g��d � f�� �g� �	 f�� �g�

is de�ned recursively as follows�

�



�i� F��
�f�g��d��� � ��

�ii� For w � f�� �g� and b � f�� �g� F��
�f�g��d�wb� is the lexicographically �rst string v �

F��
�f�g��d

�w� such that F�f�g��v� � wb and� for all v� � F��
�f�g��d

�w� such that F�f�g��v
�� �

wb� we have d�v� � d�v��� �That is� v minimizes d�v� on the set of all v � F��
�f�g��d

�w�

satisfying F�f�g��v� � wb��

Note that the function F��
�f�g��d is strictly monotone �i�e�� w �

�� w� implies that F��
�f�g��d�w� ���

F��
�f�g��d�w��� provided that these values exist�� whence it extends naturally to a partial

function
F��
�f�g��d � C �	 C�

It is easily veri�ed that F��
�f�g��d inverts F�f�g� in the sense that� for all x � f�� �g�
C� F��

�f�g��d

�nds a preimage of F�f�g��x�� i�e��

F�f�g��F
��
�f�g��d�F�f�g��x��� � F�f�g��x��

We now de�ne the �f� g��contraction of a ��martingale d�

De�nition� Let �f� g� be an orderly �tt�reduction� let � be a positive probability measure
on C� and let d be a ��martingale� Then the �f� g��contraction of d is the function

�f� g� bd � f�� �g� �	 f�� �g�

de�ned as follows�

�i� �f� g� bd��� � d����

�ii� For w � f�� �g� and b � f�� �g�

�f� g� bd�wb� �

�
d�F��

�f�g��d�wb�� if d�F��
�f�g��d�wb�� is de�ned


 � �f� g� bd�w� otherwise�

Theorem ��� �Martingale Contraction Theorem�� Assume that � is a positive probability
measure on C� �f� g� is an orderly �tt�reduction� and d is a ��martingale� Then �f� g� bd is
a ��f�g��supermartingale� Moreover� for every language A � f�� �g�� if F��

�f�g�
�fAg� � S�str
d��

then A � S�
�f� g� bd��

�



� Bias Invariance

In this section we present our main results�

De�nition� Let �f� g� be a �tt�reduction�

�� �f� g� is positive �brie�y� a �pos�tt�reduction� if� for all A�B � f�� �g�� A � B
impliesF�f�g��A� � F�f�g��B��


� �f� g� is polynomial�time computable �brie�y� a �P
tt�reduction� if the functions f and

g are computable in polynomial time�

	� �f� g� is polynomial�time computable with linear�bounded queries �brie�y� a �P�lin
tt �

reduction� if �f� g� is a �P
tt�reduction and there is a constant c � N such that� for

all x � f�� �g�� Q�f�g��x� � f�� �g�c���jxj��

�� �f� g� is polynomial�time computable with a linear number of queries �brie�y� a �P
lin�tt�

reduction� if �f� g� is a �P
tt�reduction and there is a constant c � N such that� for all

x � f�� �g�� jQ�f�g��x�j � c�� � jxj��

Of course� a �P�lin
pos�tt�reduction is a �tt�reduction with properties ��	� and a �P�lin

pos�lin�tt�
reduction is a �tt�reduction with properties ����

We now present the Positive Bias Reduction Theorem� This strengthens the identically�
named result of Breutzmann and Lutz 
�� by giving a �P�lin

pos�lin�tt�reduction in place of a

�P�lin
pos�tt�reduction� This technical improvement� which is essential for our purposes here�

requires a substantially di�erent construction� Details appear in Appendix D�

Theorem ��� �Positive Bias Reduction Theorem�� Let �� and ��� be strongly positive� P�
exact sequences of biases� and let �f� g� be the reduction de�ned in Appendix D� Then

�f� g� is an orderly �P�lin
pos�lin�tt�reduction� and the probability measure induced by �

�� and

�f� g� is a coin�toss probability measure �
����

� where ���� t ����

The following result is our main theorem�

�



Theorem ��� �Bias Invariance Theorem�� Assume that �� and ��� are strongly positive P�
sequences of biases� and let C be a class of languages that is closed upwards or downwards
under �P�lin

pos�lin�tt�reductions� Then

�
��
p�C� � � �� �

���

p �C� � ��

The �downwards� part of Theorem ��
 is a technical improvement of the Bias Equiv�
alence Theorem of 
�� from �P�lin

pos�tt�reductions to �P�lin
pos�lin�tt�reductions� The proof of this

improvement is simply the proof in 
�� with Theorem ��� used in place of its predecessor in

���

The �upwards� part of Theorem ��
 is entirely new� The proof of this result is similar to
the proof of the Bias Equivalence Theorem in 
��� but now in addition to using our improved
Positive Bias Reduction Theorem� we use the Martingale Contraction Theorem of section
	 in place of the Martingale Dilation Theorem of 
��� We also note that the linear bound
on number of queries in Theorem ��� is essential for the �upwards� direction�

If �P
r is a polynomial reducibility� then a class C is closed upwards under �P

r �reductions
if and only if Cc is closed downwards under �P

r �reductions� We thus have the following
immediate consequence of Theorem ��
�

Corollary ���� Assume that �� and ��� are strongly positive P�sequences of biases� and let

C be a class of languages that is closed upwards or downwards under �P�lin
pos�lin�tt�reductions�

Then
�
��
p�C� � � �� �

���

p �C� � ��

We now mention some consequences of Theorem ��
� beginning with a discussion of the
measure of the complete �P

T�degree for exponential time� and its consequences for the BPP
versus E problem�

For each class D of languages� we use the notations

HT�D� � fAjA is �P
T�hard for Dg�

CT�D� � fAjA is �P
T�complete for Dg�

and similarly for other reducibilities� The following easy observation shows that every
consequence of ��CT�E��jE�� �� � is also a consequence of ��CT�E�jE� �� ��

�



Lemma ���� ��CT�E�jE� �� � �� ��CT�E��jE�� �� ��

Proof� Juedes and Lutz 
��� have shown that� if X is a set of languages that is closed
downwards under �P

m�reductions� then ��XjE�� � � �� ��XjE� � �� Applying this result
with X � HT�E�c � HT�E��

c yields the lemma� �

Allender and Strauss 
�� have proven that �p�HT�BPP�� � �� Buhrman� van Melkebeek�
Regan� Sivakumar� and Strauss 
�� have noted that this implies that ��CT�E��jE�� �� � ��
E �� BPP� Combining this argument with Corollary ��	 yields the following extension�

Corollary ���� If there exists a strongly positive P�sequence of biases �� such that

�
���CT�E��jE�� �� �� then E �� BPP�

Regan� Sivakumar� and Cai 
��� have proven a �most is all� lemma� stating that if C is
any class of languages that is either closed under �nite unions and intersections or closed
under symmetric di�erence� then ��CjE� � � �� E � C� Combining this with Corollary
��	 gives the following extended �most is all� result�

Corollary ���� Let C be a class of languages that is closed upwards or downwards under

�P�lin
pos�lin�tt�reductions� and is also closed under either �nite unions and intersections or

symmetric di�erence� If there is any strongly positive� P�sequence of biases �� such that

�
���CjE� � �� then E � C�

Of course� the analagous result holds for E��

We conclude with a brief discussion of small span theorems� Given a polynomial re�
ducibility �P

r � the lower �P
r �span of a language A is

Pr�A� � fBjB �P
r Ag�

and the upper �P
r �span of A is

P��r �A� � fBjA �P
r Bg�

We will use the following compact notation�

�



De�nition� Let �P
r be a polynomial reducibility type� and let � be a probability measure

on C� Then the small span theorem for �P
r �reductions in the class E over the probability

measure � is the assertion
SST���P

r �E�

stating that� for every A � E� ��Pr�A�jE� � � or �p�P��r �A�� � ��P��r �A�jE� � �� When the
probability measure is �� we omit it from the notation� writing SST��P

r �E� for SST���P
r �E��

Similar assertions for other classes� e�g�� SST���P
r �E��� are de�ned in the now�obvious

manner�

Juedes and Lutz 
�� proved the �rst small span theorems� SST��P
m�E� and SST��P

m�E���
and noted that extending either to �P

T would establish E �� BPP� Lindner 
��� estab�
lished SST��P

��tt�E� and SST��P
��tt�E��� and Ambos�Spies� Neis� and Terwijn 
�� proved

SST��P
k�tt�E� and SST��P

k�tt�E�� for all �xed k � N� Very recently� Buhrman and van

Melkebeek 
�� have taken a major step forward by proving SST��P
g�n��tt�E�� for every func�

tion g�n� satisfying g�n� � no���� We note that the Bias Invariance Theorem implies that
small span theorems lying �just beyond� this latter result are somewhat robust with respect
to changes of biases�

Theorem ���� If �P
r is a polynomial reducibility such that A �P�lin

pos�lin�tt B impliesA �P
r B�

then for every strongly positive P�sequence of biases ���

SST
�
�� ��P

r �E� �� SST��P
r �E��

and similarly for E��
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OPTIONAL TECHNICAL APPENDICES



Appendix A� Resource�Bounded ��Measure

In this appendix� we present the basic elements of resource�bounded measure based on
an arbitrary probability measure � on C� The material in Appendices A and B is taken�
with permission� from 
���

De�nition� A probability measure on C is a function

� � f�� �g� �	 
�� ��

such that ���� � �� and for all w � f�� �g��

��w� � ��w�� � ��w���

Intuitively� ��w� is the probability that A � Cw when we �choose a language A � C

according to the probability measure ��� We sometimes write ��Cw� for ��w��

Examples�

�� The uniform probability measure � is de�ned by

��w� � 
�jwj

for all w � f�� �g��


� A sequence of biases is a sequence �� � ���� ��� ��� � � � �� where each �i � 
�� ��� Given
a sequence of biases ��� the ���coin�toss probability measure �also called the ���product

probability measure� is the probability measure �
�� de�ned by

�
���w� �

jwj��Y
i��

���� �i� � ��� w
i�� � �i � w
i��

for all w � f�� �g��

Intuitively� �
���w� is the probability that w v A when the language A � f�� �g� is chosen

probabilistically according to the following random experiment� For each string si in the
standard enumeration s�� s�� s�� � � � of f�� �g�� we �independently of all other strings� toss a
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special coin� whose probability is �i of coming up heads� in which case si � A� and � � �i
of coming up tails� in which case si �� A�

De�nition� A probability measure � on C is positive if� for all w � f�� �g�� ��w� 
 ��

De�nition� If � is a positive probability measure and u� v � f�� �g�� then the conditional

��measure of u given v is

��ujv� �

�����
� if u v v
��u�
��v� if v v u

� otherwise�

Note that ��ujv� is the conditional probability that A � Cu� given that A � Cv� when
A � C is chosen according to the probability measure ��

De�nition� A probability measure � on C is strongly positive if �� is positive and� there is
a constant � 
 � such that� for all w � f�� �g� and b � f�� �g� ��wbjw� � ��

De�nition� A sequence of biases �� � ���� ��� ��� � � � � is strongly positive if there is a constant
� 
 � such that� for all i � N� �i � 
�� � � ���

We next review the well�known notion of a martingale over a probability measure ��
Computable martingales were used by Schnorr 

�� 
�� 

� 
	� in his investigations of ran�
domness� and have more recently been used by Lutz 
��� in the development of resource�
bounded measure�

De�nition� Let � be a probability measure on C� Then a ��martingale is a function d �
f�� �g� �	 
���� such that� for all w � f�� �g��

d�w���w� � d�w����w�� � d�w����w���

If �� is a sequence of biases� then a �
���martingale is simply called a ���martingale� A ��

martingale is even more simply called a martingale� �That is� when the probability measure
is not speci�ed� it is assumed to be the uniform probability measure ���
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De�nition� A ��martingale d succeeds on a language A � C if

lim sup
n���

d�	A
���n� ��� � ��

The success set of a ��martingale d is the set

S�
d� � fA � C j d succeeds on Ag �

The strong success set of a ��martingale d is the set

S�str
d� �

�
A � C j lim sup

n��
d�A
���n � ��� � �

�
�

De�nition� Let � be a probability measure on C�

�� A p���martingale is a ��martingale that is p�computable�


� A p����martingale is a ��martingale that is p��computable�

A p��
���martingale is called a p����martingale� a p���martingale is called a p�martingale�

and similarly for p��

We now come to the fundamental ideas of resource�bounded ��measure�

De�nition� Let � be a probability measure on C� and let X � C�

�� X has p���measure �� and we write �p�X� � �� if there is a p���martingale d such
that X � S�
d��


� X has p���measure �� and we write �p�X� � �� if �p�Xc� � �� where Xc � C�X�

The conditions �p��X� � � and �p��X� � � are de�ned analogously�

De�nition� Let � be a probability measure on C� and let X � C�

�� X has ��measure � in E� and we write ��XjE� � �� if �p�X 
E� � ��
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� X has ��measure � in E� and we write ��XjE� � �� if ��XcjE� � ��

	� X has ��measure � in E�� and we write ��XjE�� � �� if �p��X 
 E�� � ��

�� X has ��measure � in E�� and we write ��XjE�� � �� if ��XcjE�� � ��

De�nition� Let � be a positive probability measure on C� let A � f�� �g�� and let i � N�
Then the ith conditional ��probability along A is

�A�i � �ji� � ��	A
���i� j 	A
���i � ����

De�nition� Two positive probability measures � and � � on C are summably equivalent� and
we write � t � �� if for every A � f�� �g��

�X
i��

j�A�i � �ji�� � �A�i � �ji�j ���

De�nition�

�� A P�sequence of biases is a sequence �� � ���� ��� ��� � � � � of biases �i � 
�� �� for which
there is a function

�� � N � N �	 Q 
 
�� ��

with the following two properties�

�i� For all i� r � N� j���i� r�� �ij � 
�r�

�ii� There is an algorithm that� for all i� r � N� computes ���i� r� in time polynomial
in jsij� r �i�e�� in time polynomial in log�i � �� � r��


� A P�exact sequence of biases is a sequence �� � ���� ��� ��� � � � � of �rational� biases
�i � Q 
 
�� �� such that the function i ��	 �i is computable in time polynomial in
jsij�

De�nition� If �� and �� are sequences of biases� then �� and �� are summably equivalent� and
we write �� t ��� if

P�
i�� j�i � �ij ���

It is clear that �� t �� if and only if ��� t �
���

A��



Lemma A�� �Breutzmann and Lutz 
���� For every P�sequence of biases ��� there is a
P�exact sequence of biases ��� such that �� t ����
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Appendix B� Truth�Table Reductions

A truth�table reduction �brie�y� a�tt�reduction� is an ordered pair �f� g� of total recursive
functions such that for each x � f�� �g�� there exists n�x� � Z� such that the following two
conditions hold�

�i� f�x� is �the standard encoding of� an n�x��tuple �f��x�� � � � � fn�x��x�� of strings fi�x� �
f�� �g�� which are called the queries of the reduction �f� g� on input x� We use the
notation Q�f�g��x� � ff��x�� � � � � fn�x��x�g for the set of such queries�

�ii� g�x� is �the standard encoding of� an n�x��input� ��output Boolean circuit� called
the truth table of the reduction �f� g� on input x� We identify g�x� with the Boolean
function computed by this circuit� i�e��

g�x� � f�� �gn�x� �	 f�� �g �

A truth�table reduction �f� g� induces the function

F�f�g� � C �	 C

F�f�g��A� �
�
x � f�� �g� j g�x�

�


f��x� � A�� � � � 

fn�x��x� � A��

	
� �


�

If A and B are languages and �f� g� is a �tt�reduction� then �f� g� reduces B to A� and
we write

B �tt A via �f� g��

if B � F�f�g��A�� More generally� if A and B are languages� then B is truth�table reducible

�brie�y� �tt�reducible� to A� and we write B �tt A� if there exists a �tt�reduction �f� g�
such that B �tt A via �f� g��

If �f� g� is a �tt�reduction� then the function F�f�g� � C �	 C de�ned above induces a
corresponding function

F�f�g� � f�� �g� �	 f�� �g� 
C

de�ned as follows� �It is standard practice to use the same notation for these two functions�
and no confusion will result from this practice here�� Intuitively� if A � C and w v A�
then F�f�g��w� is the largest pre�x of F�f�g��A� such that w answers all queries in this pre�x�
Formally� let w � f�� �g�� and let

Aw �
�
si
�� � � i � jwj and w
i� � �



�
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If Q�f�g��x� � fs�� � � � sjwj��g for all x � f�� �g�� then

F�f�g��w� � F�f�g��Aw��

Otherwise�
F�f�g��w� � 	F�f�g��Aw�
���m � ���

where m is the greatest nonnegative integer such that

m���
i��

Q�f�g��si� �
�
s�� � � � � sjwj��




Now let �f� g� be a �tt�reduction� and let z � f�� �g�� Then the inverse image of the
cylinder Cz under the reduction �f� g� is

F��
�f�g��Cz� �

�
A � C j F�f�g��A� � Cz



�

�
A � C j z v F�f�g��A�



�

The following well�known fact is easily veri�ed�

Lemma B��� If � is a probability measure on C and �f� g� is a �tt�reduction� then the
function

��f�g� � f�� �g� �	 
�� ��

��f�g��z� � ��F��
�f�g��Cz��

is also a probability measure on C�

The probability measure ��f�g� of Lemma B�� is called the probability measure induced

by � and �f� g��

In this paper� we use the following special type of �tt�reduction�

De�nition� A �tt�reduction �f� g� is orderly if� for all x� y� u� v � f�� �g�� if x � y� u �
Q�f�g��x�� and v � Q�f�g��y�� then u � v� That is� if x precedes y �in the standard ordering
of f�� �g��� then every query of �f� g� on input x precedes every query of �f� g� on input y�
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Appendix C� Proof of Martingale Contraction Theorem

Let w � f�� �g�� and let y � F��
�f�g��d�w� Note that for any v � y� jvj � step�jyj� and

either F �v� � w� or F �v� � w�� Let l � step�jyj� � jyj� We have

�f� g� bd�w� � d�y�

�
X
v�y

d�v���vjy�

�
X
v�y

F �v��w�

d�v���vjy� �
X
v�y

F �v��w�

d�v���vjy�

�
X
v�y

F �v��w�


min
v

d�v����vjy� �
X
v�y

F �v��w�


minvd�v����vjy�

� 
�f� g� bd�w���
X
v�y

F �v��w�

��vjy� � 
�f� g� bd�w���
X
v�y

F �v��w�

��vjy�

� 
�f� g� bd�w���
X

x�f���gl

F �yx��w�

��yxjy� � 
�f� g� bd�w���
X

x�f���gl

F �yx��w�

��yxjy�

� �f� g� bd�w����f�g��w�jw� � �f� g� bd�w����f�g��w�jw��

The penultimate step follows from the fact that �f� g� is an orderly �tt�reduction� and the
last step is Lemma ��� of 
��� This shows that �f� g� bd is a ��f� g��supermartingale�

To see that �f� g� bd satis�es the desired success condition� let A� be a language such that
F��
�f�g��fAg� � S�str
d�� If A �� range F�f�g�� then F��

�f�g��d�w� is unde�ned for all su�ciently

long pre�xes w of A� whence it is clear that A � S�
�f� g� bd�� If A � range F�f�g�� then

F��
�f�g��d�A
���n � ��� is de�ned for all n and F��

�f�g��d�A� � F��
�f�g��fAg�� so

lim sup
n��

�f� g� bd�A
���n� ��� � lim sup
n��

F��
�f�g��d�A
���n� ���

� lim inf
n��

F��
�f�g��d�A
���n� ���

� lim inf
n��

F��
�f�g��d�A�
���n� ��

� ��

whence we again have A � S�
�f� g� bd��
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Appendix D� Proof of Positive Bias Reduction Theorem

Let � be the coin toss distribution speci�ed by biases ��� ��� � � � � 
�� � � ��� and let
�� � 
�� � � �� and 
 
 � be given� We want to construct a formula of the form

C�� �


� a��
j���

x�j�

�A �

�
� b��

k���

yk�

�A �

���

� a��

j���

x�j�

�A �

��
� b��
k���

yk�

�A � � � �

�����
�A �

�
�

We suppose that the inputs to this circuit are random and independent� and that Pr�z �
�� � �i� i � �� �� 
� � � � � if z� ranging over all x�s and y�s� appears ith in the formula above�
Under this hypothesis� we want jPr�C�� � �� � ��j � 
 and that the number of inputs to
C�� be at most O�lg���
���

For example� if a� � a� � � � � � 
 and b� � b� � � � � � 	� we have�

�and

�and

z� z��

�or

�or

z� z� z��

�and

�and

z� z��

�or

�or

z	 z
 z��

�and

�and

z�� z���

�or

�or

z�� z�� z���������

and Pr�zi � �� � �i�

In pictures� we�d have
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�

�

�

�

�

�

j j

j j

j j

�

�

�

�

�

�

j j j

j j j

j j j

��

��

��

��

��

��

��

��

��

��

��

For real numbers x� y � 
�� ��� let x� y denote �� ���x���� y�� Thus� for independent
A and B� Pr�A� � Pr�B� � Pr�A � B�� Note that � is monotonically increasing in its
arguments� that

Ln
k�� xk is monotonically increasing in n� and that the empty ��

L�
k�� xk�

is ��

We need to determine the a�s and b�s in Formula �
�� The algorithm� on input ���
��� ��� ��� � � � � 
�� � � ��� and tolerance 
� is as follows�

� If 
 
 � return the constant false circuit� Also do the right thing if �� is � or ��
Otherwise continue���

� Determine a so that
a��Y
j��

�j � �� �
aY

j��

�j �

Put A �
Qa

j�� �j �

� Determine b so that

A �

a�bM
k�a��

�k � �� � A �

a�b��M
k�a��

�k�

Put B �
La�b

k�a�� �k�

� Determine ��� so that �� � A�B������ i�e�� ��� � ���AB
A���B� � Inductively �nd a formulaC���

of the top�level shape whose probability of acceptance is ���� Use tolerance 
��A�� �

A���



B���

� Put

C�� �


� a�
j���

x�j�

�A �


�
� b�
k���

yk�

�A � C���

�A �

Now we analyze the algorithm� First� the formula generated has at most O�lg���
���
inputs� where 
� is the initial value of 
� Note that each recursive call increases the tolerance

 by at least the factor ���A�� � B�� � ���� � ��a�b it follows that 
 will grow to be at
least � for

P
�ai � bi� �

lg ��
lg����� �

Next� the algorithm is correct� i�e�� produces a circuit with probability of acceptance in
the range ��� 
� Clearly this is the case if the algorithm returns immediately �when 
 
 ���
Otherwise� suppose inductively that C��� has probability ���� 
��A���B��� It follows that
C� has acceptance probability in

A

�
B �

�
��� �




A�� �B�

��
� A

�
�� ���B�

�
�� ��� �




A���B�

��
� A

�
�� ���B�

�
�� ���

	�
�A���B�




A���B�

� A�B � ����� 
�

�

A���


