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Abstract.

We investigate the distribution of nonuniform complexities in uniform complexity classes.
We prove that almost every problem decidable in exponential space has essentially maximum
circuit-size and space-bounded Kolmogorov complexity almost everywhere. (The circuit-size
lower bound actually exceeds, and thereby strengthens, the Shannon % lower bound for
almost every problem, with no computability constraint.) In exponential time complexity
classes, we prove that the strongest relativizable lower bounds hold almost everywhere for
almost all problems. Finally, we show that infinite pseudorandom sequences have high
nonuniform complexity almost everywhere.

The results are unified by a new, more powerful formulation of the underlying measure
theory, based on uniform systems of density functions, and by the introduction of a new
nonuniform complexity measure, the selective Kolmogorov complexity.
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1. Introduction

A precise account of the quantitative relationships between uniform and nonuniform com-
plexity measures is a principal objective of the theory of computation. For the most impor-
tant nonuniform complexity measures — those that measure size of programs and size of
circuits — this paper establishes new lower bounds that hold almost everywhere in uniform
time and space complexity classes.

The circuit-size complexity of Boolean functions has been studied for over fifty years.
Shannon [38] proved that every Boolean function f : {0,1}" — {0,1} is computed by a
circuit with O(%) gates and that, asymptotically, almost every such function requires more
than %(1 — €) gates, for every € > 0. Lupanov [23] tightened Shannon’s upper bound by
proving that every such function f is computed by a circuit with 2(1+ O(ﬁ)) gates. Since
Lupanov’s upper bound and Shannon’s lower bound have asymptotic ratio 1, these bounds
together imply that almost every Boolean function has essentially maximum circuit-size
complexity. Lupanov named this phenomenon the Shannon effect.

In order to compare circuit size to uniform, algorithmic complexity measures, the circuit-
size complexity measure has been extended in the natural way from Boolean functions to
decision problems, i.e., to (infinite) binary sequences = € {0,1}°°. In this setting, a routine
modification of Shannon’s lower bound argument gives the following formulation of the
Shannon effect. If € > 0 and an infinite binary sequence is chosen probabilistically by using
an independent toss of a fair coin to decide each bit, then with probability 1 the chosen
sequence z will have circuit-size complexity C'S,(n) > %(1 — ¢) for all but finitely many n.
More succinctly, in the usual Lebesgue measure on {0, 1}°°, almost every binary sequence x
has C'S;(n) > £-(1 —¢) for almost every n.

The set P/Poly, consisting of those decision problems that have polynomial-size cir-
cuits, is of particular interest. It is clear that P/Poly is an uncountable, measure 0 sub-
set of {0,1}* and that PCP/Poly. Kannan [15] has shown that ESPACEZP /Poly. It is
widely believed that NPZP /Poly, i.e., that NP-complete problems are infeasible in a strong,
information-theoretic sense. Supporting this conjecture, Karp and Lipton [16] have shown
that NPCP /Poly has the unlikely consequence of collapsing the polynomial-time hierarchy
to its second level. On the other hand, Wilson [44] has exhibited oracles relative to which

E, =DTIME(2P°LY) C P/Poly and problems in NP and E=DTIME(2!i1€ar) a1l have linear-
size circuits, so progress towards resolving this conjecture may not come easily.

A distributional investigation of uniform versus nonuniform complexity was initiated by
Lutz [24]. Regarding the Kannan ESPACEZP /Poly result, we addressed the following ques-
tion. Among problems in ESPACE, is the phenomenon of not having polynomial-size circuits
rare, or is it in some sense typical 7 This question led to the development of resource-bounded
category and measure in [24]. These techniques, which extend classical and effective versions
of Baire category and Lebesgue measure (see [33,9,7,30,31]), define the meager (“topologi-
cally small”) and measure 0 (“probabilistically small”) subsets of various complexity classes,
respectively. It was proven in [24] that P/PolynESPACE is a meager, measure 0 subset
of ESPACE. Thus the phenomenon of not having polynomial-size circuits is very typical of
problems in ESPACE;, in the sense of both category and measure.



In this paper we prove that the Shannon effect holds with full force in ESPACE. Specif-
ically, with respect to measure, for every real o < 1, almost every binary sequence x €
ESPACE has circuit-size complexity CSy(n) > £ (1 + %%2) for almost every n. This
almost-everywhere lower bound on circuit-size complexity in ESPACE extends the previous
work in two significant ways.

(i) The 2-(1 + “°") Jower bound here exceeds the o(2-) lower bound of [24]
and is only negligibly smaller than the Lupanov (1 + O( —)) upper bound
for every x € {0,1}*. (In fact, the present lower bound shghtly exceeds,
and as a consequence tightens, the Shannon % lower bound for almost every
x € {0,1}>.)

(ii) The lower bound here is proven to hold for almost every n, whereas the lower
bound in [24] is only shown to hold for infinitely many n. For example, let

P/ Polyi'o' be the set of binary sequences x for which there is a polynomial
q such that CS;(n) < g(n) for infinitely many n. The proof of Kannan [15]

actually shows that ESPACE ¢ P/Poly'®:. The present result implies that
P/Poly"9-NESPACE is in fact a measure 0 subset of ESPACE.

Putting these advances together gives our strong formulation of the Shannon effect in
ESPACE: almost every problem in ESPACE has essentially mazimum circuit-size complexity
almost everywhere.

The Kolmogorov complexity (often called the program-size complexity) of binary strings
and sequences was discovered independently by Solomonoff [40], Kolmogorov [18], and
Chaitin [6]. The extraordinary power and scope of this notion have recently been surveyed
by Kolmogorov and Uspenskii [19] and Li and Vitanyi [21]. In this paper we are primar-
ily concerned with resource-bounded Kolmogorov complexities, which have been investigated
by Hartmanis [10], Sipser [39], Ko [17], Longpré [22], Balcdzar and Book [3], Huynh [13],
Lutz [24], Allender and Watanabe [2], and many others.

Martin-Lof [29] showed that K(z|n), the conditional Kolmogorov complexity of infinite
binary sequences x, exhibits a strong Shannon effect. Specifically, Martin-Lof proved that if

the series » 27/(") converges (e.g., if f(n) = alogn for some real v > 1), then in the sense
n=0

of Lebesgue measure, almost every binary sequence x € {0, 1}* has conditional Kolmogorov

complexity K (xz|n) > n — f(n) for all but finitely many n. For suitable f, this lower bound

is already very close to the well-known upper bound, K (x|n) < n + ¢ for all x and n, where

c is a fixed constant. However, Martin- L6f [29] also tightened the upper bound by proving

that if f is computable and the series 22 F) diverges (e.g., if f(n) = logn), then every
n=0
binary sequence x € {0,1}* has conditional Kolmogorov complexity K(z|n) < n — f(n)

for infinitely many n. Thus, for computable f, it is the convergence/divergence behavior of

> 27/ that determines whether n — f(n) is an infinitely-often upper bound on K (z|n)

for all z or an almost-everywhere lower bound on K(z|n) for almost every z. Since the



o
convergence/divergence behavior of ZQ‘f (") is sensitive to very small changes in the growth
n=0
rate of f, this implies that almost every binary sequence = € {0, 1}°° has essentially maximum
conditional Kolmogorov complexity almost everywhere.

We prove in this paper that the Shannon effect holds with full force, in essentially
the above form, for the space-bounded conditional Kolmogorov complexity of problems in
ESPACE. Moreover, we unify this result with the Shannon effect for circuit size in ESPACE
by introducing a new program-size complexity measure, the selective Kolmogorov complexity.
Roughly speaking, the conditional Kolmogorov complexity of = at n, written K (z|n), is the
length of the shortest program 7 that, given n, outputs the first n bits of . The o-selective
Kolmogorov complexity of x at n, written K (zAo|n), is the same, except that the program
is now only required to be correct about bits of x specified by o(n), the value of the selector
o at n. If the selector o requires all bits to be correct, then K(x A oln) = K(z|n), i.e.,
the o-selective Kolmogorov complexity is precisely the conditional Kolmogorov complexity.
However, if o(n) only requires m to be correct about some of the first n bits of z, then
K(x A oln) may be much smaller than K(z|n).

The main theorem of this paper is Theorem 4.4, which shows that almost every problem in
ESPACE has very high space-bounded selective Kolmogorov complexity almost everywhere.
By inequality (4.4) this almost-everywhere lower bound is tight, so we have a strong instance
of the Shannon effect: almost every problem in ESPACE has essentially mazimum space-
bounded selective Kolmogorov complexity almost everywhere.

This appears to be a very powerful formulation of the Shannon effect in ESPACE. The
above-mentioned Shannon effects for circuit-size and conditional Kolmogorov complexities
in ESPACE are derived from this more general result.

We also prove almost-everywhere lower bounds for nonuniform complexities in uniform
time complexity classes. In this case our lower bounds are considerably smaller than known
upper bounds, so much remains to be discovered. From a distributional point of view,
however, our results are quite strong. We prove that the highest levels of circuit-size and
time-bounded Kolmogorov complexity known (or provable by relativizable methods) to be
exceeded infinitely often by any problem decidable in exponential time are in fact exceeded
almost everywhere by almost every problem decidable in exponential time.

Our almost-everywhere lower bounds on nonuniform complexity have immediate conse-
quences for the theory of pseudorandom sequences. Following work by Yao [45], Blum and
Micali [5], Goldreich, Goldwasser, and Micali [8], Levin [20], Allender [1], and others on the
generation of finite pseudorandom sequences from shorter random sequences, and following
work by Schnorr [34,36], Wilber [43], Huynh [12,13], Ko [17], and others on pseudorandom
properties of infinite sequences, Lutz [25,27] gave a measure-theoretic definition of infinite
pseudorandom sequences. This definition of pseudorandomness is analogous to the Martin-
Lof [28] definition of randomness, but is based on resource-bounded measure theory and
thereby provides an abundance of pseudorandom sequences that are deterministically com-
putable at relatively low complexity levels. Pseudorandom sequences and their properties
are discussed in detail in [27]. In this paper we use our almost-everywhere lower bounds to



show that infinite pseudorandom sequences have high circuit-size and Kolmogorov complex-
ity almost everywhere.

NoTE: The resource-bounded measure introduced in [24], and used to define pseudoran-
dom sequences in [25], was formulated in terms of “covering by modulated enumerations of
cylinders.” This formulation is not strong enough (i.e., does not render enough sets measur-
able) to prove the main results of the present paper. Indeed, some of the proofs in [24,25]
are not, correct without some technical modification of the underlying measure theory. In §3
below, we present some of the elements of a new, more powerful formulation of resource-
bounded measure, based on uniform systems of density functions. This formulation, like the
old one, is a general theory with a resource bound (class of functions) A as a parameter.
Various choices of this parameter A give various measure theories as special cases. One
of these cases is classical Lebesgue measure. Other special cases impose internal measure-
theoretic structure on REC, E, ESPACE, and other complexity classes. All sets measurable
in the formulation of [24] have the same measure in the new formulation, and the new for-
mulation admits rigorous (and simpler) proofs of the applications in [24,25]. Moreover, the
new formulation, by expanding the class of measurable sets, has yielded a number of new
applications, especially in time-bounded complexity classes.

Although a complete development of resource-bounded measure is beyond the scope of
this paper, §3 below presents all the ideas, results, and proofs needed for the applications
here. The present paper is thus self-contained. (Theorems 3.19, 6.2, and 6.3 are not proven or
used in this paper.) A brief discussion of the relation between our density functions and the
martingales used by Schnorr [34,35,36,37] in his investigation of random and pseudorandom
sequences appears at the end of §3. More thorough discussions of resource-bounded measure
and pseudorandomness will appear in [26,27].



2. Preliminaries

We work in two alphabets, the usual binary alphabet {0,1} and the extended binary
alphabet ¥ = {0,1, L, T}. The elements L (“bottom”) and T (“top”) of ¥ are interpreted
as “undefined bit” and “impossibly defined bit”, respectively. We define C to be the partial
ordering

L

of ¥. Thus b C b’ means that bit b is “no more defined than” bit ¥'.

A string is a finite sequence x € ¥*. A binary string is a string z € {0,1}*. A sequence
is an infinite sequence x € X®°. A binary sequence is a sequence x € {0,1}*°. We use
variables z,y, z, etc., to denote strings or sequences. We write |z| for the length of x. Thus
|z| € N U {oo}, where N is the set of nonnegative integers. The unique string of length 0 is
A, the empty string.

If z is a string and y is a string or sequence, then zy is the concatenation of x and y. If x
is already a sequence, then xy = z. If z is a string and k € N U {oo}, then z* is the k—fold

concatenation of & with itself. Thus z° = \ and z**! = zz*.

If 0 <i<j<|z|, then z[i..j] is the string consisting of the ith through jth bits of .
Thus = = z[0..|]z| — 1] if © is a string. We write x[i] for x[i..7], the ith bit of 2.

We extend the partial ordering C to strings and sequences via the following rules.

(i) For z,y € ¥°°, z C y if and only if z[i] C y[é] for every i € N.

(ii) For z,y € ¥*°, w7y if and only if v C y and = # y.

(iii) For arbitrary z and y, x C y if and only if x 1> C y 1.

(iv) For arbitrary x and y, xZy if and only if z 1>°Zy L.

The extended relation C is not technically a partial ordering because it is not antisymmet-
ric. For example, for any string x, z and z_L are distinct strings with x C z 1 and x L C z. In
practice, however, we will think of z, x L, and x_L* as denoting essentially the same object,
so no confusion will result from calling C a partial ordering of strings and sequences. Note
that x%y means that x is “strictly less defined than” y. Thus, for example, it is not the case
that xZx L.

Note that if z and y are binary strings, i.e., z,y € {0,1}*, then x C y means that z is a
prefix of y and x ;E y means that x is a proper prefix of y.

We define ||z||, the number of defined bits in a string x € ¥*, by the following recursion.

A= 10

[lL[| = [l]

[20]] = [l1]] = [l=[| + 1
[T = o0



Thus ||z|| < |z| if x € {0,1, L}", ||z]| = |z| if z € {0,1}*, and ||z|| = oo if & contains any
occurence of T.

Our primary objects of study are the binary sequences. The extended binary alphabet ¥
is a technical device whose primary role is the following.

Definition 2.1. The cylinder generated by a string z € ¥* is

Co={y € {0, }¥[z Cy}.

Thus we regard a string x € ¥* as an approximation, or “partial specification” of a binary
sequence y. The cylinder C, is the set of all binary sequences that meet this specification.
If T appears in z, then C, = (), i.e., the specification z is unsatisfiable.

The measure of a cylinder C,, is u(z) = p(C,) = 277l This is the probability that y € C,
when the binary sequence y € {0,1}* is chosen probabilistically by using an independent
toss of a fair coin to decide each bit of y.

It is useful to have an operation that “merges” two specifications. To this end, for b,b' € X,
we write b A b’ for the least upper bound of b and b’ with respect to . We then extend the
operation A to strings and sequences as follows.

(v) For z,y € £, x Ay € ¥ is defined by (x A y)[i] = z[i] A y[é] for all i € N.

(vi) For arbitrary z and y, |z A y| = max{|z|, |y|} and (x A y)L>® = (L) A (yL>).

It is easy to check that A does indeed merge specifications in the following sense.

Fact 2.2. Forall z,y € ¥*, C,py = C, NC,. O

Complexity classes are usually defined as sets of languages. A language here is a set
L C {0,1}*, i.e., a set of binary strings. We fix the lexicographic enumeration sy = A,
s = 0,80 = 1,83 = 00,... of {0,1}* and identify each language L with its characteristic
sequence xy, € {0,1}°° defined by

. 1 ifs, €L
wilkl = {o if s, ¢ L.

This identifies the set P ({0, 1}*) of all languages with the set {0, 1}°° of all binary sequences.
Under this identification, a string x € X* approrimates a language L, and we write x C L,
if x C xy,. Thus the cylinder generated by x is also a set of languages,

O, ={L C{0,1}*|« C L}.

We use XY, Z, etc., to denote sets of languages (equivalently, to denote sets of binary
sequences). The complement of a set X is X¢=P({0,1}*) \ X = {0,1}>*\ X.

We will use the lexicographic successor function next: {0,1}* — {0,1}* defined by
next(sy) = sy for all £ € N.

We fix once and for all a one-to-one pairing function <, > from ¥* x ¥* onto X* such
that the pairing function and its associated projections, < z,y >+ = and < z,y >— y
are computable in polynomial time. We insist further that this pairing function satisfy the



following conditions for all z,y € ¥*.

(a) < z,y >€ {0,1}* if and only if x,y € {0,1}*.

(b) < z,y >€ {0}* if and only if z,y € {0}*.
These conditions canonically induce pairing functions <, > from {0, 1}* x {0, 1}* onto {0, 1}*
and from N x N onto N, respectively. We write < x,y, z > for < x, < y,z >>, etc., so that
tuples of any fixed length are coded by the pairing function.

Welet D = {m2~" | m,n € N} be the set of nonnegative dyadic rationals. Many functions
in this paper take their values in D or in [0, 00), the set of nonnegative real numbers. In
fact, with the exception of some functions that map into [0,00), all our functions are of
the form f : X — Y where each of the sets X,Y is N, {0,1}", ¥* D, or some cartesian
product of these sets. Formally, in order to have uniform criteria for their computational
complexity, we regard all such functions as mapping X* into ¥*. For example, a function
f:N?x{0,1}" — N x D is formally interpreted as a function f : ¥* — ¥*. Under this
interpretation, f(i,j, w) = (k, ¢) means that f((0%, (07, w))) = <0k, (u, v>>, where u and v are
the binary representations of the integer and fractional parts of g, respectively. Moreover,
we only care about the values of f for arguments of the form (0%, (0, w)), and we insist that

these values have the form <Ok, (u, v>> for such arguments.

For a function f : N x X — Y and k£ € N, we define the function f; : X — Y by
fr(x) = f(k,z) = f(<0k, x>) We then regard f as a “uniform enumeration” of the functions

fo, fi, fas ... . For a function f: N" x X — Y (n > 2), we write fy; = (fx);, etc. For a
function f: {0,1}" — {0,1}", we write f" for the n-fold composition of f with itself.

We say that a condition O(n) holds almost everywhere (a.e.) if it holds for all but finitely
many n € N. We say that ©(n) holds infinitely often (i.0.) if it holds for infinitely many
n € N.

We use the discrete logarithm
logn = min{k € N|2F > n}.
Note that log0 = 0.

For each i € N we define a class G; of functions from N into IN as follows.

Go = {fI@k)f(n) <kn ae.}
Giyn = 20ilem) — [¢(3g € Gy)f(n) < 29008™) g}

We also define the functions g; € G; by go(n) =2n,  gi1(n) = 99ilogn)  We regard the
functions in these classes as growth rates. In particular, Gy contains the linearly bounded
growth rates and G; contains the polynomially bounded growth rates. It is easy to show
that each G is closed under composition, that each f € G; is 0(g;+1), and that each g; is
0(2™). Thus G; contains superpolynomial growth rates for all ¢ > 1, but all growth rates in
the G;-hierarchy are subexponential.

All results in this paper are robust with respect to reasonable choices of the underlying
model of deterministic, algorithmic computation. Our machines and algorithms can thus be
interpreted as Turing machines, random access machines, pointer machines, etc.



Within the class REC of all decidable languages, we are interested in the uniform complex-
ity classes E; = DTIME(2%-1) and E;SPACE = DSPACE (2%-1) for i > 1. The well-known

exponential complexity classes E = E, = DTIME(2linear) g, — pTIME(2polynomialy g

PACE = E,SPACE = DSPACE (2lin€ar) anq E,SPACE = DSPACE(2Polynomialy oo of
particular interest.

We will use the following classes of transductions.

all ={f|f: 9% —

rec = {f € all|f is recursive }

pi = {f € all|f is computable in G; time } (i > 1)

pispace = {f € all|f is computable in G; space } (i > 1)
(The length of the output is included as part of the space used in computing f.) We write
p for p; and pspace for p;space. Throughout this paper, A and A’ will denote one of the
classes all, rec, p;(i > 1), p;space(i > 1).

A constructor is a transduction 4 : {0,1}* — {0,1}* that satisfies 2;6(x) for all z. The
result of a constructor § (i.e., the language constructed by ¢) is the unique language R(0)
such that 6"(\) C R(J) for all n € N. Intuitively, 6 constructs R(J) by starting with A and
then iteratively generating successively longer prefixes of R(J). We write R(A) for the set of
languages R(0) such that 0 is a constructor in A. The following routine lemma is the reason
for our interest in the above-defined classes of transductions.

Lemma 2.3 [24].
1) R(all) = P({0,1}*) = {0,1}>.

2) R(rec) = REC.
4) For i > 1, R(p;space) = E;SPACE. O
Some of our results involve the convergence/divergence of infinite series. A series Zan
n=0

of nonnegative real numbers a,, is A-convergent if there is a function m : N — N such that
m € A and

o0

Z ap, < 2t

n=m(i)
for all z € N. Such a function m is sometimes called a modulus of the convergence. If
A = all, this is the usual notion of convergence. If A is a time- or space-bounded class of
transductions, then A-convergence is a stronger condition than convergence. Note that a
series is p;-convergent if and only if it is p;space-convergent.

Adding a layer of uniformity, a sequence

> ajk (=0,1,2,...)
k=0

of series of nonnegative real numbers is uniformly A-convergent if there is a function m :
N? — N such that m € A and, for all j € N, m; is a modulus of the convergence of the

. (o)
series > aj .
k=0



3. Resource-Bounded Measure

In this section we present those aspects of resource-bounded measure that will be used in
the sequel. The formulation here, based on uniform systems of density functions, is much
more powerful than the “modulated covering” formulation of [24].

Definition 3.1. A density function is a function d : {0,1}" — [0, o) satisfying

d(w) > d(w0) —; d(wl) (3.1)

for all w € {0,1}". The global value of a density function d is d()\). The set covered by a
density function d is

Sdl= | Cu. (3.2)

we{0,1}*
d(w)>1

A density function d covers a set X C {0,1}>* if X C S[d].

For all density functions in this paper, equality actually holds in (3.1) above, but this is
not required.

We will frequently use the easily-verified fact that
d(w) < 2%ld()) (3.3)
holds for all w € {0,1}" whenever d is a density function.

Consider the random experiment in which a sequence x € {0,1} is chosen by using an
independent toss of a fair coin to decide each bit of z. Taken together, (3.1) and (3.2) imply
that Pr[z € S[d]] < d()) in this experiment. Intuitively, we will regard a density function d
as a “detailed verification” that Pr[z € X] < d()) for all sets X C S[d].

More generally, we will be interested in “uniform systems” of density functions that are
computable within some resource bound A.

Definition 3.2. An n-dimensional density system (n-DS) is a function

d:N"x {0,1}" — [0, 0)

such that dj is a density function for every k € N". It is sometimes convenient to regard a
density function as a 0-DS.

Definition 3.3. A computation of an n-DS d is a function d : N"*! x {0,1}* — D such
that

di () = dg(w)| <27

forall k € N”, r € N, and w € {0,1}". A A-computation of an n-DS d is a computation d
of d such that d € A. An n-DS d is A-computable if there exists a A-computation d of d.

10



If d is an n-DS such that d : N"x{0,1}" — D and d € A, then d is trivially A-computable.
This fortunate circumstance, in which there is no need to compute approximations, occurs
frequently in practice. In any case, we will sometimes abuse notation by writing d for d,
relying on context and subscripts to distinguish an n-DS d from a computation d of d.

We now come to the key idea of resource-bounded measure theory.

Definition 3.4. A null cover of a set X C {0,1}* is a 1-DS d such that, for all k¥ € N,
dy, covers X with global value d()\) < 275, A A-null cover of X is a null cover of X that is
A-computable.

In other words, a null cover of X is a uniform system of density functions that cover X
with rapidly vanishing global value. It is easy to show that a set X C {0,1}" has classical
Lebesgue measure 0 (i.e., probability 0 in the above coin-tossing experiment) if and only if
there exists a null cover of X.

Definition 3.5. A set X has A-measure 0, and we write pua(X) = 0, if there exists a
A-null cover of X. A set X has A-measure 1, and we write pua(X) =1, if ua(X¢) = 0.

Thus a set X has A-measure 0 if A provides sufficient computational resources to compute
uniformly good approximations to a system of density functions that cover X with rapidly
vanishing global value.

We illustrate Definitions 3.4 and 3.5 with a trivial example. (More interesting applications
will come later, when more machinery is available.)

Example 3.6. Let
ODD = {A C {0,1}" | (Vn € N) |A_,| is odd}.

Define d : N x {0,1}" — D by the following recursion: For all k € N, d(\) = 27%. If w €
{0,1}" and |w]| is not of the form 2" — 2 for some n € N, then dj(w0) = dy(wl) = dj,(w).
If we {0,1}", b€ {0,1}, and |w| = 2"*! — 2 where n € N, then

dk(’LUb) = { gdk(w) if #(17 w[Qn - 17 2l — 3]) = bmod 2

otherwise.

It is a routine exercise to check that d is a p-null cover of ODD, whence p,(ODD) = 0.

As we have already noted, if A = all, then the A-measure 0 sets are precisely the sets of
classical Lebesgue measure 0. (Accordingly, we usually write ;(X) instead of y,;(X).) Here
we are primarily interested in the internal measure-theoretic structure of complexity classes

R(A).

Definition 3.7. A set X has measure 0 in R(A), and we write pu(X | R(A)) = 0, if
pa(X NR(A)) = 0. A set X has measure 1 in R(A), and we write u(X | R(A)) = 1, if
u(X| R(A)) =0. If u(X | R(A)) =1, we say that almost every language in R(A) is in X.

11



If A = all, then R(A) = {0,1}, so the conditions p,;(X) =0 and u(X | R(A)) =0 are
equivalent to each other and, as we have seen, to the classical condition p(X) = 0.

If A = rec, then the sets of measure 0 in R(A) = rec given by Definition 3.7 include
all the effective measure 0 subsets of REC investigated by Freidzon [7], Mehlhorn [31], and
others.

The following lemma is obvious but useful.

Lemma 3.8. Let X C {0,1}*.

(a) If ua(X) =0 and A C A’, then pa (X) = 0.
(b) If ua(X) =0, then pu(X|R(A)) =0. O

Lemma 3.8 unifies results for various A. For example, it gives us the following implications
for every set X.

pp(X) =0 = ppspace(X)=0 = prec(X)=0 = p(X)=0
4 Y Y
W(X[E) =0 4(X[ESPACE) = 0 u(XREC) = 0

Thus a proof that a set X has p-measure 0 gives information about the size of X in E
and also in larger classes. For example, we saw in Example 3.6 that p,(ODD) = 0; it follows
immediately by Lemma 3.8(b) that x(ODD | E) = 0. We will see that this means that ODD
is a very small subset of E, i.e., that “typical” sequences in E are not elements of ODD. By
Lemma 3.8, this also holds if E is replaced by E,, ESPACE, REC, or {0,1}.

In general, if a set X has measure 0 in a class R(A), we will interpret this to mean that
XNR(A) isa “small” subset of R(A). Stated intuitively and simplistically, this interpretation
has the following three components.

(s1) Measure 0 sets behave set-theoretically as small sets.
(s2) Very small sets have measure 0.
(s3) Large sets do not have measure 0.

We now develop these points in turn.

For point (s1) we need the following computational restriction of the notion of “countable
union”.

Definition 3.9. Let X, X, X1, X5,... C {0,1}.

(a) X is a A-union of the A-measure 0 sets Xo, X1, Xo, ... if X = OLj X; and there exists
=0
a A-computable 2-DS d such that each d; is a null cover of X.

12



(b) X is a A-union of the sets Xy, X1, Xo, ... of measure 0 in R(A) if X = oLj X; and there
j=0
exists a A-computable 2-DS d such that each d; is a null cover of X; N R(A).

We now show that the A-measure 0 sets and the sets of measure 0 in R(A) are closed
under subsets, finite unions, and A-unions.

Lemma 3.10 (A-Ideal Lemma). Let Z be either the collection Z A of all A-measure 0
sets or the collection 7, A of all sets that have measure 0 in R(A). In either case, Z has

the following three closure properties.
() f X CY €Z, then X € T.

(b) If X is a finite union of elements of Z, then X € 7.
(c) If X is a A-union of elements of Z, then X € Z.

Proof. Property (a) is obvious. It is also obvious that property (b) follows from property
(c), since every finite union of elements of Z is trivially a A-union of elements of Z. It thus
suffices to prove (c). In fact, it suffices to prove (c) in the case Z = T A, since it is easy to
see that the case Z =7 RA) follows directly from this.

So assume that X is a A-union of the A-measure 0 sets Xy, X1, Xs,.... Then X = oLj X;
7=0
and there is a A-computable 2-DS d such that each d;;, covers X; with global value d; ;()\) <
2. Define a function d' : N x {0,1}" — [0, 00) by

dy,(w) = Z djjerjr1(w).
j=0

Each d}, is, trivially by linearity, a density function, so d' is a 1-DS. We will show that d’ is
a A-null cover of X.

To see that each d) covers X, fix k € N and let + € X. Since X = C[JO X, and
=0

each d;jij11 covers X;, there exist jo,ng € N such that x € X;, C S[dj, k+jo+1]
and dj; k1jo+1(x[0..ng — 1]) > 1. We then have

d;c(ZU[ONU — 1]) = idjyk+j+l(x[0..n0 — 1])

djo,k-l-jo-i-l (1‘[0”0 - 1])

>
> 1

Y

so x € S[d}]. Since each dj, has global value

d(N) = D diktin(N)
j=0

o0

< 227(k+j+1)
j=0

— 9~k

13



it follows that d' is a null cover of X.

All that remains to be shown is that d' is A-computable. For this, let d be a A-
computation of the 2-DS d. Define the function d' : N* x {0,1}* — D by

r+|wl
d;f,r(w) - Z dj ot j1r+jre(w).
=0
We will show that d’ is a A-computation of the 2-DS d’. It is clear that d' € A. Letting
T+ w]
o= Y djr+jr1(w), we have
=0

T+ |w|
d (W)= o] <3 ldikrgrea(w) = digeg (w)]
7=0
r+|wl ,
< Z 9—(r+j+2)
j=0
< = 9—(r+j+2)
j=0
— 9=(r+l)
and, by (3.3),
o0
o—di(w)| = Y digrn(w)
Jj=r+{w|+1
o0
< Y 2Mdien (V)
j=r-+w|+1
o0
< olvl Z 9~ (k+j+1)
j=r-+w|+1
— 9 (ktr+1)
< 27,
SO

() = di(w)] < 277
for all k,7 € N and w € {0,1}". Thus d’ is a A-computation of d’ and the proof is complete.

O

In the classical case, where A =all, a A-union is simply a countable union and Lemma 3.10
tells us that the measure 0 sets are closed under subsets, finite unions, and countable unions.
This well-known fact is usually expressed by saying that the measure 0 sets form a o-ideal
of subsets of {0,1}>°. Extending this terminology, we conclude from Lemma 3.10 that the
A-measure 0 sets form a A-ideal of subsets of {0,1}* and that the measure 0 subsets of
R(A) form a A-ideal of subsets of R(A). This is the precise formulation of point (s1).

14



For point (s2) we define a computationally restricted notion of “countable set”.

Definition 3.11. A set X C R(A) is A-countable if there is a function § : N x {0,1}" —
{0,1}" such that 6 € A, d; is a constructor for each k¥ € N, and X = {R(d;)|k € N}.

Lemma 3.12. Let X C R(A).

(a) If X is finite, then p (X) = 0.
(b) If X is A-countable, then iz (X) = 0.

Proof. Since finite subsets of R(A) are trivially A-countable, it suffices to prove (b). So
let § € A testify that X C R(A) is A-countable. Define d : N? x {0,1}" — D by

dkyl(w) = mel,

where m € N is greatest such that 0;"(A\) C w. It is clear that d € A and that each d,
is a null cover of the singleton set {R(dx)}. That is, d testifies that X is a A-union of the
A-measure 0 sets {R(dx)}. It follows by the A-Ideal Lemma that pua(X) = 0. O

Lemma 3.12 is our precise formulation of point (s2). In particular it implies that every
singleton subset {z} of R(A) has A-measure 0 (hence measure 0 in R(A)). It should be
noted that the assumption that {x} C R(A) cannot be deleted here. We will see in §6 that
arbitrary singleton sets {x} may fail to have A-measure 0.

We now come to point (s3). This is the most crucial issue in our development. If we are to
endow a complexity class R(A) with internal measure-theoretic structure, then R(A) itself
must be a large set, hence by (s3) must not have measure 0 in R(A). That is, the A-ideal

Iy of all measure 0 subsets of R(A) must be proper in the sense that R(A) & Ty -

In cases of interest, R(A) is a countable set and thus has classical measure 0. Fortunately,
however, R(A) does not have A-measure 0. This fact follows from the following conservation
principle that says that, within the computational resources of A, the intersection of a
cylinder with R(A) cannot be covered more economically than the cylinder itself. (Recall
that, for z € %, u(z) = 271#ll is the measure of the cylinder C..)

Theorem 3.13 (Measure Conservation Theorem). If C, is a cylinder and d is a A-
computable density function that covers C, N R(A), then d(\) > u(2).

Proof. Assume that d is a A-computable density function such that d(\) < u(z). We
will prove by diagonalization that d does not cover C, N R(A). Specifically, we will exhibit
a constructor 6 € A such that

z C R(9), (3.4)
|6(x)| = |z|+1 for all z € {0,1}",
and
d(6¥(\)) <1 for all k € N. (3.6)
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(It follows from these three things that
R(6) € C:\ S[d],
whence d does not cover C, N R(A).)

Let m = max{1, |z|} and let

S={ye{0,1}" [z Cy}.

(We emphasize that z € {0,1, L}*, ||z]| < |z| < m, and S C {0,1}™.) For each y € S, let
g(y) € {0, 1}§m be the shortest prefix of y such that, for every prefix w of y, d(w) < d(g(y)).
We first note that there exists y € .S such that

d(\)
dlgly)) < —=. 3.7
() < 50 5.7)
To see this, define d' : {0,1}" — [0, 00) by
0 (x) = {d(g(y)) if y € Sand g(y) Cx
d(z) if no element of ¢(5) is a prefix of .

(The function d' is well-defined because ¢(S) is an instantaneous code, i.e., no element of
g(S) is a prefix of any other.) It is readily checked that d’ is a density function, so

dN)=d) > 27 > d(y)
ye{071}m
> 27" d'(y)
YyeS
27" S| min d'(y)

Y

= 27l min d'(y)

yes
= u(z) mind(g(y)),
so some y € S satisfies (3.7).
Fix ¢ € D and a positive integer [ such that
d\) < q-p(z), q+201 <1 (3.8)

Let d be a A-computation of the density function (i.e., 0-DS) d. Using d and the constants
m, y, ¢, and [, define the constructor ¢ : {0,1}" — {0,1}" by

{:ry[l“] ifzy

6(z) = { 20 if do(z)(20) < dogy () 4+ 2'79@) and not x 2y

xl otherwise,

where a(z) = |z| + [ + 3. It is clear that 0 € A and that (3.5) holds. Also, z T y = §™()),
so (3.4) holds. All that remains, then, is to verify (3.6).

A key property of 0 is that
da(w)(é(x)) < do(a) (z) + 9l—a(@) (3.9)
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holds whenever x is not a proper prefix of y. To see this, we need only recall that d is a
density function, whence dy(z)(20) > dy(z(x) + 2'79®) implies that

da(x) (331) < d(xl) + 9~ a(z)
< 2d(z) — d(x0) + 274
< 2y() (@) = dogy (20) + 2270
< (@) () + + 21-al@),

By (3.7) and (3.8) we have, for all 0 < k < m,
d(8*(\) = d(y[0..k —1]) < d(g(y))

U

((2) <q (3.10)

< q+27H1 =271,

Also, if € {0,1}" is such that d(z) < ¢+ 27/(1 — 2717l) and z is not a proper prefix of y,
then (3.9) ensures that

d(9(z))

<

~—

=

da(x)(é(:b‘)) + 27a(@)
da(:p) (x) +3- 9~ a(@)
d(z) + 2*7@ (3.11)
q 4 27[(1 o 27|:L‘|) 4 2*(|:L‘|+l+1)
q+271(1 - 271@l),
Taken together, (3.10) and (3.11) provide an inductive proof that
d(d*(\) < g+27'(1—27 1" W)
< q+27
< 1

VAN VAN VAN VAN

for all £ € N, i.e., (3.6) holds. This completes the proof. O

Corollary 3.14. The A-ideals Z A and IR(A) of Lemma 3.10 are both proper. In fact,
neither of these A-ideals contains C, N R(A) for any nonempty cylinder C,. 0

The implications
ZR(A) is proper = T A is proper
and
T, is proper = T A is proper
are both trivial, and Borel proved long ago (using a classical version of Theorem 3.13) that
T, is proper, i.e., that not every set has measure 0. The real content of Corollary 3.14 is
the assertion that Z, A, is proper, ie., that (s3) holds internally for the classes R(A).

This completes the interpretation of measure 0 sets as small sets. We now give a useful
criterion for proving that sets have A-measure 0. This theorem is a uniform, resource-
bounded extension of the classical first Borel-Cantelli lemma.
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Theorem 3.15. If d is a A-computable 2-DS such that the series

oo

> dix(N) (j=0,1,2,...) (3.12)

k=0

are uniformly A-convergent, then

N (D ﬁ Gs[dj,k]) =0,

§=0t=0 k=t

The coordinate j of Theorem 3.15 is often not needed in applications. Discarding this
layer of uniformity gives the following simplification.

Corollary 3.16. If d is a A-computable 1-DS such that the series

gf di(N)

is A-convergent, then

N (ﬁ Ej S[dk]> = pa ({z € {0,1}* | z € S[dy] i.0.}) = 0. .

t=0 k=t

Before proving Theorem 3.15 we give a simple example of its use.

Example 3.17. Fix a real number 0 < ¢ < 1 and let

X ={z€{0,1}> | z[k.k + [k°]|] € {0}* i.0.}.

Let [ = [H and define d : N x {0,1}" — D by the following recursion. If |w| < k, then

1
dp(w) = 2771 If |w| > k, then dj,(w0) = 2dj,(w) and di(wl) = 0. Then, for all x € {0,1}*
and k£ € N,

olhk+ [F]] € {0F = do(@]0.k+ [F]]) = 2171611 >
= x € S[dy],

so X C Oﬁ OLj S|dy]. Since d € p and the series E dp(N) = Z 2 kT is, by routine calculus,
t=0 k=t

p-convergent, it follows by Corollary 3.16 that up(X ) = M(X | E) = 0. That is, for every
e > 0, for almost every sequence x € E, there are at most finitely many k for which
x[k..k + | k®]] consists entirely of zeroes.

Proof of Theorem 3.15. Assume the hypothesis. Fix a function m : N?> — N testifying
that the series (3.12) are uniformly A-convergent. Without loss of generality, assume that
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my; is nondecreasing and m;(n) > 2 for all j,n € N. Define

Sie = U Sldjul,
k—t

S] = ﬂ Sj7t7
t=0
=0

Our task is to prove that pa(S) = 0. Define d' : N? x {0,1}" — [0, 00) by

dj , (w) = i djx(w)

k=m;(n)

for all j,n € N and w € {0,1}". We will show that d’ testifies that S is a A-union of the
A-measure 0 sets Sy, S1,S2, ..., whence pua(S) = 0 by the A-Ideal Lemma.

Each d;, is trivially by linearity a density function, so d’ is a 2-DS. To see that each d;
o0
is a null cover of S}, fix j,n € N. Let x € S;. Then x € N Sj;, so
t=0

7€ Simm = U Sldjsl,
k=mj(n)
so there exist ky > m;(n) and [y € N such that d;, ([0..ly — 1]) > 1. We then have
d;,(x[0..lp — 1]) = d; 1 (z]0..Iy — 1])
k=m;(n)
dj7k0($[0..l0 — 1])
L,

v v

so x € S[d;,]. Thus d}, covers Sj. Moreover, the global value of d},, satisfies
(V) = 2 dip(N) <27
k=my;(n)

Thus each d;- is a null cover of S;.

It remains to be shown that the 2-DS d' is A-computable. For this, let d be a A-
computation of the 2-DS d. Define d' : N* x {0,1}" — D by

m; (r+w|+1)
d;',n,r(w) = Z dj,k,r+k(w)'
k=m;(n)
m;(rtwl+1)
It is clear that d' € A. Fix j,n,r € N and = € {0,1}". Let o = > djr(w). Then
k=m;(n)
mjj(r+lwl+1)
di ) —o] <3 (diir(w) — dig(w)]
k=m;(n)
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mjj(r+lwl+1)
27(T+k)

A
]

k=m;(n)

io: 2—(7"+k))

k=m;(n)
91— (r+m;(n))
9—(r+1)

IN

IN

and, by (3.3),

oo

d),(w) — a‘ < > dig(w)

k=m; (r+lw|+1)

< 2w ST die(N)
k=my;(r+|w|+1)
< 2*(T‘+1)

— Y

SO

dj, . (w) = dj, (w)| < 27"

]’n7r

Thus d' is a A-computation of the 2-DS d’. O

Individually, the density functions used here closely resemble the martingales used by
Schnorr [34,35,36,37] in his investigation of random and pseudorandom sequences. Indeed,
a martingale, as defined by Schnorr, is formally a density function satisfying (3.1) with
equality. This equality requirement does not make any difference to his work or ours, so
density functions and martingales have essentially identical formal definitions. There is,
however, substantial difference in the spirit and use of these two notions. Schnorr, following
early work of Ville, used martingales to formalize the notion of variable-stakes gambling
strategies. In this context, one is typically interested in ideas of the following sort.

Definition 3.18. A martingale d succeeds on a sequence x € {0,1} if

lim sup d(x[0..n — 1]) = 0.

n— 00

Schnorr, using technical variants of Definition 3.18 (strong success notions involving
the rate of growth of the lim sup), has shown that the “weak failure” of all individual
A-computable martingales on a sequence = characterizes a weak pseudorandomness condi-
tion [34,36]. (See also [41,42] and §6 below.)

In contrast, the density functions here are generalizations of the density function d of
[24,Lemma 5.8]. We have first used uniform systems of such density functions to define
resource-bounded measure, and only then used resource-bounded measure to define pseudo-
randomness. (See §6 below and [27].) This is a natural development in investigating the
internal, measure-theoretic structure of complexity classes.
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In [26], the A-measurability of sets X C {0, 1} and the measure ua(X) of A-measurable
sets (0 < pa(X) < 1) are defined and developed in terms of uniform systems of density func-
tions. Definition 3.5 above is a special case (the measure zero/one case) of these definitions.
As it turns out, individual martingales can be used to characterize this special case:

Theorem 3.19. A set X C {0,1}* has A-measure 0 if and only if there exists a A-
computable martingale d that succeeds on every sequence z € X. O

(We will not use Theorem 3.19 in this paper. The proof will appear in [26].)

Notwithstanding the contrast between our approach and his, we emphasize that many
technical aspects of §3 (e.g., much of the content of the Measure Conservation Theorem )
were already present, some twenty years ago, in the work of C. P. Schnorr.

4. Kolmogorov Complexity

In this, the main section of the paper, we prove that almost every initial segment of almost
every binary sequence computable in exponential resources has very high resource-bounded
Kolmogorov complexity. Of course we must first formulate this assertion more precisely.

In order to make our lower bounds applicable to other complexity criteria (e.g., the circuit-
size lower bounds in §5), we introduce a new generalization of Kolmogorov complexity, called
selective Kolmogorov complexity. We then focus on the space- and time-bounded selective
Kolmogorov complexities of infinite binary sequences.

Some terminology and notation will be useful. For a fixed machine M and “program”
m € {0,1}* for M, if M (< 7,0™ >) halts with output w € {0,1}", then we write M (m,n) for
the binary string w. In particular, an assertion that M (mw,n) has some particular property
“in < t time” (respectively, “in < ¢ space”) means that M (< 7,0" >) halts with an output
string M(m,n) € {0,1}" in < ¢ steps (respectively, using < t space) and that this output
string has the indicated property. Note that this notation implicitly requires M (7, n) to be
a binary string whose length is exactly n.

Definition 4.1. A selector is a function o : N — {_L, T}* such that |o(n)| = n for each
n € N. We write #o(n) for the number of occurrences of L in o(n).

Definition 4.2. Let M be a machine, let ¢ : N — N be a resource bound, let o be a
selector, and let x € {0, 1}*.

(a) The t-time-bounded o-selective Kolmogorov complezity of x relative to M is the func-
tion KT, (x Ao |+): N — NU{oo} defined by

KTi;(z Aoln) = min{|x| |[M(m,n) C 2 Ao(n) in < t(n) time}.

(b) The t-space-bounded o-selective Kolmogorov complezity of x relative to M is the func-
tion KSY;(x Ao |-): N — NU{oo} defined by

KSi(x Ao |n) =min{|r| |M(m,n) C z Ac(n) in < t(n) space}.
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Just as for other resource-bounded Kolmogorov complexities (see Huynh [13], for exam-
ple), well-known simulation techniques show that there exist a universal machine U and a
polynomial ¢ such that for each machine M there is a constant ¢ such that for all ¢, o, x, and
n we have

KTE ) (x no | n) < KTl (x Ao | n)+c (4.1)
and
KSi{(x Ao |n) < KSi(xAo|n)+e (4.2)

As usual, we fix such a universal machine U and omit it from the notation.

The t-time-bounded o-selective Kolmogorov complexity of a binary sequence x is thus
the function KT*(x Ao | -) whose value at an argument n is the length KT*(x Ao | n) of the
shortest program 7 such that U(m,n) C x A o(n). The latter condition says that U(m,n)[i]
must agree with x[i] for every 0 < i < n such that o(n)[i] = L. No requirement is placed on
U(m,n)[i] when o(n)[i] = T. That is (relative to the universal machine U), 7 must correctly
decide z at each of the #o(n) positions selected by o(n).

If o is a selector that is computable in polynomial time, then it is easy to design a
machine M, that, on input < m,0" > with = € {0, 1}#”(”), outputs in polynomial time
a string M,(m,n) such that, if iy < ... < igym)—1 are the indices ¢ for which o(n)[i] =
L, then My (m,n)[io]... Mo(7m,n)[igom)—1] = 7™ and M, (m,n)[i] = 0 for all other indices .
Hence M, (m,n) is the n-bit binary string consisting of the program 7 positioned in M, (7, n)
according to o, with zeros in all remaining positions. For example, if 0(6) = TL LT LT and
7w = 101, then M, (m,6) = 010010, where we have underlined the positions selected by o(6).
It is clear that there is a polynomial ¢ such that KT}, (x Ao | n) < #o(n) for all z and n.
It follows by (4.1) that there exist a polynomial ¢ and a constant ¢ such that

KTz No | n) <#o(n)+c (4.3)

for all z € {0,1}* and n € N. That is, the polynomial time-bounded o-selective Kolmogorov
complexity cannot be much larger than #o(n), the number of bits to be correctly decided.
Note that the polynomial ¢ here depends on the running time of the selector ¢ but not on
T Oor n.

A similar argument shows that if o is a selector that is computable in polynomial space,
then there exist a polynomial ¢ and a constant ¢ such that

KS%(xz No | n) <#o(n)+c (4.4)
for all z € {0,1}* and n € N.

As a special case of the selective Kolmogorov complexity, we have the conditional Kol-
mogorov complexity. (This is actually a much-studied special case, adapted to infinite se-
quences, of the conditional complexity defined by Kolmogorov [18].) Again, we are interested
in resource-bounded versions.

Definition 4.3. Let ¢t : N — N be a resource bound and let = € {0,1}.

(a) The t-time-bounded conditional Kolmogorov complezity of x is the function
KT"xz|+)=KT"x Ao |-), where the selector o is defined by o(n) = L™ for all n € N.
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(b) The t-space-bounded conditional Kolmogorov complezity of x is the function
KS'(x|-)=KS'xz Ao |-), where o is as in part (a).

Thus the conditional Kolmogorov complexity is the special case of the selective Kol-
mogorov complexity in which every position is selected, i.e., every bit of U(m,n) must be
correct for x.

From (4.3) and (4.4) we get the well-known fact that there exist a polynomial ¢ (which
is in fact linear) and a constant ¢ such that

KT%z |n)<n+c (4.5)
and
KS%z|n)<n+c (4.6)
hold for all z € {0,1}* and n € N. It is also clear that the inequalities
KT'x Ao |n) < KT"(x | n) (4.7)
and
KS"x Ao |n) < KS'(z|n) (4.8)

hold for all ¢, o, x, and n.

Our primary objective in this section is to establish lower bounds that hold almost every-
where in various complexity classes for the time- and space-bounded conditional Kolmogorov
complexities. Our secondary objective is to do this in such a manner that the circuit-size
lower bounds of §5 can then be derived. Accordingly, we prove our lower bounds for the
time- and space-bounded selective Kolmogorov complexities. By (4.7) and (4.8), this obvi-
ously achieves our primary objective. We will see in §5 that the secondary objective is also
achieved.

We now prove an almost-everywhere lower bound for space-bounded selective program
size in ESPACE.

Theorem 4.4. Suppose that a selector o and a function f : N — N have the following
properties.

(i) o, f € pspace.
(ii) iQ*f(#”(”)) is p-convergent.
Then ?o:r0 every polynomial ¢, the set of all x € {0,1}° such that
KSU(x Ao |n)>#o(n) — f(#0(n)) a.e.

has pspace-measure 1, hence measure 1 in ESPACE.

Proof. For each n € N, let
Xp ={z | KS"z Ao |n) < #o(n) — f(#o(n))}.

It suffices to prove that {z | + € X, i.0.} has pspace-measure 0. For this, it suffices by
Corollary 3.16 to exhibit a pspace-computable 1-DS d such that each X,, C S[d,]| and the

0.9
series Y. dp()\) is p-convergent.
n=0
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For each n € N, let
B, = {r € {0, 1}s#°M=1G# M) 1 (7 1) € {0,1}" in < ¢(n) space}
and, for all 7 € B, let
Znw={2€{0,1}* | U(m,n) CaxAo(n)}.
Define d : N x {0,1}* — [0, 00) by
do(w) = > P(Znz | Cu), (4.9)

7T€Bn

where the conditional probability
P(Zny | Co) =Pr[z € Zyyr | w € Cy]

is chosen according to the random experiment in which an independent toss of a fair coin is
used to decide each bit of a sequence x € {0,1}.

Since each
P(ZTL,TF | Cw[]) + P(ZTLJT | Cwl)

2 ?
it is clear that d is a 1-DS. Moreover, for all n € N, 7 € B,,, and w € {0,1}", it is easy to
see that

P(Zy, | Cy) =

P(Zpx| Cy) = ollU(mn)Aa(n)Aw||—|w| (4.10)
Using (4.9) and (4.10), it is clear that d € pspace, whence d is certainly pspace-computable.

To see that d has the desired covering property, fix n € N and let x € X,,. Then there
exists 7 € B, such that x € Z, . For all y € Cy9.n—1}, we then have U(m,n) C x Ao(n) =
yAo(n), so Cyo.n-1 C Znx It follows that

dn(2[0.n = 1]) > P(Zp x| Caj0.n-1]) = 1,
whence z € S[d,]. Thus X,, C S[d,].

Finally, note that each
dy(N) = Y P(Znn) = 2777 M|B,| < 211,

WEBTL

Since § 2-/G#o(m) i5 p-convergent, it follows immediately that § d,(A) is p-convergent.
n=0

n=0
By Corollary 3.16, this completes the proof. O

Several results, some new and some previously known, are easily derived from Theorem 4.4
and its proof. We first give almost-everywhere lower bounds for space-bounded conditional
Kolmogorov complexity.

o0
Theorem 4.5. If f: N — N, f € pspace, and the series 22*1”(”) is p-convergent, then

n=0
for every polynomial ¢, the set of all z € {0,1}* such that KS(xz|n) > n — f(n) a.e. has
pspace-measure 1, hence measure 1 in ESPACE.
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Proof. This follows immediately from Theorem 4.4 if we use the selector o defined by
o(n) = L" for all n € N. O

Corollary 4.6. For every polynomial ¢ and every real number ¢ > 0, the set of all
z € {0,1}> such that KS/(z | n) > n — n® a.e. has pspace-measure 1, hence measure 1
in ESPACE.

x € . .
Proof. Routine calculus shows that the series ) 27" is p-convergent, so this follows
n=0
immediately from Theorem 4.5. O

Corollary 4.6 immediately implies (in fact, is much stronger than) the following two
results, which have been used to investigate complexity properties of problems that are hard
for ESPACE under resource-bounded Turing reducibilities.

Corollary 4.7 (Huynh [13]). There is a sequence z € ESPACE such that

KS™(xz|n) > 7 a.e. 0

Corollary 4.8 (Lutz [24]). For every polynomial ¢ and every real number 3 < 1, the set
of all z € {0,1}* such that KS%(z|n) > (n i.o. has pspace-measure 1, hence measure 1 in
ESPACE. O

A brief examination of the proof of Theorem 4.4 shows that it remains valid if pspace
is replaced by any of the resource bounds A for which pspace C A. Moreover, the result
continues to hold if the polynomial restriction on ¢ is relaxed, as long as ¢-space-bounded
computations can be carried out within the resources afforded by A. Taking A =rec, then,
we have the following, which is essentially a weak version of Theorem 4.5.

o
Corollary 4.9. If f,g: N — N are computable and ZQ‘f(”) is rec-convergent, then

the set of all z € {0,1}* such that KSY9(z|n) > n — f(n)_a.e. has rec-measure 1, hence
measure 1 in REC. O

Corollary 4.9 says that almost every recursive sequence has very high space-bounded
Kolmogorov complexity in almost every initial segment. The following known result follows
easily from this.

Corollary 4.10 (Ko [17]). If f,g : N — N are computable and Y 27/ converges,
n=0
then there is a recursive sequence x € {0,1}* such that KSY(z|n) > n — f(n) — logn a.e.

o0 o
Proof. We just note that if 22*10(”) converges, then 22*“”)4(’%” is rec-convergent.

oo

(This is a special case of the following obvious fact. If a series Zan converges and a sequence

n=0
o0
{b,} A-converges to 0, where the a, and b, are all nonnegative, then the series Zanbn is
n=0
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A-convergent.) The present result thus follows immediately from Corollaries 4.9 and 3.16.

O

It is worthwhile to pause for a moment and consider the roles played by various methods.
Corollaries 4.9 and 4.10 provide a good focal point for this. Our proof of Corollary 4.9 is
essentially that of Theorem 4.4, with resource bounds relaxed and selectors removed (i.e.,
replaced by the selector o(n) = 1™). With these modifications, the proof is a transparent
covering argument, simpler than the Meyer and McCreight [32] weighted priority diagonaliza-
tion used by Ko [17] to prove Corollary 4.10. Does this give us a new proof of Corollary 4.10,
free of the weighted priority diagonalization? Not really. The work previously done by the
weighted priority diagonalization is here performed by the measure-theoretic density diago-
nalization in the proof of Theorem 3.13. This result is then used, via Corollary 3.16, to infer
Corollary 4.10 from Corollary 4.9. Thus we have not really removed the weighted priority
diagonalization. We have, however, clarified its role. It is used only to infer existence from
abundance.

If we let A =all, then the observation preceding Corollary 4.9 gives the following well-
known result for K(z|-), the conditional Kolmogorov complexity with unbounded resources
(i.e., K(z|) = KT*(z]-) = KS®(z|)).

Corollary 4.11 (Martin-Lof [29]). If f : N — N and » 2/ converges, then a
n=0

measure 1 set of the sequences = € {0,1}* have K(z|n) >n — f(n) a.e. O

Although Corollaries 4.9 and 4.11 are presented here as consequences of Theorem 4.5, it
is important to remember that Corollary 4.11 was historically the first such result.

The lower bounds we have given for space-bounded Kolmogorov complexity are fairly
tight in the simple sense that they are not too far from the upper bounds given by (4.4)
and (4.6). In fact, Martin-Lof [29] showed that the almost everywhere lower bound given
by Corollary 4.11 is tight in the much stronger sense that if f : N — N is computable

o0

and Y 27/ diverges, then every binary sequence x has K (z|n) < n — f(n) i.0. Thus the
n=0

o0
convergence/divergence behavior of ZQ’f (") determines whether f grows quickly enough

n=0
that K (z|n) can (and usually does) eventually stay above n— f(n). In the following theorem
we modify Martin-Lof’s argument to give an infinitely-often upper bound on space-bounded
conditional program size. This shows that the almost-everywhere lower bound given by
Theorem 4.5 is very tight. (Ko [17] has proven a similar result.)

o
Theorem 4.12. If f : N — N is such that f € pspace and ZQ’f(”) diverges, then there
n=0

is a polynomial ¢ such that every binary sequence = € {0,1}> has KS%(z|n) < n— f(n) i.o.

Proof. Let g : N — N be computed by the following algorithm.
begin
input n;
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r,s,t:=0,0,0;

fori:=0ton—1do

begin
ift > s then r,s :=r +1,2(s 4+ 27 /);
ti=t+270

end for-loop;

output r

end g.

It is clear that g € pspace. We will show that g is nondecreasing and onto with

S 27 ) = o, (4.11)
n=0

By inspection and induction, the following conditions hold at the beginning of cycle ¢ of
the for-loop.

ro= g(i) (4.12)
r—1
s = 20y 27/0) (4.13)
§j=0
i—1 )
t = > 27/ (4.14)
j—0

It follows that ¢ is nondecreasing with ¢(0) = 0 and range closed downward, i.e., 1y < 1y €

range(g) implies r; € range(g). Since Y 27/ = oo, it follows by (4.14) that g is onto.

n=0

Now choose n such that g(n+ 1) = g(n) + 1. Then ¢ > s in cycle n of the for-loop in the
computation of g(n + 1). By (4.12 - 4.14) this implies that

n—1 g(n)—1
Z 9—f(5) > 29(n) Z 2—f(]'),
=0 =0

whence o)
n n g(n)—1
ZQ—f(j)—g(J) > 9-9(n) ZQ—f(J') > Z 9—10) (4.15)
=0 =0 =0
Since g is nondecreasing and unbounded and Y _27/(" = o0, (4.11) follows from (4.15). Thus
n=0

g has the desired properties.

For each w € {0,1}*, define a sequence wg,wy,ws,... of strings w; € {0,1}*l by the
recursion
wy = w,

next(w;) if w; & {1}*
olwil if w; € {1}*.

Wi1
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This construction has the easily verified property that, for all w € {0,1}* and j € N,
{0, 13! = {w,]j <i < j+ 21}, (4.16)

Now define F': N? — {0,1}* by

(A if n="0ort> h(n)
F(t,n) = { (F(h(n—1),n —1)1); otherwise,

where h(n) = max{0,2" /=9 — 1} Note that
F(0,n+1) = F(h(n),n)1 (4.17)

for all n € N. We are primarily interested in the strings F'(¢,n) for 1 < ¢ < h(n). For each
n € N, these strings form an “interval” of lexicographically successive strings in {0, 1}",
possibly “wrapping around” from 1" to 0". For each m,n € N with m > n, let B" be
the set of all strings w € {0,1}™ such that F(t,n) C w for some 1 <t < h(n). Note that
B =27 By| = 2" "h(n).

Let n € N be arbitrary for a moment. By (4.11) there exists m > n such that

S 9T ®-04) > 3,
k=n
Then

1B = Y 2 Fh(k)
k=n k=n

Z om—k (Qk*f(k)*g(k) _ 1)

k=n

_ oy (2-109-00 _ -4)
p .
om lz 9 f(k)—g(k) _ Z Qk]
k=n

2"(3 — 2)
= 2

v

v

v

It follows easily by (4.16) and (4.17) that U Bi* = {0,1}™. This argument shows that, for

every n € N and x € {0,1}, there exist k >nand 1 <t < h(k) such that F(t, k) C
That is, for every x € {0,1}°°, there exist infinitely many n € N such that F(t,n) C x for
some 1 < ¢ < 2n—f(m)—g(n) _ 1

Since f, g € pspace, there is a machine M that, given inputs ¢, n in binary, outputs F'(¢,n)
in space polynomial in n. It follows by the preceding paragraph that there is a polynomial
¢' such that

KSY (z|n) < n— f(n) —g(n) io.
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for all x € {0,1}. It follows by (4.2) that there exist a polynomial ¢ and a constant ¢ such
that
KS%zln) <n— f(n) —g(n) +c io.

for all z € {0,1}*. Since ¢ is nondecreasing and unbounded, this proves the theorem. O

Corollary 4.13. There is a polynomial ¢ such that every binary sequence z € {0, 1}
has KS9(xz|n) < n —logn i.o. O

In ESPACE, we still have a significant gap between the n—n® lower bound of Corollary 4.6
and the n —logn upper bound of Corollary 4.13. The following result, due to David Juedes,
shows that the n — n® lower bound is tight in ESPACE.

Theorem 4.14 (Juedes [14]). Let ¢(n) = n®. For every z € ESPACE, there exists £ > 0
such that KS(z | n) <n —n® a.e. 0

[e.°]
Note that the series 3 27" is convergent (in fact, p-convergent), so the upper bound of

n=1
Theorem 4.14 is tighter than the more general bound of Theorem 4.12.

We now give almost-everywhere lower bounds for time-bounded Kolmogorov complexity
in uniform time complexity classes.

Theorem 4.15. Suppose that 7 € N, g € G;, and o € p;,; is a selector such that the

o0
series 22_#"(")0‘ is p; . -convergent for some real o < 1. Then for every ¢ € Gy, the set

n=0
of all x € {0,1}* such that KT9(x A ojn) > g(log#0c(n)) a.e. has p; ,-measure 1, hence
measure 1 in E;,;.

Proof. We follow the proof of Theorem 4.4. In the definitions of X,, and B, replace
KS by KT, #0(n) — f(#0c(n)) by g(log#oc(n)), and ¢(n) space by ¢(n) time. Then |B,| <
polog #am) g in 2CiogGin) — 9Gi(Gilogm) — 9Glogn) — i\ (n). S0 d € pyy by (L9)
and (4.10). As in Theorem 4.4, d is a 1-DS and each d,, covers X,,. Finally,

dn()‘) = Z P(Znﬂr) = 27#U(n)|Bn|
7T€Bn
< 99log#ao(n)+1-#o(n) - 9—#o(n)a

o
for all sufficiently large n, so Y d,()) is p;1-convergent. 0
n=0

The g(log#o(n)) lower bound of Theorem 4.15 is asymptotically much smaller than the
#o(n) — f(#o0(n)) lower bound of Theorem 4.4. More importantly, the magnitude of the
g(log#0(n)) lower bound in Theorem 4.15 varies directly with the time bound of the uniform
complexity class: greater values of i yield greater lower bounds in E;. Is this relationship
an actual property of time complexity classes, or is it merely an artifact of an inadequate
analysis 7 This is a crucial open question that will probably be difficult to answer.
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The following almost-everywhere lower bound on time-bounded conditional program size
is an immediate consequence of Theorem 4.15.

Theorem 4.16. If i € N, g € G;, and ¢ € G;4, then the set of all x € {0,1}° such
that KT7(z|n) > g(logn) a.e. has p;yi-measure 1, hence measure 1 in E; ;. O

The cases 7 = 1,2 of Theorem 4.16 give polylogarithmic and superpolylogarithmic lower
bounds on KT-complexity almost everywhere in E; and E3, respectively.

5. Circuit-Size Complexity

We now use Theorems 4.4 and 4.15 to derive almost-everywhere lower bounds on the
Boolean circuit-size complexity of binary sequences in exponential complexity classes.

Our circuit terminology is standard. We define a (Boolean) circuit to be a directed acyclic
graph v with vertex set I UG, where I = {wy, ..., w,} is the set of inputs (n > 0) and G =
{g1,-..,9s} is the set of gates (s > 1). Each input has indegree 0 and each gate has indegree
0, 1, or 2. Each gate of indegree 0 is labeled either by the constant 0 or by the constant 1.
Each gate of indegree 1 is labeled either by the identity function ID: {0,1} — {0,1} or by
the negation function NOT: {0,1} — {0,1}. Each gate of indegree 2 is labeled either by the
conjunction AND: {0,1}? — {0,1} or by the disjunction OR: {0,1}* — {0,1}. The output
gate gs has outdegree 0. The other gates and the inputs have unrestricted outdegree. The
size of such a circuit 7 is size(y) = |G| = s, the number of gates.

An n-input circuit v computes a Boolean function v : {0,1}" — {0,1} in the usual way.
For w € {0,1}",v(w) is the value computed at the output gate g, when the inputs are
assigned the bits wy, ..., w, of w. The set computed by an n-input circuit ~ is then the set
of all w € {0,1}" such that y(w) = 1.

It will be convenient to abbreviate
r[length n] = z[2" — 1..2""' — 2]

for z € {0,1}* and n € N. We will also define the graph of an n-input circuit v to be the
2"-bit string.
graph (7) = v(san1) ... Y(52041 ),

where son_1, ..., Son+1_9 are the successive strings of length n. Thus, if x is the characteristic
sequence of a language L, then v computes LN {0,1}" if and only if graph() = z[length n].

By well-known techniques we fix a one-to-one coding scheme
© : {circuits} — {0,1}*,
a (small) constant kg € N, and a polynomial-time computable circuit interpreter
Io : {0,1}* x {0,1}* — {0,1}=!

with the following properties.
(i) For each n-input circuit v, |O(y)| < kesize(y) log[n + size(y)].
(i) If 7, and 7, are n-input circuits with size(7;) < size(7s), then O(v;) lexicographically
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precedes O(7s).
(iii) If y = ©(7), where v is a |w|-input circuit, then Ig(y, w) = y(w).
(iv) If there is no |wl|-input circuit v such that y = (), then Ig(y, w) = A.

An n-input circuit code is a binary string ©(v), where « is an n-input circuit. We some-
times write size(O()) for size() and graph(©(vy)) for graph(y).

The circuit-size complexity of a language L C {0,1}* is the function CS;, : N — N
defined by
CSr(n) = min {size(y)|y computes L N {0,1}"}.

The circuit-size complezity of a binary sequence x € {0,1}> is the function C'S, : N - N
defined by
CS;(n) = min {size(y)| graph (v) = z[ length n]} .

Note that this is precisely the circuit-size complexity of the language whose characteristic
sequence is x.

For each function f : N — N we define the circuit-size complexity classes

SIZE (f) = {z € {0,1}*|CS,(n) < f(n) ae.},

SIZE 10 (f) = {z € {0,1}®|CS,(n) < f(n) i.0.}.

For a set C' of functions from N to N we then define the classes

SIZE(C) = | SIZE(f),

. fEC .
SIZEMO-(C) = | J SIZEMO-(f).
fec

Identifying languages with their characteristic sequences, SIZE(G)) is the set of all languages
having linear-size circuits and SIZE(G;) is the set of all languages having polynomial-size

circuits. Following standard usage, we write P/Poly for SIZE(G,). We also write P/ Polyl-0-
for SIZENO(G)).

Notation 5.1. Throughout this section we work with the selector & defined by
5(n) = T3 1131,
In the terminology of §4, the selector & requires a program to correctly decide the last

#0(n) = [%] bits of an n-bit prefix 2[0..n —1]. In particular, (2"*' —1) requires a program
to correctly decide the substring z[length n| of .

Our derivation of circuit-size lower bounds from space-bounded selective Kolmogorov
complexity lower bounds employs the following relationship.

Lemma 5.2. There exist a polynomial ¢ and a constant ¢ such that, for every binary
sequence x € {0,1}* and every n € N,

KS9z AG|2" — 1) < g.(n)[e +log g.(n)],
where g,(n) = max{n, C'S,(n)}.
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Proof. Call a string y € {0,1}* novel for n if y is an n-input circuit code and, for
every n-input circuit code ¢y’ that lexicographically precedes y, graph(y’) # graph(y). The
predicate “y is novel for n” can easily be tested in space that is polynomial in n + |y|. Let
Y1,---,Ysn) be the lexicographic enumeration of those strings that are novel for n. It is
routine to design a machine M that takes inputs ¢, N € N in binary and has the following
property. If N = 2" — 1 and 1 < ¢ < J(n), then M(¢t,N) = 0" graph(y,), and this
computation is carried out in space that is polynomial in N. It follows by (4.2) that there
exist a polynomial ¢ and a constant ¢ such that

KS%z AG|2"T — 1) < c+ |t (5.1)
whenever z[length n] =graph(y;) for some 1 <t < J(n).

We now estimate the number H,(n) of strings y that are novel for n and have size(y) <
gz(n). (Such an estimate was first computed by Shannon [38]. Minor variations of Shannon’s
estimate have appeared many times. The argument here, included for completeness, is similar
to that of Balcdzar, Diaz, and Gabarré [4].) In an n-input circuit with s gates, each gate has
fewer than 6(n + s)? possible specifications of its function and the sources of its inputs. Thus
there are fewer than 6°(n+s)* such circuits. Each of these circuits is functionally equivalent
to the (s — 1)! circuits obtained by permuting its s — 1 non-output gates (and adjusting the
inputs to the output gate accordingly), so the number of functionally distinct such circuits
is less than 6%(n + s)?*/(s — 1)! = 56%(n + s)?*/s!. This is less than [12(n + 5)?]*/s!. Using
the weak Stirling approximation s! > (£)°, then, the number of distinct such circuits is less
than [12e(n + s)?/s]®. Since g,(n) > n and every circuit with fewer than g,(n) gates can be
simulated by a circuit with exactly g,(n) gates, it follows that

12e(n + g.(n))?
9z(n)

gz (n)
H.(n) < [ ] < [4869,5(71)]99”(") (5.2)

for all z € {0,1}* and n € N.

By the monotonicity of the circuit coding ©, for every z € {0,1}> and n € N, there is
some 1 <t < H,(n) such that x[ length n] =graph(y,).
Setting
¢ =1+ c+log(48e),

it follows from (5.1) and (5.2) that

KSi(x AG]2" —1) < c+ |t
< ¢+ 1+logHy(n)
< ¢+ 14 ga(n) logld8eg, (n)]
< g2(n)[€ +log gu(n)]
for all x € {0,1}* and n € N. O

Our almost-everywhere lower bound for circuit size in ESPACE can now be derived from
Theorem 4.4.

Theorem 5.3. For every a < 1, the set of all x € {0,1}* such that C'S,(n) >
%(1 + O‘lo%) a.e. has pspace-measure 1, hence measure 1 in ESPACE.
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Proof. Fix 0 < a <1 and write f =1+ % for convenience. Assume for a moment

that |
CS,(n) < % <1 +2 ogn> i.0. (5.3)

n

Choosing ¢ and ¢ as in Lemma 5.2, then, we have

n n

2
KSi(z a2t —1) < =5 {E—l—log( 3)
2n

— on _ — [(B— a)logn — (B(¢+ log B)]

< one % (1= a)logn — B(¢ +log 8)] i.o.

n

Since 3(¢+ log f) — ¢ as n — oo, it follows that

2n
KS%z AG|2"T —1) < 2" — —[(1 — a)logn — 2¢] i.o.
n

Rewriting this with the change of variable N = 271 — 1 gives
KS%(x ANG|N) < #5(N) — f(#5(N)) i.o., (5.4)

where f(k) = lo];k[(l — a)loglog k — 2¢].

Now fix a constant kg € N such that

f(k) > Vkloge and <§>¢E > 4(k+1)

hold whenever k > kq. Set g(j) = 2(j%> + ko + 1) for all j € N. Then g € p and

00 R 00 00
Z o—f(F#a(n) _ Z 9151 — 9 Z 9—f(n)
n=g(j) n=g(j) n=j2+ko+1
o )
<2 Y Vi< eV
n=j%+ko+1 7% +ho

= demVIHho(1 /52 4 ko) < 277

o
for all j € N, i.e., g testifies that the series ZQ‘f(#”(”)) is p-convergent. It follows by

n=0
Theorem 4.4 that the set of all z € {0,1}> satisfying (5.4) has pspace-measure 0. Since
(5.3) implies (5.4), this proves the theorem. O

As an immediate consequence of Theorem 5.3, we have the following strengthening of
Shannon’s almost-everywhere lower bound [38] on circuit size.

Theorem 5.4. For every real number o < 1, almost every binary sequence x € {0, 1}
has circuit-size complexity CSy(n) > £-(1 4 2%82) g e, O

The distribution of complexities between this lower bound and the 2-(1 + O(ﬁ)) upper
bound of Lupanov [23] remains an open question.
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Theorem 5.3 extends the following known result by increasing the lower bound and by
substituting “a.e” for “i.o.”

Corollary 5.5 (Lutz [24]). If f : N — N is such that f € pspace and f(n) = o(%-), then
the set of binary sequences x € {0, 1}° such that C'S,(n) > f(n) i.o. has pspace-measure 1,
hence measure 1 in ESPACE. O

Corollary 5.6 (Lutz [24]). u(P/Poly | ESPACE) = 0. O

In fact, we now have a stronger result.

Corollary 5.7. u(P/Polyl-*:| ESPACE) = 0. O

The following consequence of Theorem 5.3 (via Corollary 5.7) was in the fact the starting
point for research leading to Theorem 5.3.

Corollary 5.8 (Kannan [15]). ESPACE ¢ P/Polyl-. O

We now consider circuit-size complexity in uniform time complexity classes. For this we
use the following relationship between circuit size and time bounded selective Kolmogorov
complexity.

Lemma 5.9. There exist a polynomial ¢ and constants ¢; and ¢, such that, for every
binary sequence x € {0,1}> and every n € N,

KTz AG|2" T — 1) < €19.(n) log g.(n) + &,
where g,(n) = max{n, C'S,(n)}.

Proof. Using the circuit interpreter /g we can design a machine M such that if N =
2"t1 — 1 and y = O(vy), where ~ is an n-input circuit, then

M(y, N) = 0°"~'graph(y)

in < ¢'(N + size(7)) time, where ¢' is a polynomial. In fact, by the Lupanov upper bound
there is a polynomial ¢” such that for every string z € {0,1}2?" there is a circuit code y such
that

M(y,N) = 0"z

in < ¢"(NV) time. It follows by our choice of circuit coding scheme that
KT (x A2 —1) < koCSy(n)log[n + CSy(n)]
< @1ga(n)log g.(n)

for every x € {0,1}* and n € N, where ¢; = 2kg. By (4.1), then, there exist a polynomial
q and a constant ¢, such that

KTz A5|2"" — 1) < C1g,(n) log gu(n) + ¢
for all z € {0,1}* and n € N. O

Almost-everywhere lower bounds for circuit size are now easily derived from Theorem 4.15.
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Theorem 5.10. If i > 1 and f € G, then the set of all x € {0,1}* such that
CS;(n) > f(n) a.e. has p;;1-measure 1, hence measure 1 in E; ;.

Proof. If z € {0,1} is such that
CS,(n) < f(n) io.
then Lemma 5.9 tells us that there exist functions g, ¢ € G; such that

KTz ANaln) < g(log#a(n)) i.o. (5.5)
Since the set of all z € {0,1}* satisfying (5.5) has p;;i-measure 0 by Theorem 4.15, the
present theorem follows. O

Corollary 5.11. Fori € N, SIZEi'O'(Gi) has p;o-measure 0, hence measure 0
in EZ’+2.

Proof. Since SIZE-C(G;) C SIZEM®(§is1) and §ipy € Giyr, this follows immediately
from Theorem 5.10. O

Corollary 5.12. P/Polyi'o' has ps-measure 0, so u(P/Polyi'O'| E;) =0. O

Corollary 5.13. For each k € N, SIZEi'O'(nk) has ps-measure 0, so
p(SIZEO (nk)|Ey) = 0. O

4%

Theorem 5.10 extends a result of [24] by substituting “a.e.” for “i.0.” Corollaries 5.11,

5.12, and 5.13 then extend results of [24] in like fashion.

Since Wilson [44] has exhibited oracles relative to which Eo C P/Poly and EC SIZE(G,),
Corollaries 5.12 and 5.13 appear to be the strongest results that we can obtain from rela-
tivizable techniques.

6. Pseudorandom Sequences

The results of the preceding two sections can now be used to prove lower bounds on the
nonuniform complexity of pseudorandom sequences. We first define the measure-theoretic
notion of pseudorandomness.

Definition 6.1. A A-testis a set X C {0, 1}* such that ua(X) = 1. A binary sequence
x € {0,1}> passes a A-test X if x € X. A binary sequence z € {0,1}* is A-random, and
we write z € RAND(A), if z passes all A-tests. That is,

RAND(A) = N{X|ua(X) = 1}.

It is an essential feature of A-randomness that it (like the algorithmic randomness of
Martin-Lof [28] and the weak randomness of Schnorr [34,35,36,37]) is definable in measure-
theoretic terms. However, A-randomness admits other characterizations, just one of which
we mention here. (This follows immediately from Theorem 3.19 and Definition 6.1.)

Theorem 6.2. A sequence z € {0,1}* is A-random if and only if there is no A-
computable martingale that succeeds on x. a
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If A = rec, then Theorem 6.2 tells us that rec-randomness is equivalent to the martingale-
randomness mentioned by van Lambalgen [42,pp. 77-78]. Thus if we let RAND be the set
of all algorithmically random sequences of Martin-Lof [28] and RANDyy, be the set of all
weakly random sequences of Schnorr [36] (see also [41,42]), then

RAND C RAND(rec) € RANDy.

If A is a time- or space-bounded complexity class, then A-randomness is a notion of pseu-
dorandomness that is at least as strong as (and, we conjecture, stronger than) the time-
and space-bounded versions of RANDy; investigated by Schnorr [34,36]. In any case, such
classes RAND(A) have the following abundance property, which can be regarded as a weak
analogue of the existence of a universal test for algorithmic randomness [28]. (See [27] for a
proof and further discussion of pseudorandom sequences.)

Theorem 6.3 (Abundance Theorem). For ¢ > 1, RAND(p;) is a p;ii-test and
RAND(p;space) is a p;;ispace-test. That is,

pp,,, (RAND(p;)) = pp,  space(RAND(p;space)) = 1.
Thus (RAND(p,)|Ei+1) = n(RAND(p,space)|E;11SPACE) = 1. O

Thus almost every sequence in E;; is p;-random and almost every sequence in E; ; SPACE
is p;space-random. That is, Definition 6.1 is sufficiently weak to provide an abundance of
deterministically computed pseudorandom sequences. On the other hand, every singleton
subset of R(A) has A-measure 0, so no sequence in E; is p;-random and no sequence in
E,SPACE is p;space-random. Thus we immediately have lower bounds on the uniform
complexities of pseudorandom sequences. The following results give lower bounds on the
nonuniform complexities of pseudorandom sequences.

Theorem 6.4. If x € {0,1}* is pspace-random, then

KSi(zn) >n— f(n) ae. (6.1)
for every polynomial ¢ and every f € pspace such that ZQ‘f (") is p-convergent; and
n=0
2" 1
CSy(n) > — <1 +2 ogn> a.e. (6.2)
n n
for every real number o < 1.
Proof. By Theorems 4.5 and 5.3, conditions (6.1) and (6.2) are pspace-tests. O

Theorem 6.5. If z € {0,1}* is p;-random, where 7 > 1, then
KT%z|n) > g(logn) a.e. (6.3)
for all g € G;_1 and ¢ € G;. If © > 2, then we also have
CS;(n) > f(n) a.e. (6.4)
for all f € G;_;.
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Proof. By Theorems 4.16 and 5.10, conditions (6.3) and (6.4) are p;-tests. 0

Corollary 6.6. RAND(pQ)ﬂP/Polyi'O' = (). 0

That is, every po-random sequence has superpolynomial circuit-size complexity almost
everywhere.

7. Conclusion

We have proven several results of the following general form.
Almost every problem in the uniform complexity class C has
very high nonuniform complexity almost everywhere.
For C = ESPACE, these results give strong instances of the Shannon effect.

For time-bounded classes C, the results are distributionally strong but leave EZP /Poly
and other important conjectures unresolved. We have, however, shed some structural light
on such questions. For example, Theorem 5.3 tells us that at least one of the following is
true.

(i) EZSIZEL0- (%(1 + a—l(;tg—")) for every real o < 1.
(ii) E is a measure 0 subset of ESPACE.
Condition (i) is much stronger than the EZP/Poly conjecture. By the work of Hartmanis

and Yesha [11], condition (ii) implies, and is probably stronger than, the conjecture that
P;P/PolyﬂPSPACE.

Acknowledgment. I thank Yaser Abu-Mostafa, Leonid Levin, Elvira Mayordomo, David
Juedes, David Martin, Giora Slutzki, and Josef Breutzmann for helpful discussions and
remarks.
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