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Abstract�

We investigate the distribution of nonuniform complexities in uniform complexity classes�
We prove that almost every problem decidable in exponential space has essentially maximum
circuit�size and space�bounded Kolmogorov complexity almost everywhere� �The circuit�size
lower bound actually exceeds� and thereby strengthens� the Shannon �n

n
lower bound for

almost every problem� with no computability constraint�� In exponential time complexity
classes� we prove that the strongest relativizable lower bounds hold almost everywhere for
almost all problems� Finally� we show that in�nite pseudorandom sequences have high
nonuniform complexity almost everywhere�
The results are uni�ed by a new� more powerful formulation of the underlying measure

theory� based on uniform systems of density functions� and by the introduction of a new
nonuniform complexity measure� the selective Kolmogorov complexity�
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�� Introduction

A precise account of the quantitative relationships between uniform and nonuniform com�
plexity measures is a principal objective of the theory of computation� For the most impor�
tant nonuniform complexity measures � those that measure size of programs and size of
circuits � this paper establishes new lower bounds that hold almost everywhere in uniform
time and space complexity classes�

The circuit�size complexity of Boolean functions has been studied for over �fty years�
Shannon ��	
 proved that every Boolean function f � f�� 
gn � f�� 
g is computed by a
circuit with O��

n

n
� gates and that� asymptotically� almost every such function requires more

than �n

n
�
 � �� gates� for every � � �� Lupanov ���
 tightened Shannon�s upper bound by

proving that every such function f is computed by a circuit with �n

n
�
�O� �p

n
�� gates� Since

Lupanov�s upper bound and Shannon�s lower bound have asymptotic ratio 
� these bounds
together imply that almost every Boolean function has essentially maximum circuit�size
complexity� Lupanov named this phenomenon the Shannon e�ect�

In order to compare circuit size to uniform� algorithmic complexity measures� the circuit�
size complexity measure has been extended in the natural way from Boolean functions to
decision problems� i�e�� to �in�nite� binary sequences x � f�� 
g�� In this setting� a routine
modi�cation of Shannon�s lower bound argument gives the following formulation of the
Shannon e�ect� If � � � and an in�nite binary sequence is chosen probabilistically by using
an independent toss of a fair coin to decide each bit� then with probability 
 the chosen
sequence x will have circuit�size complexity CSx�n� �

�n

n
�
� �� for all but �nitely many n�

More succinctly� in the usual Lebesgue measure on f�� 
g�� almost every binary sequence x
has CSx�n� �

�n

n
�
� �� for almost every n�

The set P�Poly� consisting of those decision problems that have polynomial�size cir�
cuits� is of particular interest� It is clear that P�Poly is an uncountable� measure � sub�
set of f�� 
g� and that P�P�Poly� Kannan �
�
 has shown that ESPACE��P�Poly� It is
widely believed that NP��P�Poly� i�e�� that NP�complete problems are infeasible in a strong�
information�theoretic sense� Supporting this conjecture� Karp and Lipton �
�
 have shown
that NP�P�Poly has the unlikely consequence of collapsing the polynomial�time hierarchy
to its second level� On the other hand� Wilson ���
 has exhibited oracles relative to which

E� �DTIME��
poly� � P�Poly and problems in NP and E�DTIME��linear� all have linear�

size circuits� so progress towards resolving this conjecture may not come easily�

A distributional investigation of uniform versus nonuniform complexity was initiated by
Lutz ���
� Regarding the Kannan ESPACE��P�Poly result� we addressed the following ques�
tion� Among problems in ESPACE� is the phenomenon of not having polynomial�size circuits
rare� or is it in some sense typical � This question led to the development of resource�bounded
category and measure in ���
� These techniques� which extend classical and e�ective versions
of Baire category and Lebesgue measure �see ������������

�� de�ne the meager ��topologi�
cally small�� and measure � ��probabilistically small�� subsets of various complexity classes�
respectively� It was proven in ���
 that P�Poly�ESPACE is a meager� measure � subset
of ESPACE� Thus the phenomenon of not having polynomial�size circuits is very typical of
problems in ESPACE� in the sense of both category and measure�
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In this paper we prove that the Shannon e�ect holds with full force in ESPACE� Specif�
ically� with respect to measure� for every real � � 
� almost every binary sequence x �
ESPACE has circuit�size complexity CSx�n� � �n

n
�
 � � log n

n
� for almost every n� This

almost�everywhere lower bound on circuit�size complexity in ESPACE extends the previous
work in two signi�cant ways�

�i� The �n

n
�
 � � log n

n
� lower bound here exceeds the o��

n

n
� lower bound of ���


and is only negligibly smaller than the Lupanov �n

n
�
 � O� �p

n
�� upper bound

for every x � f�� 
g�� �In fact� the present lower bound slightly exceeds�
and as a consequence tightens� the Shannon �n

n
lower bound for almost every

x � f�� 
g���
�ii� The lower bound here is proven to hold for almost every n� whereas the lower

bound in ���
 is only shown to hold for in�nitely many n� For example� let

P�Polyi�o� be the set of binary sequences x for which there is a polynomial
q such that CSx�n� � q�n� for in�nitely many n� The proof of Kannan �
�


actually shows that ESPACE �� P�Polyi�o�� The present result implies that

P�Polyi�o��ESPACE is in fact a measure � subset of ESPACE�

Putting these advances together gives our strong formulation of the Shannon e�ect in
ESPACE� almost every problem in ESPACE has essentially maximum circuit�size complexity
almost everywhere�

The Kolmogorov complexity �often called the program�size complexity� of binary strings
and sequences was discovered independently by Solomono� ���
� Kolmogorov �
	
� and
Chaitin ��
� The extraordinary power and scope of this notion have recently been surveyed
by Kolmogorov and Uspenskii �
�
 and Li and Vitanyi ��

� In this paper we are primar�
ily concerned with resource�bounded Kolmogorov complexities� which have been investigated
by Hartmanis �
�
� Sipser ���
� Ko �
�
� Longpr�e ���
� Balc�azar and Book ��
� Huynh �
�
�
Lutz ���
� Allender and Watanabe ��
� and many others�

Martin�L�of ���
 showed that K�xjn�� the conditional Kolmogorov complexity of in�nite
binary sequences x� exhibits a strong Shannon e�ect� Speci�cally� Martin�L�of proved that if

the series
�X
n��

��f�n
 converges �e�g�� if f�n� � � logn for some real � � 
�� then in the sense

of Lebesgue measure� almost every binary sequence x � f�� 
g� has conditional Kolmogorov
complexity K�xjn� � n� f�n� for all but �nitely many n� For suitable f � this lower bound
is already very close to the well�known upper bound� K�xjn� � n� c for all x and n� where
c is a �xed constant� However� Martin�L�of ���
 also tightened the upper bound by proving

that if f is computable and the series
�X
n��

��f�n
 diverges �e�g�� if f�n� � logn�� then every

binary sequence x � f�� 
g� has conditional Kolmogorov complexity K�xjn� � n � f�n�
for in�nitely many n� Thus� for computable f � it is the convergence�divergence behavior of
�X
n��

��f�n
 that determines whether n � f�n� is an in�nitely�often upper bound on K�xjn�
for all x or an almost�everywhere lower bound on K�xjn� for almost every x� Since the
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convergence�divergence behavior of
�X
n��

��f�n
 is sensitive to very small changes in the growth

rate of f � this implies that almost every binary sequence x � f�� 
g� has essentially maximum
conditional Kolmogorov complexity almost everywhere�

We prove in this paper that the Shannon e�ect holds with full force� in essentially
the above form� for the space�bounded conditional Kolmogorov complexity of problems in
ESPACE� Moreover� we unify this result with the Shannon e�ect for circuit size in ESPACE
by introducing a new program�size complexity measure� the selective Kolmogorov complexity�
Roughly speaking� the conditional Kolmogorov complexity of x at n� written K�xjn�� is the
length of the shortest program � that� given n� outputs the �rst n bits of x� The ��selective
Kolmogorov complexity of x at n� written K�x��jn�� is the same� except that the program �
is now only required to be correct about bits of x speci�ed by ��n�� the value of the selector
� at n� If the selector � requires all bits to be correct� then K�x � �jn� � K�xjn�� i�e��
the ��selective Kolmogorov complexity is precisely the conditional Kolmogorov complexity�
However� if ��n� only requires � to be correct about some of the �rst n bits of x� then
K�x � �jn� may be much smaller than K�xjn��
The main theorem of this paper is Theorem ���� which shows that almost every problem in

ESPACE has very high space�bounded selective Kolmogorov complexity almost everywhere�
By inequality ����� this almost�everywhere lower bound is tight� so we have a strong instance
of the Shannon e�ect� almost every problem in ESPACE has essentially maximum space�
bounded selective Kolmogorov complexity almost everywhere�

This appears to be a very powerful formulation of the Shannon e�ect in ESPACE� The
above�mentioned Shannon e�ects for circuit�size and conditional Kolmogorov complexities
in ESPACE are derived from this more general result�

We also prove almost�everywhere lower bounds for nonuniform complexities in uniform
time complexity classes� In this case our lower bounds are considerably smaller than known
upper bounds� so much remains to be discovered� From a distributional point of view�
however� our results are quite strong� We prove that the highest levels of circuit�size and
time�bounded Kolmogorov complexity known �or provable by relativizable methods� to be
exceeded in�nitely often by any problem decidable in exponential time are in fact exceeded
almost everywhere by almost every problem decidable in exponential time�

Our almost�everywhere lower bounds on nonuniform complexity have immediate conse�
quences for the theory of pseudorandom sequences� Following work by Yao ���
� Blum and
Micali ��
� Goldreich� Goldwasser� and Micali �	
� Levin ���
� Allender �

� and others on the
generation of �nite pseudorandom sequences from shorter random sequences� and following
work by Schnorr ������
� Wilber ���
� Huynh �
��
�
� Ko �
�
� and others on pseudorandom
properties of in�nite sequences� Lutz ������
 gave a measure�theoretic de�nition of in�nite
pseudorandom sequences� This de�nition of pseudorandomness is analogous to the Martin�
L�of ��	
 de�nition of randomness� but is based on resource�bounded measure theory and
thereby provides an abundance of pseudorandom sequences that are deterministically com�
putable at relatively low complexity levels� Pseudorandom sequences and their properties
are discussed in detail in ���
� In this paper we use our almost�everywhere lower bounds to
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show that in�nite pseudorandom sequences have high circuit�size and Kolmogorov complex�
ity almost everywhere�

Note� The resource�bounded measure introduced in ���
� and used to de�ne pseudoran�
dom sequences in ���
� was formulated in terms of �covering by modulated enumerations of
cylinders�� This formulation is not strong enough �i�e�� does not render enough sets measur�
able� to prove the main results of the present paper� Indeed� some of the proofs in ������

are not correct without some technical modi�cation of the underlying measure theory� In x�
below� we present some of the elements of a new� more powerful formulation of resource�
bounded measure� based on uniform systems of density functions� This formulation� like the
old one� is a general theory with a resource bound �class of functions� � as a parameter�
Various choices of this parameter � give various measure theories as special cases� One
of these cases is classical Lebesgue measure� Other special cases impose internal measure�
theoretic structure on REC� E� ESPACE� and other complexity classes� All sets measurable
in the formulation of ���
 have the same measure in the new formulation� and the new for�
mulation admits rigorous �and simpler� proofs of the applications in ������
� Moreover� the
new formulation� by expanding the class of measurable sets� has yielded a number of new
applications� especially in time�bounded complexity classes�

Although a complete development of resource�bounded measure is beyond the scope of
this paper� x� below presents all the ideas� results� and proofs needed for the applications
here� The present paper is thus self�contained� �Theorems ��
�� ���� and ��� are not proven or
used in this paper�� A brief discussion of the relation between our density functions and the
martingales used by Schnorr ������������
 in his investigation of random and pseudorandom
sequences appears at the end of x�� More thorough discussions of resource�bounded measure
and pseudorandomness will appear in ������
�
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�� Preliminaries

We work in two alphabets� the usual binary alphabet f��
g and the extended binary
alphabet � � f�� 
���	g� The elements � ��bottom�� and 	 ��top�� of � are interpreted
as �unde�ned bit� and �impossibly de�ned bit�� respectively� We de�ne v to be the partial
ordering

	

� 


�

of �� Thus b v b� means that bit b is �no more de�ned than� bit b��

A string is a �nite sequence x � ��� A binary string is a string x � f�� 
g�� A sequence
is an in�nite sequence x � ��� A binary sequence is a sequence x � f�� 
g�� We use
variables x� y� z� etc�� to denote strings or sequences� We write jxj for the length of x� Thus
jxj � N 
 f�g� where N is the set of nonnegative integers� The unique string of length � is
�� the empty string�

If x is a string and y is a string or sequence� then xy is the concatenation of x and y� If x
is already a sequence� then xy � x� If x is a string and k � N 
 f�g� then xk is the k�fold
concatenation of x with itself� Thus x� � � and xk�� � xxk�

If � � i � j � jxj� then x�i��j
 is the string consisting of the ith through jth bits of x�

Thus x � x����jxj � 

 if x is a string� We write x�i
 for x�i��i
� the ith bit of x�
We extend the partial ordering v to strings and sequences via the following rules�
�i� For x� y � ��� x v y if and only if x�i
 v y�i
 for every i � N�
�ii� For x� y � ��� x���y if and only if x v y and x �� y�
�iii� For arbitrary x and y� x v y if and only if x�� v y���
�iv� For arbitrary x and y� x���y if and only if x���

��y���
The extended relationv is not technically a partial ordering because it is not antisymmet�

ric� For example� for any string x� x and x� are distinct strings with x v x� and x� v x� In
practice� however� we will think of x� x�� and x�� as denoting essentially the same object�
so no confusion will result from calling v a partial ordering of strings and sequences� Note
that x���y means that x is �strictly less de�ned than� y� Thus� for example� it is not the case
that x���x��
Note that if x and y are binary strings� i�e�� x� y � f�� 
g�� then x v y means that x is a

pre�x of y and x ��� y means that x is a proper pre�x of y�

We de�ne kxk� the number of de�ned bits in a string x � ��� by the following recursion�
k�k � �
kx�k � kxk
kx�k � kx
k � kxk� 

kx	k ��
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Thus kxk � jxj if x � f�� 
��g�� kxk � jxj if x � f�� 
g�� and kxk � � if x contains any
occurence of 	�
Our primary objects of study are the binary sequences� The extended binary alphabet �

is a technical device whose primary role is the following�

De�nition ���� The cylinder generated by a string x � �� is
Cx � fy � f�� 
g�jx v yg �

Thus we regard a string x � �� as an approximation� or �partial speci�cation� of a binary
sequence y� The cylinder Cx is the set of all binary sequences that meet this speci�cation�
If 	 appears in x� then Cx � �� i�e�� the speci�cation x is unsatis�able�
The measure of a cylinder Cx is 	�x� � 	�Cx� � �

�kxk� This is the probability that y � Cx

when the binary sequence y � f�� 
g� is chosen probabilistically by using an independent
toss of a fair coin to decide each bit of y�

It is useful to have an operation that �merges� two speci�cations� To this end� for b� b� � ��
we write b � b� for the least upper bound of b and b� with respect to v� We then extend the
operation � to strings and sequences as follows�
�v� For x� y � ��� x � y � �� is de�ned by �x � y��i
 � x�i
 � y�i
 for all i � N�
�vi� For arbitrary x and y� jx � yj � maxfjxj� jyjg and �x � y��� � �x��� � �y����

It is easy to check that � does indeed merge speci�cations in the following sense�
Fact ���� For all x� y � ��� Cx�y � Cx � Cy� �

Complexity classes are usually de�ned as sets of languages� A language here is a set
L � f�� 
g�� i�e�� a set of binary strings� We �x the lexicographic enumeration s� � ��
s� � �� s� � 
� s� � ��� � � � of f�� 
g� and identify each language L with its characteristic
sequence xL � f�� 
g� de�ned by

xL�k
 �

�

 if sk � L
� if sk �� L�

This identi�es the set P�f�� 
g�� of all languages with the set f�� 
g� of all binary sequences�
Under this identi�cation� a string x � �� approximates a language L� and we write x v L�
if x v xL� Thus the cylinder generated by x is also a set of languages�

Cx � fL � f�� 
g�jx v Lg�
We use X� Y� Z� etc�� to denote sets of languages �equivalently� to denote sets of binary
sequences�� The complement of a set X is Xc � P�f�� 
g�� nX � f�� 
g� nX�
We will use the lexicographic successor function next� f�� 
g� � f�� 
g� de�ned by

next�sk� � sk�� for all k � N�

We �x once and for all a one�to�one pairing function ��� from �� 
 �� onto �� such
that the pairing function and its associated projections� � x� y ��� x and � x� y ��� y
are computable in polynomial time� We insist further that this pairing function satisfy the
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following conditions for all x� y � ���
�a� � x� y �� f�� 
g� if and only if x� y � f�� 
g��
�b� � x� y �� f�g� if and only if x� y � f�g��

These conditions canonically induce pairing functions ��� from f�� 
g�
f�� 
g� onto f�� 
g�
and from N
N onto N� respectively� We write � x� y� z � for � x�� y� z ��� etc�� so that
tuples of any �xed length are coded by the pairing function�

We letD � fm��n j m�n � Ng be the set of nonnegative dyadic rationals� Many functions
in this paper take their values in D or in ������ the set of nonnegative real numbers� In
fact� with the exception of some functions that map into ������ all our functions are of
the form f � X � Y � where each of the sets X� Y is N� f�� 
g�� ��� D� or some cartesian
product of these sets� Formally� in order to have uniform criteria for their computational
complexity� we regard all such functions as mapping �� into ��� For example� a function
f � N� 
 f�� 
g� � N 
 D is formally interpreted as a function ef � �� � ��� Under this
interpretation� f�i� j� w� � �k� q� means that ef�h�i� h�j� wii� � D

�k� hu� vi
E
� where u and v are

the binary representations of the integer and fractional parts of q� respectively� Moreover�
we only care about the values of ef for arguments of the form h�i� h�j� wii� and we insist that
these values have the form

D
�k� hu� vi

E
for such arguments�

For a function f � N 
 X � Y and k � N� we de�ne the function fk � X � Y by

fk�x� � f�k� x� � f�
D
�k� x

E
�� We then regard f as a �uniform enumeration� of the functions

f�� f�� f�� � � � � For a function f � Nn 
 X � Y �n � ��� we write fk�l � �fk�l� etc� For a
function f � f�� 
g� � f�� 
g�� we write fn for the n�fold composition of f with itself�
We say that a condition  �n� holds almost everywhere �a�e�� if it holds for all but �nitely

many n � N� We say that  �n� holds in�nitely often �i�o�� if it holds for in�nitely many
n � N�

We use the discrete logarithm

logn � minfk � Nj�k � ng�
Note that log � � ��

For each i � N we de�ne a class Gi of functions from N into N as follows�

G� � ff j��k�f�n� � kn a�e�g
Gi�� � �Gi�log n
 � ff j��g � Gi�f�n� � �g�log n
 a�e�g

We also de�ne the functions bgi � Gi by bg��n� � �n� bgi���n� � �bgi�log n
� We regard the
functions in these classes as growth rates� In particular� G� contains the linearly bounded
growth rates and G� contains the polynomially bounded growth rates� It is easy to show
that each Gi is closed under composition� that each f � Gi is o�bgi���� and that each bgi is
o��n�� Thus Gi contains superpolynomial growth rates for all i � 
� but all growth rates in
the Gi�hierarchy are subexponential�

All results in this paper are robust with respect to reasonable choices of the underlying
model of deterministic� algorithmic computation� Our machines and algorithms can thus be
interpreted as Turing machines� random access machines� pointer machines� etc�
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Within the class REC of all decidable languages� we are interested in the uniform complex�
ity classes Ei � DTIME��

Gi��� and EiSPACE � DSPACE ��
Gi��� for i � 
� The well�known

exponential complexity classes E � E� � DTIME��
linear�� E� � DTIME��

polynomial�� ES�

PACE � E�SPACE � DSPACE ��
linear�� and E�SPACE � DSPACE��

polynomial� are of
particular interest�

We will use the following classes of transductions�
all �ff jf � �� � ��g
rec � ff � alljf is recursive g
pi � ff � alljf is computable in Gi time g �i � 
�
pispace � ff � alljf is computable in Gi space g �i � 
�

�The length of the output is included as part of the space used in computing f �� We write
p for p� and pspace for p�space� Throughout this paper� � and �� will denote one of the
classes all� rec� pi�i � 
�� pispace�i � 
��
A constructor is a transduction 
 � f�� 
g� � f�� 
g� that satis�es x���
�x� for all x� The

result of a constructor 
 �i�e�� the language constructed by 
� is the unique language R�
�
such that 
n��� v R�
� for all n � N� Intuitively� 
 constructs R�
� by starting with � and
then iteratively generating successively longer pre�xes of R�
�� We write R��� for the set of
languages R�
� such that 
 is a constructor in �� The following routine lemma is the reason
for our interest in the above�de�ned classes of transductions�

Lemma ��� ���
�

� R�all� � P�f�� 
g�� � f�� 
g��
�� R�rec� � REC�
�� For i � 
� R�pi��Ei�
�� For i � 
� R�pispace� � EiSPACE� �

Some of our results involve the convergence�divergence of in�nite series� A series
�X
n��

an

of nonnegative real numbers an is ��convergent if there is a function m � N� N such that
m � � and �X

n�m�i


an � ��i

for all i � N� Such a function m is sometimes called a modulus of the convergence� If
� � all� this is the usual notion of convergence� If � is a time� or space�bounded class of
transductions� then ��convergence is a stronger condition than convergence� Note that a
series is pi�convergent if and only if it is pispace�convergent�

Adding a layer of uniformity� a sequence

�X
k��

aj�k �j � �� 
� �� � � ��

of series of nonnegative real numbers is uniformly ��convergent if there is a function m �
N� � N such that m � � and� for all j � N� mj is a modulus of the convergence of the

series
�P
k��

aj�k�
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�� Resource�Bounded Measure

In this section we present those aspects of resource�bounded measure that will be used in
the sequel� The formulation here� based on uniform systems of density functions� is much
more powerful than the �modulated covering� formulation of ���
�

De�nition ���� A density function is a function d � f�� 
g� � ����� satisfying

d�w� � d�w�� � d�w
�

�
���
�

for all w � f�� 
g�� The global value of a density function d is d���� The set covered by a
density function d is

S�d
 �
�

w�f���g�

d�w���

Cw� �����

A density function d covers a set X � f�� 
g� if X � S�d
�

For all density functions in this paper� equality actually holds in ���
� above� but this is
not required�

We will frequently use the easily�veri�ed fact that

d�w� � �jwjd��� �����

holds for all w � f�� 
g� whenever d is a density function�
Consider the random experiment in which a sequence x � f�� 
g� is chosen by using an

independent toss of a fair coin to decide each bit of x� Taken together� ���
� and ����� imply
that Pr�x � S�d

 � d��� in this experiment� Intuitively� we will regard a density function d
as a �detailed veri�cation� that Pr�x � X
 � d��� for all sets X � S�d
�

More generally� we will be interested in �uniform systems� of density functions that are
computable within some resource bound ��

De�nition ���� An n�dimensional density system �n�DS� is a function

d � Nn 
 f�� 
g� � �����
such that d�k is a density function for every

�k � Nn� It is sometimes convenient to regard a
density function as a ��DS�

De�nition ���� A computation of an n�DS d is a function bd � Nn�� 
 f�� 
g� � D such
that ��� bd�k�r�w�� d�k�w�

��� � ��r
for all �k � Nn� r � N� and w � f�� 
g�� A ��computation of an n�DS d is a computation bd
of d such that bd � �� An n�DS d is ��computable if there exists a ��computation bd of d�
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If d is an n�DS such that d � Nn
f�� 
g� � D and d � �� then d is trivially ��computable�
This fortunate circumstance� in which there is no need to compute approximations� occurs
frequently in practice� In any case� we will sometimes abuse notation by writing d for bd�
relying on context and subscripts to distinguish an n�DS d from a computation d of d�

We now come to the key idea of resource�bounded measure theory�

De�nition ���� A null cover of a set X � f�� 
g� is a 
�DS d such that� for all k � N�
dk covers X with global value dk��� � ��k� A ��null cover of X is a null cover of X that is
��computable�

In other words� a null cover of X is a uniform system of density functions that cover X
with rapidly vanishing global value� It is easy to show that a set X � f�� 
g� has classical
Lebesgue measure � �i�e�� probability � in the above coin�tossing experiment� if and only if
there exists a null cover of X�

De�nition ���� A set X has ��measure �� and we write 	��X� � �� if there exists a
��null cover of X� A set X has ��measure �� and we write 	��X� � 
� if 	��X

c� � ��

Thus a set X has ��measure � if � provides su!cient computational resources to compute
uniformly good approximations to a system of density functions that cover X with rapidly
vanishing global value�

We illustrate De�nitions ��� and ��� with a trivial example� �More interesting applications
will come later� when more machinery is available��

Example ���� Let

ODD � fA � f�� 
g� j ��n � N� jA�nj is oddg�
De�ne d � N
 f�� 
g� � D by the following recursion� For all k � N� dk��� � �

�k� If w �
f�� 
g� and jwj is not of the form �n�� � � for some n � N� then dk�w�� � dk�w
� � dk�w��
If w � f�� 
g�� b � f�� 
g� and jwj � �n�� � �� where n � N� then

dk�wb� �
�
�dk�w� if "�
� w��n � 
� �n�� � �
� � b mod �
� otherwise�

It is a routine exercise to check that d is a p�null cover of ODD� whence 	p�ODD� � ��

As we have already noted� if � � all� then the ��measure � sets are precisely the sets of
classical Lebesgue measure �� �Accordingly� we usually write 	�X� instead of 	all�X��� Here
we are primarily interested in the internal measure�theoretic structure of complexity classes
R����

De�nition ��	� A set X has measure � in R���� and we write 	�X j R���� � �� if
	��X � R���� � �� A set X has measure � in R���� and we write 	�X j R���� � 
� if
	�Xc j R���� � �� If 	�X j R���� � 
� we say that almost every language in R��� is in X�

��



If � � all� then R��� � f�� 
g�� so the conditions 	all�X� � � and 	�X j R���� � � are
equivalent to each other and� as we have seen� to the classical condition 	�X� � ��

If � � rec� then the sets of measure � in R��� � rec given by De�nition ��� include
all the e�ective measure � subsets of REC investigated by Freidzon ��
� Mehlhorn ��

� and
others�

The following lemma is obvious but useful�

Lemma ��
� Let X � f�� 
g��

�a� If 	��X� � � and � � ��� then 	���X� � ��

�b� If 	��X� � �� then 	�XjR���� � �� �

Lemma ��	 uni�es results for various �� For example� it gives us the following implications
for every set X�

	p�X� � � �� 	pspace�X� � � �� 	rec�X� � � �� 	�X� � �
� � �

	�XjE� � � 	�XjESPACE� � � 	�XjREC� � �
Thus a proof that a set X has p�measure � gives information about the size of X in E

and also in larger classes� For example� we saw in Example ��� that 	p�ODD� � �# it follows
immediately by Lemma ��	�b� that 	�ODD j E� � �� We will see that this means that ODD
is a very small subset of E� i�e�� that �typical� sequences in E are not elements of ODD� By
Lemma ��	� this also holds if E is replaced by E�� ESPACE� REC� or f�� 
g��
In general� if a set X has measure � in a class R���� we will interpret this to mean that

X�R��� is a �small� subset ofR���� Stated intuitively and simplistically� this interpretation
has the following three components�

�s
� Measure � sets behave set�theoretically as small sets�
�s�� Very small sets have measure ��
�s�� Large sets do not have measure ��

We now develop these points in turn�

For point �s
� we need the following computational restriction of the notion of �countable
union��

De�nition ���� Let X�X�� X�� X�� � � � � f�� 
g��

�a� X is a ��union of the ��measure � sets X�� X�� X�� � � � if X �
�S
j��

Xj and there exists

a ��computable ��DS d such that each dj is a null cover of Xj�

��



�b� X is a ��union of the sets X�� X�� X�� � � � of measure � in R��� if X �
�S
j��

Xj and there

exists a ��computable ��DS d such that each dj is a null cover of Xj � R����

We now show that the ��measure � sets and the sets of measure � in R��� are closed
under subsets� �nite unions� and ��unions�

Lemma ���� ���Ideal Lemma�� Let I be either the collection I� of all ��measure �
sets or the collection I

R��

of all sets that have measure � in R���� In either case� I has

the following three closure properties�

�a� If X � Y � I� then X � I�
�b� If X is a �nite union of elements of I� then X � I�
�c� If X is a ��union of elements of I� then X � I�

Proof� Property �a� is obvious� It is also obvious that property �b� follows from property
�c�� since every �nite union of elements of I is trivially a ��union of elements of I� It thus
su!ces to prove �c�� In fact� it su!ces to prove �c� in the case I � I�� since it is easy to
see that the case I � I

R��

follows directly from this�

So assume that X is a ��union of the ��measure � sets X�� X�� X�� � � � � Then X �
�S
j��

Xj

and there is a ��computable ��DS d such that each dj�k covers Xj with global value dj�k��� �
��k� De�ne a function d� � N
 f�� 
g� � ����� by

d�k�w� �
�X
j��

dj�k�j���w��

Each d�k is� trivially by linearity� a density function� so d
� is a 
�DS� We will show that d� is

a ��null cover of X�

To see that each d�k covers X� �x k � N and let x � X� Since X �
�S
j��

Xj and

each dj�k�j�� covers Xj� there exist j�� n� � N such that x � Xj� � S�dj��k�j���

and dj��k�j����x����n� � 

� � 
� We then have

d�k�x����n� � 

� �
�X
j��

dj�k�j���x����n� � 

�

� dj��k�j����x����n� � 

�
� 
�

so x � S�d�k
� Since each d
�
k has global value

d�k��� �
�X
j��

dj�k�j�����

�
�X
j��

���k�j��


� ��k�

��



it follows that d� is a null cover of X�

All that remains to be shown is that d� is ��computable� For this� let d be a ��
computation of the ��DS d� De�ne the function d� � N� 
 f�� 
g� � D by

d�k�r�w� �
r�jwjX
j��

dj�k�j���r�j���w��

We will show that d� is a ��computation of the ��DS d�� It is clear that d� � �� Letting
� �

r�jwjP
j��

dj�k�j���w�� we have

���d�k�r�w�� �
��� �

r�jwjX
j��

jdj�k�j���r�j���w�� dj�k�j���w�j

�
r�jwjX
j��

���r�j��


�
�X
j��

���r�j��


� ���r��


and� by ������

j� � d�k�w�j �
�X

j�r�jwj��
dj�k�j���w�

�
�X

j�r�jwj��
�jwjdj�k�j�����

� �jwj
�X

j�r�jwj��
���k�j��


� ���k�r��


� ���r��
�

so ���d�k�r�w�� d�k�w�
��� � ��r

for all k� r � N and w � f�� 
g�� Thus d� is a ��computation of d� and the proof is complete�
�

In the classical case� where � �all� a ��union is simply a countable union and Lemma ��
�
tells us that the measure � sets are closed under subsets� �nite unions� and countable unions�
This well�known fact is usually expressed by saying that the measure � sets form a ��ideal
of subsets of f�� 
g�� Extending this terminology� we conclude from Lemma ��
� that the
��measure � sets form a ��ideal of subsets of f�� 
g� and that the measure � subsets of
R��� form a ��ideal of subsets of R���� This is the precise formulation of point �s
��

��



For point �s�� we de�ne a computationally restricted notion of �countable set��

De�nition ����� A set X � R��� is ��countable if there is a function 
 � N
f�� 
g� �
f�� 
g� such that 
 � �� 
k is a constructor for each k � N� and X � fR�
k�jk � Ng�

Lemma ����� Let X � R����

�a� If X is �nite� then 	��X� � ��

�b� If X is ��countable� then 	��X� � ��

Proof� Since �nite subsets of R��� are trivially ��countable� it su!ces to prove �b�� So
let 
 � � testify that X � R��� is ��countable� De�ne d � N� 
 f�� 
g� � D by

dk�l�w� � �
m�l�

where m � N is greatest such that 
mk ��� v w� It is clear that d � � and that each dk
is a null cover of the singleton set fR�
k�g� That is� d testi�es that X is a ��union of the
��measure � sets fR�
k�g� It follows by the ��Ideal Lemma that 	��X� � �� �

Lemma ��
� is our precise formulation of point �s��� In particular it implies that every
singleton subset fxg of R��� has ��measure � �hence measure � in R����� It should be
noted that the assumption that fxg � R��� cannot be deleted here� We will see in x� that
arbitrary singleton sets fxg may fail to have ��measure ��
We now come to point �s��� This is the most crucial issue in our development� If we are to

endow a complexity class R��� with internal measure�theoretic structure� then R��� itself
must be a large set� hence by �s�� must not have measure � in R���� That is� the ��ideal
I
R��


of all measure � subsets of R��� must be proper in the sense that R��� �� I
R��


�

In cases of interest� R��� is a countable set and thus has classical measure �� Fortunately�
however� R��� does not have ��measure �� This fact follows from the following conservation
principle that says that� within the computational resources of �� the intersection of a
cylinder with R��� cannot be covered more economically than the cylinder itself� �Recall
that� for z � ��� 	�z� � ��kzk is the measure of the cylinder Cz��

Theorem ���� �Measure Conservation Theorem�� If Cz is a cylinder and d is a ��
computable density function that covers Cz �R���� then d��� � 	�z��

Proof� Assume that d is a ��computable density function such that d��� � 	�z�� We
will prove by diagonalization that d does not cover Cz � R���� Speci�cally� we will exhibit
a constructor 
 � � such that

z v R�
�� �����

j
�x�j � jxj� 
 for all x � f�� 
g�� �����

and
d�
k���� � 
 for all k � N� �����

��



�It follows from these three things that

R�
� � Cz n S�d
�
whence d does not cover Cz �R�����

Let m � maxf
� jzjg and let
S � fy � f�� 
gm j z v yg�

�We emphasize that z � f�� 
��g�� kzk � jzj � m� and S � f�� 
gm�� For each y � S� let

g�y� � f�� 
g�m be the shortest pre�x of y such that� for every pre�x w of y� d�w� � d�g�y���
We �rst note that there exists y � S such that

d�g�y�� � d���

	�z�
� �����

To see this� de�ne d� � f�� 
g� � ����� by

d��x� �
�
d�g�y�� if y � S and g�y� v x
d�x� if no element of g�S� is a pre�x of x�

�The function d� is well�de�ned because g�S� is an instantaneous code� i�e�� no element of
g�S� is a pre�x of any other�� It is readily checked that d� is a density function� so

d��� � d���� � ��m
X

y�f���gm
d��y�

� ��m
X
y�S

d��y�

� ��mjSjmin
y�S

d��y�

� ��kzkmin
y�S

d��y�

� 	�z�min
y�S

d�g�y���

so some y � S satis�es ������

Fix q � D and a positive integer l such that

d��� � q � 	�z�� q � ���l � 
� ���	�

Let d be a ��computation of the density function �i�e�� ��DS� d� Using d and the constants
m� y� q� and l� de�ne the constructor 
 � f�� 
g� � f�� 
g� by


�x� �

�����
xy�jxj
 if x ��� y

x� if da�x
�x�� � da�x
�x� � �
��a�x
 and not x ��� y

x
 otherwise�

where a�x� � jxj � l � �� It is clear that 
 � � and that ����� holds� Also� z v y � 
m����
so ����� holds� All that remains� then� is to verify ������

A key property of 
 is that

da�x
�
�x�� � da�x
�x� � �
��a�x
 �����

��



holds whenever x is not a proper pre�x of y� To see this� we need only recall that d is a
density function� whence da�x
�x�� � da�x
�x� � �

��a�x
 implies that

da�x
�x
� � d�x
� � ��a�x


� �d�x�� d�x�� � ��a�x


� �da�x
�x�� da�x
�x�� � �
��a�x


� da�x
�x� � �
��a�x
�

By ����� and ���	� we have� for all � � k � m�

d�
k���� � d�y����k � 

� � d�g�y��

� d���

	�z�
� q ���
��

� q � ��l�
� ��j�k��
j��
Also� if x � f�� 
g� is such that d�x� � q � ��l�
� ��jxj� and x is not a proper pre�x of y�
then ����� ensures that

d�
�x�� � da�x
�
�x�� � �
�a�x


� da�x
�x� � � � ��a�x

� d�x� � ���a�x
 ���

�

� q � ��l�
� ��jxj� � ���jxj�l��

� q � ��l�
� ��j��x
j��

Taken together� ���
�� and ���

� provide an inductive proof that

d�
k���� � q � ��l�
� ��j�k��
j�
� q � ��l

� 


for all k � N� i�e�� ����� holds� This completes the proof� �

Corollary ����� The ��ideals I� and I
R��


of Lemma ��
� are both proper� In fact�

neither of these ��ideals contains Cz � R��� for any nonempty cylinder Cz� �

The implications
I
R��


is proper �� I� is proper

and
Iall is proper �� I� is proper

are both trivial� and Borel proved long ago �using a classical version of Theorem ��
�� that
Iall is proper� i�e�� that not every set has measure �� The real content of Corollary ��
� is
the assertion that I

R��

is proper� i�e�� that �s�� holds internally for the classes R����

This completes the interpretation of measure � sets as small sets� We now give a useful
criterion for proving that sets have ��measure �� This theorem is a uniform� resource�
bounded extension of the classical �rst Borel�Cantelli lemma�

��



Theorem ����� If d is a ��computable ��DS such that the series

�X
k��

dj�k��� �j � �� 
� �� � � �� ���
��

are uniformly ��convergent� then

	�

�	 ��
j��

�

t��

��
k�t

S�dj�k


�A � ��

The coordinate j of Theorem ��
� is often not needed in applications� Discarding this
layer of uniformity gives the following simpli�cation�

Corollary ����� If d is a ��computable 
�DS such that the series

�X
k��

dk���

is ��convergent� then

	�

� �

t��

��
k�t

S�dk




� 	� �fx � f�� 
g� j x � S�dk
 i�o�g� � ��

�

Before proving Theorem ��
� we give a simple example of its use�

Example ���	� Fix a real number � � � � 
 and let

X � fx � f�� 
g� j x�k��k � bk�c
 � f�g� i�o�g�
Let l �

l
�
�

m
and de�ne d � N 
 f�� 
g� � D by the following recursion� If jwj � k� then

dk�w� � �
�bk �l c� If jwj � k� then dk�w�� � �dk�w� and dk�w
� � �� Then� for all x � f�� 
g�

and k � N�

x�k��k � bk�c
 � f�g� �� dk�x����k � bk�c
� � �bk�c�bk
�
l c � 


�� x � S�dk
�

so X � �T
t��

�S
k�t

S�dk
� Since d � p and the series
�P
k��

dk��� �
�P
k��
��bk

�
l c is� by routine calculus�

p�convergent� it follows by Corollary ��
� that 	p�X� � 	�X j E� � �� That is� for every
� � �� for almost every sequence x � E� there are at most �nitely many k for which
x�k��k � bk�c
 consists entirely of zeroes�

Proof of Theorem ����� Assume the hypothesis� Fix a functionm � N� � N testifying
that the series ���
�� are uniformly ��convergent� Without loss of generality� assume that

��



mj is nondecreasing and mj�n� � � for all j� n � N� De�ne

Sj�t �
��
k�t

S�dj�k
�

Sj �
�

t��

Sj�t�

S �
��
j��

Sj�

Our task is to prove that 	��S� � �� De�ne d
� � N� 
 f�� 
g� � ����� by

d�j�n�w� �
�X

k�mj�n


dj�k�w�

for all j� n � N and w � f�� 
g�� We will show that d� testi�es that S is a ��union of the
��measure � sets S�� S�� S�� � � �� whence 	��S� � � by the ��Ideal Lemma�

Each d�j�n is trivially by linearity a density function� so d
� is a ��DS� To see that each d�j

is a null cover of Sj� �x j� n � N� Let x � Sj� Then x �
�T
t��

Sj�t� so

x � Sj�mj�n
 �
��

k�mj�n


S�dj�k
�

so there exist k� � mj�n� and l� � N such that dj�k��x����l� � 

� � 
� We then have

d�j�n�x����l� � 

� �
�X

k�mj�n


dj�k�x����l� � 

�

� dj�k��x����l� � 

�
� 
�

so x � S�d�j�n
� Thus d
�
j�n covers Sj� Moreover� the global value of d

�
j�n satis�es

d�j�n��� �
�X

k�mj�n


dj�k��� � ��n�

Thus each d�j is a null cover of Sj�

It remains to be shown that the ��DS d� is ��computable� For this� let d be a ��
computation of the ��DS d� De�ne d� � N� 
 f�� 
g� � D by

d�j�n�r�w� �
mj�r�jwj��
X
k�mj�n


dj�k�r�k�w��

It is clear that d� � �� Fix j� n� r � N and x � f�� 
g�� Let � �
mj�r�jwj��
P
k�mj�n


dj�k�w�� Then

���d�j�n�r�w�� �
��� �

mj�r�jwj��
X
k�mj�n


jdj�k�r�k�w�� dj�k�w�j

��



�
mj�r�jwj��
X
k�mj�n


���r�k


�
�X

k�mj�n


���r�k


� ����r�mj�n



� ���r��


and� by ������

���d�j�n�w�� �
��� �

�X
k�mj�r�jwj��


dj�k�w�

� �jwj
�X

k�mj�r�jwj��

dj�k���

� ���r��
�

so ���d�j�n�r�w�� d�j�n�w�
��� � ��r�

Thus d� is a ��computation of the ��DS d�� �

Individually� the density functions used here closely resemble the martingales used by
Schnorr ������������
 in his investigation of random and pseudorandom sequences� Indeed�
a martingale� as de�ned by Schnorr� is formally a density function satisfying ���
� with
equality� This equality requirement does not make any di�erence to his work or ours� so
density functions and martingales have essentially identical formal de�nitions� There is�
however� substantial di�erence in the spirit and use of these two notions� Schnorr� following
early work of Ville� used martingales to formalize the notion of variable�stakes gambling
strategies� In this context� one is typically interested in ideas of the following sort�

De�nition ���
� A martingale d succeeds on a sequence x � f�� 
g� if

lim sup
n��

d�x����n� 

� ���

Schnorr� using technical variants of De�nition ��
	 �strong success notions involving
the rate of growth of the lim sup�� has shown that the �weak failure� of all individual
��computable martingales on a sequence x characterizes a weak pseudorandomness condi�
tion ������
� �See also ��
���
 and x� below��
In contrast� the density functions here are generalizations of the density function d of

����Lemma ��	
� We have �rst used uniform systems of such density functions to de�ne
resource�bounded measure� and only then used resource�bounded measure to de�ne pseudo�
randomness� �See x� below and ���
�� This is a natural development in investigating the
internal� measure�theoretic structure of complexity classes�

�	



In ���
� the ��measurability of sets X � f�� 
g� and the measure 	��X� of ��measurable
sets �� � 	��X� � 
� are de�ned and developed in terms of uniform systems of density func�
tions� De�nition ��� above is a special case �the measure zero�one case� of these de�nitions�
As it turns out� individual martingales can be used to characterize this special case�

Theorem ����� A set X � f�� 
g� has ��measure � if and only if there exists a ��
computable martingale d that succeeds on every sequence x � X� �

�We will not use Theorem ��
� in this paper� The proof will appear in ���
��

Notwithstanding the contrast between our approach and his� we emphasize that many
technical aspects of x� �e�g�� much of the content of the Measure Conservation Theorem�
were already present� some twenty years ago� in the work of C� P� Schnorr�

�� Kolmogorov Complexity

In this� the main section of the paper� we prove that almost every initial segment of almost
every binary sequence computable in exponential resources has very high resource�bounded
Kolmogorov complexity� Of course we must �rst formulate this assertion more precisely�

In order to make our lower bounds applicable to other complexity criteria �e�g�� the circuit�
size lower bounds in x��� we introduce a new generalization of Kolmogorov complexity� called
selective Kolmogorov complexity� We then focus on the space� and time�bounded selective
Kolmogorov complexities of in�nite binary sequences�

Some terminology and notation will be useful� For a �xed machine M and �program�
� � f�� 
g� for M � ifM�� �� �n �� halts with output w � f�� 
gn� then we write M��� n� for
the binary string w� In particular� an assertion that M��� n� has some particular property
�in � t time� �respectively� �in � t space�� means that M�� �� �n �� halts with an output
string M��� n� � f�� 
gn in � t steps �respectively� using � t space� and that this output
string has the indicated property� Note that this notation implicitly requires M��� n� to be
a binary string whose length is exactly n�

De�nition ���� A selector is a function � � N� f��	g� such that j��n�j � n for each
n � N� We write "��n� for the number of occurrences of � in ��n��

De�nition ���� Let M be a machine� let t � N � N be a resource bound� let � be a
selector� and let x � f�� 
g��
�a� The t�time�bounded ��selective Kolmogorov complexity of x relative to M is the func�

tion KT t
M�x � � j �� � N� N 
 f�g de�ned by

KT t
M �x � �jn� � minfj�j jM��� n� v x � ��n� in � t�n� timeg�

�b� The t�space�bounded ��selective Kolmogorov complexity of x relative to M is the func�
tion KSt

M�x � � j �� � N� N 
 f�g de�ned by
KSt

M�x � � j n� � minfj�j jM��� n� v x � ��n� in � t�n� spaceg�

��



Just as for other resource�bounded Kolmogorov complexities �see Huynh �
�
� for exam�
ple�� well�known simulation techniques show that there exist a universal machine U and a
polynomial q such that for each machine M there is a constant c such that for all t� �� x� and
n we have

KT
q�ct�c

U �x � � j n� � KT t

M�x � � j n� � c ���
�

and
KSct�c

U �x � � j n� � KSt
M�x � � j n� � c� �����

As usual� we �x such a universal machine U and omit it from the notation�

The t�time�bounded ��selective Kolmogorov complexity of a binary sequence x is thus
the function KT t�x�� j �� whose value at an argument n is the length KT t�x�� j n� of the
shortest program � such that U��� n� v x � ��n�� The latter condition says that U��� n��i

must agree with x�i
 for every � � i � n such that ��n��i
 � �� No requirement is placed on
U��� n��i
 when ��n��i
 � 	� That is �relative to the universal machine U�� � must correctly
decide x at each of the "��n� positions selected by ��n��

If � is a selector that is computable in polynomial time� then it is easy to design a
machine M� that� on input � �� �n � with � � f�� 
g���n
� outputs in polynomial time
a string M���� n� such that� if i� � � � � � i���n
�� are the indices i for which ��n��i
 �
�� then M���� n��i�
 � � �M���� n��i���n
��
 � � and M���� n��i
 � � for all other indices i�
Hence M���� n� is the n�bit binary string consisting of the program � positioned inM���� n�
according to �� with zeros in all remaining positions� For example� if ���� � 	��	�	 and
� � 
�
� then M���� �� � �
��
�� where we have underlined the positions selected by �����
It is clear that there is a polynomial q such that KT q

M�
�x � � j n� � "��n� for all x and n�

It follows by ���
� that there exist a polynomial q and a constant c such that

KT q�x � � j n� � "��n� � c �����

for all x � f�� 
g� and n � N� That is� the polynomial time�bounded ��selective Kolmogorov
complexity cannot be much larger than "��n�� the number of bits to be correctly decided�
Note that the polynomial q here depends on the running time of the selector � but not on
x or n�

A similar argument shows that if � is a selector that is computable in polynomial space�
then there exist a polynomial q and a constant c such that

KSq�x � � j n� � "��n� � c �����

for all x � f�� 
g� and n � N�

As a special case of the selective Kolmogorov complexity� we have the conditional Kol�
mogorov complexity� �This is actually a much�studied special case� adapted to in�nite se�
quences� of the conditional complexity de�ned by Kolmogorov �
	
�� Again� we are interested
in resource�bounded versions�

De�nition ���� Let t � N� N be a resource bound and let x � f�� 
g��
�a� The t�time�bounded conditional Kolmogorov complexity of x is the function

KT t�x j �� � KT t�x � � j ��� where the selector � is de�ned by ��n� � �n for all n � N�

��



�b� The t�space�bounded conditional Kolmogorov complexity of x is the function
KSt�x j �� � KSt�x � � j ��� where � is as in part �a��
Thus the conditional Kolmogorov complexity is the special case of the selective Kol�

mogorov complexity in which every position is selected� i�e�� every bit of U��� n� must be
correct for x�

From ����� and ����� we get the well�known fact that there exist a polynomial q �which
is in fact linear� and a constant c such that

KT q�x j n� � n� c �����

and
KSq�x j n� � n� c �����

hold for all x � f�� 
g� and n � N� It is also clear that the inequalities

KT t�x � � j n� � KT t�x j n� �����

and
KSt�x � � j n� � KSt�x j n� ���	�

hold for all t� �� x� and n�

Our primary objective in this section is to establish lower bounds that hold almost every�
where in various complexity classes for the time� and space�bounded conditional Kolmogorov
complexities� Our secondary objective is to do this in such a manner that the circuit�size
lower bounds of x� can then be derived� Accordingly� we prove our lower bounds for the
time� and space�bounded selective Kolmogorov complexities� By ����� and ���	�� this obvi�
ously achieves our primary objective� We will see in x� that the secondary objective is also
achieved�

We now prove an almost�everywhere lower bound for space�bounded selective program
size in ESPACE�

Theorem ���� Suppose that a selector � and a function f � N� N have the following
properties�
�i� �� f � pspace�
�ii�

�X
n��

��f����n

 is p�convergent�

Then for every polynomial q� the set of all x � f�� 
g� such that

KSq�x � � j n� � "��n�� f�"��n�� a�e�

has pspace�measure 
� hence measure 
 in ESPACE�

Proof� For each n � N� let

Xn � fx j KSq�x � � j n� � "��n�� f�"��n��g�
It su!ces to prove that fx j x � Xn i�o�g has pspace�measure �� For this� it su!ces by
Corollary ��
� to exhibit a pspace�computable 
�DS d such that each Xn � S�dn
 and the

series
�P
n��

dn��� is p�convergent�

��



For each n � N� let

Bn � f� � f�� 
g����n
�f����n

 j U��� n� � f�� 
gn in � q�n� spaceg
and� for all � � Bn� let

Zn�� � fx � f�� 
g� j U��� n� v x � ��n�g�
De�ne d � N
 f�� 
g� � ����� by

dn�w� �
X
��Bn

P �Zn�� j Cw�� �����

where the conditional probability

P �Zn�� j Cw� � Pr
x
�x � Zn�� j x � Cw


is chosen according to the random experiment in which an independent toss of a fair coin is
used to decide each bit of a sequence x � f�� 
g��
Since each

P �Zn�� j Cw� �
P �Zn�� j Cw�� � P �Zn�� j Cw��

�
�

it is clear that d is a 
�DS� Moreover� for all n � N� � � Bn� and w � f�� 
g�� it is easy to
see that

P �Zn�� j Cw� � �
kU���n
���n
�wk�jwj� ���
��

Using ����� and ���
��� it is clear that d � pspace� whence d is certainly pspace�computable�
To see that d has the desired covering property� �x n � N and let x � Xn� Then there

exists � � Bn such that x � Zn��� For all y � Cx����n���� we then have U��� n� v x � ��n� �
y � ��n�� so Cx����n��� � Zn��� It follows that

dn�x����n� 

� � P �Zn�� j Cx����n���� � 
�

whence x � S�dn
� Thus Xn � S�dn
�

Finally� note that each

dn��� �
X
��Bn

P �Zn��� � �
����n
jBnj � ���f����n

�

Since
�P
n��
��f����n

 is p�convergent� it follows immediately that

�P
n��

dn��� is p�convergent�

By Corollary ��
�� this completes the proof� �

Several results� some new and some previously known� are easily derived from Theorem ���
and its proof� We �rst give almost�everywhere lower bounds for space�bounded conditional
Kolmogorov complexity�

Theorem ���� If f � N� N� f � pspace� and the series
�X
n��

��f�n
 is p�convergent� then

for every polynomial q� the set of all x � f�� 
g� such that KSq�xjn� � n � f�n� a�e� has
pspace�measure 
� hence measure 
 in ESPACE�

��



Proof� This follows immediately from Theorem ��� if we use the selector � de�ned by
��n� � �n for all n � N� �

Corollary ���� For every polynomial q and every real number � � �� the set of all
x � f�� 
g� such that KSq�x j n� � n � n� a�e� has pspace�measure 
� hence measure 

in ESPACE�

Proof� Routine calculus shows that the series
�P
n��
��n

�

is p�convergent� so this follows

immediately from Theorem ���� �

Corollary ��� immediately implies �in fact� is much stronger than� the following two
results� which have been used to investigate complexity properties of problems that are hard
for ESPACE under resource�bounded Turing reducibilities�

Corollary ��	 �Huynh �
�
�� There is a sequence x � ESPACE such that
KSn�xjn� � n

�
a�e� �

Corollary ��
 �Lutz ���
�� For every polynomial q and every real number 
 � 
� the set
of all x � f�� 
g� such that KSq�xjn� � 
n i�o� has pspace�measure 
� hence measure 
 in
ESPACE� �

A brief examination of the proof of Theorem ��� shows that it remains valid if pspace
is replaced by any of the resource bounds � for which pspace � �� Moreover� the result
continues to hold if the polynomial restriction on q is relaxed� as long as q�space�bounded
computations can be carried out within the resources a�orded by �� Taking � �rec� then�
we have the following� which is essentially a weak version of Theorem ����

Corollary ���� If f� g � N � N are computable and
�X
n��

��f�n
 is rec�convergent� then

the set of all x � f�� 
g� such that KSg�xjn� � n � f�n� a�e� has rec�measure 
� hence
measure 
 in REC� �

Corollary ��� says that almost every recursive sequence has very high space�bounded
Kolmogorov complexity in almost every initial segment� The following known result follows
easily from this�

Corollary ���� �Ko �
�
�� If f� g � N � N are computable and
�X
n��

��f�n
 converges�

then there is a recursive sequence x � f�� 
g� such that KSg�xjn� � n� f�n�� logn a�e�

Proof� We just note that if
�X
n��

��f�n
 converges� then
�X
n��

��f�n
�log n is rec�convergent�

�This is a special case of the following obvious fact� If a series
�X
n��

an converges and a sequence

fbng ��converges to �� where the an and bn are all nonnegative� then the series
�X
n��

anbn is

��



��convergent�� The present result thus follows immediately from Corollaries ��� and ��
��

�

It is worthwhile to pause for a moment and consider the roles played by various methods�
Corollaries ��� and ��
� provide a good focal point for this� Our proof of Corollary ��� is
essentially that of Theorem ���� with resource bounds relaxed and selectors removed �i�e��
replaced by the selector ��n� � �n�� With these modi�cations� the proof is a transparent
covering argument� simpler than the Meyer and McCreight ���
 weighted priority diagonaliza�
tion used by Ko �
�
 to prove Corollary ��
�� Does this give us a new proof of Corollary ��
��
free of the weighted priority diagonalization� Not really� The work previously done by the
weighted priority diagonalization is here performed by the measure�theoretic density diago�
nalization in the proof of Theorem ��
�� This result is then used� via Corollary ��
�� to infer
Corollary ��
� from Corollary ���� Thus we have not really removed the weighted priority
diagonalization� We have� however� clari�ed its role� It is used only to infer existence from
abundance�

If we let � �all� then the observation preceding Corollary ��� gives the following well�
known result for K�xj��� the conditional Kolmogorov complexity with unbounded resources
�i�e�� K�xj�� � KT��xj�� � KS��xj����

Corollary ���� �Martin�L�of ���
�� If f � N � N and
�X
n��

��f�n
 converges� then a

measure 
 set of the sequences x � f�� 
g� have K�xjn� � n� f�n� a�e� �

Although Corollaries ��� and ��

 are presented here as consequences of Theorem ���� it
is important to remember that Corollary ��

 was historically the �rst such result�

The lower bounds we have given for space�bounded Kolmogorov complexity are fairly
tight in the simple sense that they are not too far from the upper bounds given by �����
and ������ In fact� Martin�L�of ���
 showed that the almost everywhere lower bound given
by Corollary ��

 is tight in the much stronger sense that if f � N � N is computable

and
�X
n��

��f�n
 diverges� then every binary sequence x has K�xjn� � n � f�n� i�o� Thus the

convergence�divergence behavior of
�X
n��

��f�n
 determines whether f grows quickly enough

that K�xjn� can �and usually does� eventually stay above n�f�n�� In the following theorem
we modify Martin�L�of�s argument to give an in�nitely�often upper bound on space�bounded
conditional program size� This shows that the almost�everywhere lower bound given by
Theorem ��� is very tight� �Ko �
�
 has proven a similar result��

Theorem ����� If f � N� N is such that f � pspace and
�X
n��

��f�n
 diverges� then there

is a polynomial q such that every binary sequence x � f�� 
g� has KSq�xjn� � n� f�n� i�o�

Proof� Let g � N� N be computed by the following algorithm�
begin

input n#

��



r� s� t �� �� �� �#
for i �� � to n� 
 do
begin

if t � s then r� s �� r � 
� ��s� �r�f�r
�#
t �� t � ��f�i


end for�loop#
output r

end g�

It is clear that g � pspace� We will show that g is nondecreasing and onto with
�X
n��

��f�n
�g�n
 ��� ���

�

By inspection and induction� the following conditions hold at the beginning of cycle i of
the for�loop�

r � g�i� ���
��

s � �r
r��X
j��

��f�j
 ���
��

t �
i��X
j��
��f�j
 ���
��

It follows that g is nondecreasing with g��� � � and range closed downward� i�e�� r� � r� �
range�g� implies r� � range�g�� Since

�X
n��

��f�n
 ��� it follows by ���
�� that g is onto�

Now choose n such that g�n� 
� � g�n� � 
� Then t � s in cycle n of the for�loop in the
computation of g�n� 
�� By ���
� � ��
�� this implies that

n��X
j��

��f�j
 � �g�n

g�n
��X
j��

��f�j
�

whence
nX

j��

��f�j
�g�j
 � ��g�n

nX

j��

��f�j
 �
g�n
��X
j��

��f�j
� ���
��

Since g is nondecreasing and unbounded and
�X
n��

��f�n
 ��� ���

� follows from ���
��� Thus
g has the desired properties�

For each w � f�� 
g�� de�ne a sequence w�� w�� w�� � � � of strings wi � f�� 
gjwj by the
recursion

w� � w�

wi�� �

�
next�wi� if wi �� f
g�
�jwij if wi � f
g��

��



This construction has the easily veri�ed property that� for all w � f�� 
g� and j � N�

f�� 
gjwj � fwijj � i � j � �jwjg� ���
��

Now de�ne F � N� � f�� 
g� by

F �t� n� �

�
� if n � � or t � h�n�
�F �h�n� 
�� n� 
�
�t otherwise�

where h�n� � maxf�� �n�f�n
�g�n
 � 
g� Note that
F ��� n� 
� � F �h�n�� n�
 ���
��

for all n � N� We are primarily interested in the strings F �t� n� for 
 � t � h�n�� For each
n � N� these strings form an �interval� of lexicographically successive strings in f�� 
gn�
possibly �wrapping around� from 
n to �n� For each m�n � N with m � n� let Bm

n be
the set of all strings w � f�� 
gm such that F �t� n� v w for some 
 � t � h�n�� Note that
jBm

n j � �m�njBn
n j � �m�nh�n��

Let n � N be arbitrary for a moment� By ���

� there exists m � n such that

mX
k�n

��f�k
�g�k
 � ��

Then

mX
k�n

jBm
k j �

mX
k�n

�m�kh�k�

�
mX
k�n

�m�k
�
�k�f�k
�g�k
 � 


�

� �m
mX
k�n

�
��f�k
�g�k
 � ��k

�

� �m
�

mX
k�n

��f�k
�g�k
 �
�X
k��

��k
�

� �m��� ��
� �m�

It follows easily by ���
�� and ���
�� that
m�
k�n

Bm
k � f�� 
gm� This argument shows that� for

every n � N and x � f�� 
g�� there exist k � n and 
 � t � h�k� such that F �t� k� v x�
That is� for every x � f�� 
g�� there exist in�nitely many n � N such that F �t� n� v x for
some 
 � t � �n�f�n
�g�n
 � 
�
Since f� g � pspace� there is a machineM that� given inputs t� n in binary� outputs F �t� n�

in space polynomial in n� It follows by the preceding paragraph that there is a polynomial
q� such that

KSq�

M�xjn� � n� f�n�� g�n� i�o�

��



for all x � f�� 
g�� It follows by ����� that there exist a polynomial q and a constant c such
that

KSq�xjn� � n� f�n�� g�n� � c i�o�

for all x � f�� 
g�� Since g is nondecreasing and unbounded� this proves the theorem� �

Corollary ����� There is a polynomial q such that every binary sequence x � f�� 
g�
has KSq�xjn� � n� logn i�o� �

In ESPACE� we still have a signi�cant gap between the n�n� lower bound of Corollary ���
and the n� log n upper bound of Corollary ��
�� The following result� due to David Juedes�
shows that the n� n� lower bound is tight in ESPACE�

Theorem ���� �Juedes �
�
�� Let q�n� � n�� For every x � ESPACE� there exists � � �
such that KSq�x j n� � n� n� a�e� �

Note that the series
�P
n��
��n

�

is convergent �in fact� p�convergent�� so the upper bound of

Theorem ��
� is tighter than the more general bound of Theorem ��
��

We now give almost�everywhere lower bounds for time�bounded Kolmogorov complexity
in uniform time complexity classes�

Theorem ����� Suppose that i � N� g � Gi� and � � pi�� is a selector such that the
series

�X
n��

�����n
� is pi���convergent for some real � � 
� Then for every q � Gi��� the set

of all x � f�� 
g� such that KT q�x � �jn� � g�log"��n�� a�e� has pi���measure 
� hence
measure 
 in Ei���

Proof� We follow the proof of Theorem ���� In the de�nitions of Xn and Bn� replace
KS by KT� "��n�� f�"��n�� by g�log"��n��� and q�n� space by q�n� time� Then jBnj �
�g�log���n

 is in �Gi�logGi��
 � �Gi�Gi�log n

 � �Gi�log n
 � Gi���n�� so d � pi�� by �����
and ���
��� As in Theorem ���� d is a 
�DS and each dn covers Xn� Finally�

dn��� �
X
��Bn

P �Zn��� � �
����n
jBnj

� �g�log���n

������n
 � �����n
�

for all su!ciently large n� so
�P
n��

dn��� is pi���convergent� �

The g�log"��n�� lower bound of Theorem ��
� is asymptotically much smaller than the
"��n� � f�"��n�� lower bound of Theorem ���� More importantly� the magnitude of the
g�log"��n�� lower bound in Theorem ��
� varies directly with the time bound of the uniform
complexity class� greater values of i yield greater lower bounds in Ei� Is this relationship
an actual property of time complexity classes� or is it merely an artifact of an inadequate
analysis � This is a crucial open question that will probably be di!cult to answer�

��



The following almost�everywhere lower bound on time�bounded conditional program size
is an immediate consequence of Theorem ��
��

Theorem ����� If i � N� g � Gi� and q � Gi��� then the set of all x � f�� 
g� such
that KT q�xjn� � g�logn� a�e� has pi���measure 
� hence measure 
 in Ei��� �

The cases i � 
� � of Theorem ��
� give polylogarithmic and superpolylogarithmic lower
bounds on KT �complexity almost everywhere in E� and E�� respectively�

�� Circuit�Size Complexity

We now use Theorems ��� and ��
� to derive almost�everywhere lower bounds on the
Boolean circuit�size complexity of binary sequences in exponential complexity classes�

Our circuit terminology is standard� We de�ne a �Boolean� circuit to be a directed acyclic
graph � with vertex set I 
G� where I � fw�� � � � � wng is the set of inputs �n � �� and G �
fg�� � � � � gsg is the set of gates �s � 
�� Each input has indegree � and each gate has indegree
�� 
� or �� Each gate of indegree � is labeled either by the constant � or by the constant 
�
Each gate of indegree 
 is labeled either by the identity function ID� f�� 
g � f�� 
g or by
the negation function NOT� f�� 
g � f�� 
g� Each gate of indegree � is labeled either by the
conjunction AND� f�� 
g� � f�� 
g or by the disjunction OR� f�� 
g� � f�� 
g� The output
gate gs has outdegree �� The other gates and the inputs have unrestricted outdegree� The
size of such a circuit � is size��� � jGj � s� the number of gates�

An n�input circuit � computes a Boolean function � � f�� 
gn � f�� 
g in the usual way�
For w � f�� 
gn� ��w� is the value computed at the output gate gs when the inputs are
assigned the bits w�� � � � � wn of w� The set computed by an n�input circuit � is then the set
of all w � f�� 
gn such that ��w� � 
�
It will be convenient to abbreviate

x�length n
 � x��n � 
 �� �n�� � �

for x � f�� 
g� and n � N� We will also de�ne the graph of an n�input circuit � to be the
�n�bit string�

graph ��� � ��s�n��� � � � ��s�n������

where s�n��� � � � � s�n���� are the successive strings of length n� Thus� if x is the characteristic
sequence of a language L� then � computes L�f�� 
gn if and only if graph��� � x�length n
�

By well�known techniques we �x a one�to�one coding scheme

 � fcircuitsg � f�� 
g��
a �small� constant k� � N� and a polynomial�time computable circuit interpreter

I� � f�� 
g� 
 f�� 
g� � f�� 
g��

with the following properties�
�i� For each n�input circuit �� j ���j � k�size��� log�n� size���
�
�ii� If �� and �� are n�input circuits with size���� � size����� then  ���� lexicographically

�	



precedes  �����
�iii� If y �  ���� where � is a jwj�input circuit� then I��y� w� � ��w��
�iv� If there is no jwj�input circuit � such that y �  ���� then I��y� w� � ��

An n�input circuit code is a binary string  ���� where � is an n�input circuit� We some�
times write size� ���� for size��� and graph� ���� for graph����

The circuit�size complexity of a language L � f�� 
g� is the function CSL � N � N

de�ned by
CSL�n� � minfsize���j� computes L � f�� 
gng �

The circuit�size complexity of a binary sequence x � f�� 
g� is the function CSx � N� N

de�ned by
CSx�n� � min fsize���j graph ��� � x� length n
g �

Note that this is precisely the circuit�size complexity of the language whose characteristic
sequence is x�

For each function f � N� N we de�ne the circuit�size complexity classes
SIZE �f� � fx � f�� 
g�jCSx�n� � f�n� a�e�g�
SIZE i�o��f� � fx � f�� 
g�jCSx�n� � f�n� i�o�g�

For a set C of functions from N to N we then de�ne the classes
SIZE�C� �

�
f�C

SIZE�f��

SIZEi�o��C� �
�
f�C

SIZEi�o��f��

Identifying languages with their characteristic sequences� SIZE�G�� is the set of all languages
having linear�size circuits and SIZE�G�� is the set of all languages having polynomial�size

circuits� Following standard usage� we write P�Poly for SIZE�G��� We also write P�Poly
i�o�

for SIZEi�o��G���

Notation ���� Throughout this section we work with the selector b� de�ned by
b��n� � 	bn

�
c�dn

�
e�

In the terminology of x�� the selector b� requires a program to correctly decide the last
"b��n� � dn

�
e bits of an n�bit pre�x x����n�

� In particular� b���n���
� requires a program

to correctly decide the substring x�length n
 of x�

Our derivation of circuit�size lower bounds from space�bounded selective Kolmogorov
complexity lower bounds employs the following relationship�

Lemma ���� There exist a polynomial q and a constant bc such that� for every binary
sequence x � f�� 
g� and every n � N�

KSq�x � b�j�n�� � 
� � gx�n��bc� log gx�n�
�
where gx�n� � maxfn� CSx�n�g�

��



Proof� Call a string y � f�� 
g� novel for n if y is an n�input circuit code and� for
every n�input circuit code y� that lexicographically precedes y� graph�y�� �� graph�y�� The
predicate �y is novel for n� can easily be tested in space that is polynomial in n � jyj� Let
y�� � � � � yJ�n
 be the lexicographic enumeration of those strings that are novel for n� It is
routine to design a machine M that takes inputs t� N � N in binary and has the following
property� If N � �n�� � 
 and 
 � t � J�n�� then M�t� N� � ��

n��graph�yt�� and this
computation is carried out in space that is polynomial in N � It follows by ����� that there
exist a polynomial q and a constant c such that

KSq�x � b�j�n�� � 
� � c� jtj ���
�

whenever x�length n
 �graph�yt� for some 
 � t � J�n��

We now estimate the number Hx�n� of strings y that are novel for n and have size�y� �
gx�n�� �Such an estimate was �rst computed by Shannon ��	
� Minor variations of Shannon�s
estimate have appeared many times� The argument here� included for completeness� is similar
to that of Balc�azar� D�$az� and Gabarr�o ��
�� In an n�input circuit with s gates� each gate has
fewer than ��n�s�� possible speci�cations of its function and the sources of its inputs� Thus
there are fewer than �s�n�s��s such circuits� Each of these circuits is functionally equivalent
to the �s� 
�% circuits obtained by permuting its s� 
 non�output gates �and adjusting the
inputs to the output gate accordingly�� so the number of functionally distinct such circuits
is less than �s�n � s��s��s� 
�% � s�s�n � s��s�s%� This is less than �
��n � s��
s�s%� Using
the weak Stirling approximation s% � � s

e
�s� then� the number of distinct such circuits is less

than �
�e�n� s���s
s� Since gx�n� � n and every circuit with fewer than gx�n� gates can be
simulated by a circuit with exactly gx�n� gates� it follows that

Hx�n� �

�

�e�n� gx�n��

�

gx�n�

�gx�n

� ��	egx�n�
gx�n
 �����

for all x � f�� 
g� and n � N�

By the monotonicity of the circuit coding  � for every x � f�� 
g� and n � N� there is
some 
 � t � Hx�n� such that x� length n
 �graph�yt��
Setting bc � 
 � c� log��	e��

it follows from ���
� and ����� that

KSq�x � b�j�n�� � 
� � c� jtj
� c� 
 � logHx�n�

� c� 
 � gx�n� log��	egx�n�


� gx�n��bc� log gx�n�

for all x � f�� 
g� and n � N� �

Our almost�everywhere lower bound for circuit size in ESPACE can now be derived from
Theorem ����

Theorem ���� For every � � 
� the set of all x � f�� 
g� such that CSx�n� �
�n

n
�
 � � log n

n
� a�e� has pspace�measure 
� hence measure 
 in ESPACE�

��



Proof� Fix � � � � 
 and write 
 � 
 � � log n
n

for convenience� Assume for a moment
that

CSx�n� � �n

n

�

 �

� logn

n



i�o� �����

Choosing q and bc as in Lemma ���� then� we have
KSq�x � b�j�n�� � 
� � �n

n


�bc � log��n

n

�
�

� �n � �
n

n
��
 � �� logn� 
�bc� log 
�


� �n � �
n

n
��
� �� logn� 
�bc� log
�
 i�o�

Since 
�bc� log 
�� bc as n��� it follows that

KSq�x � b�j�n�� � 
� � �n � �n
n
��
� �� logn� �bc
 i�o�

Rewriting this with the change of variable N � �n�� � 
 gives
KSq�x � b�jN� � "b��N�� f�"b��N�� i�o�� �����

where f�k� � k
log k
��
� �� log log k � �bc
�

Now �x a constant k� � N such that

f�k� �
p
k log e and

�
e

�

�pk
� ��k � 
�

hold whenever k � k�� Set g�j� � ��j
� � k� � 
� for all j � N� Then g � p and

�X
n�g�j


��f��b��n

 �
�X

n�g�j


��f�d
n
�
e
 � �

�X
n�j��k���

��f�n


� �
�X

n�j��k���

e�
p
n � �

Z �

j��k�
e�

p
t dt

� �e�
p

j��k��
 �
q
j� � k�� � ��j

for all j � N� i�e�� g testi�es that the series
�X
n��

��f��b��n

 is p�convergent� It follows by
Theorem ��� that the set of all x � f�� 
g� satisfying ����� has pspace�measure �� Since
����� implies ������ this proves the theorem� �

As an immediate consequence of Theorem ���� we have the following strengthening of
Shannon�s almost�everywhere lower bound ��	
 on circuit size�

Theorem ���� For every real number � � 
� almost every binary sequence x � f�� 
g�
has circuit�size complexity CSx�n� �

�n

n
�
 � � log n

n
� a�e� �

The distribution of complexities between this lower bound and the �n

n
�
 �O� �p

n
�� upper

bound of Lupanov ���
 remains an open question�

��



Theorem ��� extends the following known result by increasing the lower bound and by
substituting �a�e� for �i�o��

Corollary ��� �Lutz ���
�� If f � N� N is such that f � pspace and f�n� � o��
n

n
�� then

the set of binary sequences x � f�� 
g� such that CSx�n� � f�n� i�o� has pspace�measure 
�
hence measure 
 in ESPACE� �

Corollary ��� �Lutz ���
�� 	�P�Poly j ESPACE� � �� �

In fact� we now have a stronger result�

Corollary ��	� 	�P�Polyi�o�j ESPACE� � �� �

The following consequence of Theorem ��� �via Corollary ���� was in the fact the starting
point for research leading to Theorem ����

Corollary ��
 �Kannan �
�
�� ESPACE �� P�Polyi�o�� �

We now consider circuit�size complexity in uniform time complexity classes� For this we
use the following relationship between circuit size and time bounded selective Kolmogorov
complexity�

Lemma ���� There exist a polynomial q and constants bc� and bc� such that� for every
binary sequence x � f�� 
g� and every n � N�

KT q�x � b�j�n�� � 
� � bc�gx�n� log gx�n� � bc��
where gx�n� � maxfn� CSx�n�g�

Proof� Using the circuit interpreter I� we can design a machine M such that if N �
�n�� � 
 and y �  ���� where � is an n�input circuit� then

M�y�N� � ��
n��graph���

in � q��N � size���� time� where q� is a polynomial� In fact� by the Lupanov upper bound
there is a polynomial q�� such that for every string z � f�� 
g�n there is a circuit code y such
that

M�y�N� � ��
n��z

in � q���N� time� It follows by our choice of circuit coding scheme that

KT q��

M �x � b�j�n�� � 
� � k�CSx�n� log�n� CSx�n�


� bc�gx�n� log gx�n�
for every x � f�� 
g� and n � N� where bc� � �k�� By ���
�� then� there exist a polynomial
q and a constant bc� such that

KT q�x � b�j�n�� � 
� � bc�gx�n� log gx�n� � bc�
for all x � f�� 
g� and n � N� �

Almost�everywhere lower bounds for circuit size are now easily derived from Theorem ��
��

��



Theorem ����� If i � 
 and f � Gi� then the set of all x � f�� 
g� such that
CSx�n� � f�n� a�e� has pi���measure 
� hence measure 
 in Ei���

Proof� If x � f�� 
g� is such that

CSx�n� � f�n� i�o��

then Lemma ��� tells us that there exist functions g� q � Gi such that

KT q�x � b�jn� � g�log"b��n�� i�o� �����

Since the set of all x � f�� 
g� satisfying ����� has pi���measure � by Theorem ��
�� the
present theorem follows� �

Corollary ����� For i � N� SIZEi�o��Gi� has pi���measure �� hence measure �
in Ei���

Proof� Since SIZEi�o��Gi� � SIZEi�o��bgi��� and bgi�� � Gi��� this follows immediately
from Theorem ��
�� �

Corollary ����� P�Polyi�o� has p��measure �� so 	�P�Poly
i�o�j E�� � �� �

Corollary ����� For each k � N� SIZEi�o��nk� has p��measure �� so

	�SIZEi�o��nk�jE�� � �� �

Theorem ��
� extends a result of ���
 by substituting �a�e�� for �i�o�� Corollaries ��

�
��
�� and ��
� then extend results of ���
 in like fashion�

Since Wilson ���
 has exhibited oracles relative to which E� � P�Poly and E� SIZE�G���
Corollaries ��
� and ��
� appear to be the strongest results that we can obtain from rela�
tivizable techniques�

�� Pseudorandom Sequences

The results of the preceding two sections can now be used to prove lower bounds on the
nonuniform complexity of pseudorandom sequences� We �rst de�ne the measure�theoretic
notion of pseudorandomness�

De�nition ���� A ��test is a set X � f�� 
g� such that 	��X� � 
� A binary sequence
x � f�� 
g� passes a ��test X if x � X� A binary sequence x � f�� 
g� is ��random� and
we write x � RAND���� if x passes all ��tests� That is�

RAND��� � �fXj	��X� � 
g�

It is an essential feature of ��randomness that it �like the algorithmic randomness of
Martin�L�of ��	
 and the weak randomness of Schnorr ������������
� is de�nable in measure�
theoretic terms� However� ��randomness admits other characterizations� just one of which
we mention here� �This follows immediately from Theorem ��
� and De�nition ��
��

Theorem ���� A sequence x � f�� 
g� is ��random if and only if there is no ��
computable martingale that succeeds on x� �

��



If � � rec� then Theorem ��� tells us that rec�randomness is equivalent to the martingale�
randomness mentioned by van Lambalgen ����pp� ����	
� Thus if we let RAND be the set
of all algorithmically random sequences of Martin�L�of ��	
 and RANDW be the set of all
weakly random sequences of Schnorr ���
 �see also ��
���
�� then

RAND � RAND�rec� � RANDW �

If � is a time� or space�bounded complexity class� then ��randomness is a notion of pseu�
dorandomness that is at least as strong as �and� we conjecture� stronger than� the time�
and space�bounded versions of RANDW investigated by Schnorr ������
� In any case� such
classes RAND��� have the following abundance property� which can be regarded as a weak
analogue of the existence of a universal test for algorithmic randomness ��	
� �See ���
 for a
proof and further discussion of pseudorandom sequences��

Theorem ��� �Abundance Theorem�� For i � 
� RAND�pi� is a pi���test and
RAND�pispace� is a pi��space�test� That is�

	p
i��
�RAND�pi�� � 	p

i��space�RAND�pispace�� � 
�

Thus 	�RAND�pi�jEi��� � 	�RAND�pispace�jEi��SPACE� � 
� �

Thus almost every sequence in Ei�� is pi�random and almost every sequence in Ei��SPACE
is pispace�random� That is� De�nition ��
 is su!ciently weak to provide an abundance of
deterministically computed pseudorandom sequences� On the other hand� every singleton
subset of R��� has ��measure �� so no sequence in Ei is pi�random and no sequence in
EiSPACE is pispace�random� Thus we immediately have lower bounds on the uniform
complexities of pseudorandom sequences� The following results give lower bounds on the
nonuniform complexities of pseudorandom sequences�

Theorem ���� If x � f�� 
g� is pspace�random� then

KSq�xjn� � n� f�n� a�e� ���
�

for every polynomial q and every f � pspace such that
�X
n��

��f�n
 is p�convergent# and

CSx�n� �
�n

n

�

 �

� logn

n



a�e� �����

for every real number � � 
�

Proof� By Theorems ��� and ���� conditions ���
� and ����� are pspace�tests� �

Theorem ���� If x � f�� 
g� is pi�random� where i � 
� then
KT q�xjn� � g�logn� a�e� �����

for all g � Gi�� and q � Gi� If i � �� then we also have
CSx�n� � f�n� a�e� �����

for all f � Gi���

��



Proof� By Theorems ��
� and ��
�� conditions ����� and ����� are pi�tests� �

Corollary ���� RAND�p���P�Polyi�o� � �� �

That is� every p��random sequence has superpolynomial circuit�size complexity almost
everywhere�

	� Conclusion

We have proven several results of the following general form�
Almost every problem in the uniform complexity class C has
very high nonuniform complexity almost everywhere�

For C � ESPACE� these results give strong instances of the Shannon e�ect�
For time�bounded classes C� the results are distributionally strong but leave E��P�Poly

and other important conjectures unresolved� We have� however� shed some structural light
on such questions� For example� Theorem ��� tells us that at least one of the following is
true�

�i� E��SIZEi�o�
�
�n

n
�
 � � log n

n
�
�
for every real � � 
�

�ii� E is a measure � subset of ESPACE�
Condition �i� is much stronger than the E��P�Poly conjecture� By the work of Hartmanis
and Yesha �


� condition �ii� implies� and is probably stronger than� the conjecture that
P	��P�Poly�PSPACE�
Acknowledgment� I thank Yaser Abu�Mostafa� Leonid Levin� Elvira Mayordomo� David
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